
                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 11, NUMBER 4 APRIL 1970 

On the Two Majorana Representations * 
MARKO I. PAVKOVIC 

Department of Physics & Astronomy, Tel-Aviv University, Ramat-Aviv, Israel 

(Received 23 April 1969; Revised Manuscript Received 14 October 1969) 

An interesting property of the Majorana representations, symbolized in the Clebsch-Gordan equations 
(0, t) ® (t,~) = (t,O) EEl ... and (t,O) ® (t, !) = (0, t) EEl .. ',is reported. (t, ~) refers to the basic 
spinorial nonunitary representation of the SL(2, c) group in Gel'fand's notation, while (0, t) and (t, 0) 
are two Majorana representations, again in the same notation. The Majorana representations represent 
the only solution of the equation X ® (t, !) = ~a EEl Ya , in the sense that,of all the unitary irreducible 
representations of the SL(2, c) group, only (0, !), or (t, 0) multiplied tensorially with (t, i) will yield 
a unitary result-at least one of the Y's unitary. 

The two Majorana representations are prominent 
members among the unitary infinite-dimensional 
irreducible representations of the SL(2, c) group. 
They possess several exceptional properties of which 
the most familiar is the feature that, of all the unitary 
irreducible infinite-dimensional representations of 
SL(2, c), only the Majorana representations allow the 
construction of an operator with the relativistic tensor
transformation properties of a 4-vector.l 

We have found another quite remarkable property 
of the Majorana representations which does not seem 
to have been reported in the literature to date. Briefly, 
if s denotes the basic spinorial representation of 
SL(2, c), s = (t, t) in Gel'fand's notation, and 
Ya , a = I, 2,"', and X are infinite-dimensional 
irreducible representations of the same group, of which 
X and at least one of the Y's are unitary, and with the 
significance of unknowns in the Clebsch-Gordan 
equation 

X ® s = 1 EEl Ya , (1) 
a 

then the only solution of (1) is supplied by the 
Majorana representations a = I, 2, X = (0, t), Yl = 
(t, 0) or X = (t,O), Yl = (0, t), again in the 
Gel'fand notation. 

Here, ko runs through the set of integers or halves of 
odd integers, and represents the lowest angular
momentum quantum number contained in an 
irreducible representation, while c is in general a 
complex number. The six objects Li and Qi' i = 
I, 2, 3, are of course the SL(2, c) group generators 
which form the Lie algebra commutation relations 

[Li , L j] = i€~jLk' 
[Li' Qj] = i€~jQk' 

[Qi' Qj] = - i€~iLk' 

Note that the representation labeled by (-ko, -c) 
is indistinguishable from the representation (ko, c), 
provided the eigenvalues of the two listed invariant 
operators are sufficient for specifying uniquely the 
irreducible representations of SL(2, c). In what 
follows, the representations (ko, c) and (-ko, -c) 
will be considered equivalent.l 

The basic spinorial representation is characterized 
by s = (t, t). It contains only one angular-momentum 
quantum number I = t. The conjugate representation 
is oS = (t, -t), The group generators in (t, t) are 
expressible in terms of 2 X 2 Pauli matrices, as 
illustrated by 

The relation 

i 
Q ---+--a 2 . 

explicitly demonstrates that the representation is not 
unitary. 

We first explain the content of the stated theorem 
in more detail and then provide the proof. The 
properties of the SL(2, c) group representations have 
been intensively investigated in the past, and, in 
particular, a complete classification of the finite
dimensional nonunitary as well as the infinite
dimensional unitary irreducible representations have 
been made.' In Gel'fand's classification, which is 
used throughout, the irreducible representations are 
labeled by the ordered pairs of parameters (ko , c), 
whose relationship to the eigenvalues of two invariant 
operators is 

Among the unitary infinite-dimensional irreducible 
representations of SL(2, c), there are two, labeled by 
(0, ~-) and (t, 0), which will appear as the solutions 

(2) of (1). These are two Majorana representations. 

L2 _ Q2 = k~ + c2 - 1, 

L.Q=-ikoc. 
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The first, (0, t), belongs to the set of representations 
of the supplementary series and contains integer 
angular momenta I = 0, I, 2, ... , while the second, 
(t,0), is a representation of the principal series and 
contains the fractionall's, I = t, t, t, .... 

Consider now the problem of the Clebsch-Gordan 
decomposition of the tensor product of two irreducible 
representations. Symbolically, 

(ko, e) ® (k~, e') = I EEl (k~, e"). (3) 

The case when both irreducible representations on the 
lhs of (3) are finite dimensional was solved a long time 
ago. l When one or both of the two representations 
(ko, e) and (k~, e') are unitary, the problem is more 
involved, and has been solved for only some special 
cases. 2 

It is not our intention to investigate systematically 
other cases or to calculate the associated Clebsch
Gordan coefficients. Instead, we address ourselves 
to the simpler problem of determining if and which 
unitary irreducible representations appear in the 
Clebsch-Gordan expansion of the tensor product of 
a unitary infinite-dimensional irreducible representa
tion of SL(2, e) with a particular nonunitary finite
dimensional irreducible representation of the same 
group. The identification of other, nonunitary 
infinite-dimensional representations of SL(2, e) which 
may appear on the rhs of (3) is of secondary impor
tance here. 

It is not without surprise that we find unitary 
representations at all in the tensor product involving 
nonunitary factor. However, the example which is 
given below clearly illustrates that such situations 
can occur. Even without reference to the physical 
applications, it is obvious that the unitary representa
tions in the Clebsch-Gordan expansion deserve 
special attention. 

We now give the solution of (3) for the case 
(k~, e') = (t, t). In order to emphasize the role of 
unknown variables which the unitary irreducible 
representations of SL(2, e) play in our considerations, 
we denote the representation (ko, e) on the lhs of (3) 
by X. Let Land Q be the Hermitian generators acting 
in X. Let J and K be the generators acting in the prod
uct space X ® (t, t): 

Then 

and 

J = L + 1/2a, 

K = Q - i/2a. 

J2 - K2 = V - Q2 + 3/2 + 2A 

J . K = L· Q - 3i/4 - iA, 

(4) 

where 
A=t{a.L+ia.Q). 

We will denote the eigenvalues of A by a. A simple 
relationship exists between the quantities V - Q2, 
L . Q, and A (see Ref. 3): 

(A + i)2 = HV - Q2 + 2iL • Q + 1). (5) 

The validity of (5) can easily be verified by direct 
computation, which includes the relations 

a . La· L = V - a • L, 

a . Q a . Q = Q2 + a • L, 

and 

Ha.La.Q + a.Qa.L) = L.Q - a·Q. 

The numerical counterpart of (5), involving the eigen
values of V - Q2, L· Q, and A, reads 

(a + t)2 = He + kO)2 
or 

(6) 

The essential step in our considerations is now to 
determine the conditions which are imposed upon the 
operator A and consequently upon its two eigenvalues 
a+ and a_ by the requirement that the Clebsch
Gordan decomposition of the tensor product X ® 
(t, t) contain unitary pieces. A necessary condition 
is obviously the hermiticity of the invariant operators 
J2 - K2 and J. K on the corresponding irreducible 
subspaces. Applied to (4), this hermiticity condition 
requires that 

and 
A+!=O 

on at least one irreducible subspace. In the language 
of eigenvalues, either 

or 
(7) 

or 

An inspection of (6) informs us that the case a+ = 
a_ = -! cannot be realized. Combining (6) and (7), 
we observe that either 

e + ko = -t 
or (8) 

c + ko = +t. 
Since ko is always real or zero, e in (8) must also be 
real or zero. But the principal series of the unitary 
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irreducible representations of SL(2, c) are charac
terized by purely imaginary c or zero, while the supple
mentary series are characterized by ko = 0, e real and 
lei < U Using this information, we conclude that, 
in the set of unitary infinite-dimensional irreducible 
representations of SL(2, c), there are only two 
solutions of (8): 

ko = ±t, e = 0 (principal series) 

and (9) 

ko = 0, c = ±t (supplementary series). 

It remains to be verified that the solutions (9) are also 
sufficient conditions for the existence of unitary pieces 
on the rhs of (3). Combining the invariant operators 
J2 - K2 and J. K into non-Hermitian objects 

J2 - K2 - 2iJK + 1 = V - Q2 - 2iLQ + 1, 

J2 - K2 + 2iJK + 1 = (V - Q2 + 2iLQ + 1) 

+ 4A + 3, 

one obtains, in the process of diagonalization, 

either 

ko = 0, c = ±t (supplementary series) 

or 
fo = ±i, c = 0 (principal series) 

furnish the solution of (11), we complete the proof 
of the theorem, symbolically expressed by (1). 

It is simple to verify that similar conclusions can 
be reached if the spino rial representation (t, t) in the 
equation (3) is replaced by its conjugate representa
tion (t, -t), whose generators are 

L-+lj2a, 

Q-+i/2a. 

Again, we obtain the same X and Y1 as in the previous 
case of the (t, t) representation, namely, 

(0, t) ® (t, -t) = (t,O) E9 ... 

and 
(t, 0) ® (t, -t) = (0, t) E9 .... 
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A recent technique for extending the singular eigenfunction method in linear transport theory to 
prob~ems which are not strictly I-dimensional is compared to a more naive approach based on the 
Founer transform. The latter appears to have advantages with regard to simplicity and directness. 

INTRODUCTION 

The i-dimensional form of the time-independent 
one-speed transport equation with isotropic scattering 
is conventionally solved by means of the "singular
eigenfunction" technique. l Recently a method for 
extending this technique to problems which are not 
strictly i-dimensional has been proposed by Kaper.2 
This method, although evidently limited in its applic
ability to problems in which the boundary surfaces 
are no more complicated than parallel planes, does 
allow boundary conditions which vary over these 
planes. Thus the "reduced" 3-dimensional form of the 
transport equation is used throughout, and one may 
handle, for example, point sources, rather than only 
plane sources. 

The extension of the i-dimensional theory to this 
wider class of problems is far from trivial. Indeed, a 
fairly elaborate mathematical framework, involving 
the theory of generalized analytic functions, 3 is re
quired. The solutions obtained from this framework 
are initially in the form of complex 2-dimensional 
integrals, the reduction of which to more readily 
useful form is, again, nontrivial. 

Our purpose here is to compare the above method 
to a much more naive approach based on the Fourier 
transform. We hope to show that the latter has at 
least as wide a range of applicability as the singular 
eigenfunction method, while at the same time requiring 
much less sophisticated mathematics. Moreover, the 
Fourier-transform method seems in several ways more 
direct; in particular, it provides solutions directly in 
a form suitable for evaluation. 

contour integrals. The Fourier-transform method, 
which yields solutions in contour integral form directly, 
is presented in Sec. 2. In the conclusion, we attempt 
to summarize the essential differences between the two 
techniques. 

1. THE SINGULAR EIGENFUNCTION 
SOLUTIONS 

The reduced transport equation has the form 

( 1 - iB a - iB n + Il ~) IV = ~ fdOI ~"r 
U II = = r ax 41T IV. 

(1.1) 

Here, IV(x, BlI , B= , Q) is related to the neutron angular 
density N(r, Q) either by means of the ansatz 

(1.2) 

in which case By and B= are the transverse buckling 
constants, or by means of a 2-dimensional Fourier 
transform. In either case, notice that Eq. (1.1) limits 
us to considering only problems in which the bound
aries may be taken to be independent of y and z. The 
vector n refers, of course, to the normalized velocity 

Q = v/lvl (1.3) 

= (fl. (1 - fl2)t cos 0, (1 - fl2)t sin 0) (1.4) 

(1.5) 

where, in Eq. (1.5), we have introduced the convention 
of denoting the y and z components of a vector by a 
subscript (x). 

Kaper2 observes that, if we define a transformation 
of variables 

(ft, 0) -+ (;, 1]) (1.6) 

Our comparison of the two methods will be 
effected by examining their respective applications to 
two simple problems. Thus, in Sec. 1, after some brief 
remarks on the method of Kaper, we begin with the 
solutions obtained in Ref. 2 for the infinite-space by means of the complex variable 
Green's function and half-space albedo problems. 
We show how the 2-dimensional integrals which these 
solutions involve are to be reduced to much simpler 

1126 
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(1.8) 
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and, furthermore, define a new angular density "P by 1'/ 

"P(x,~, 'YJ) == (1 - iB(",) • Sl(",»JV(x, B(",),Sl), (1.9) FIG. I. The region G= 
G+ V G- of the complex , 

then Eq. (1.1) may be written in the form plane. 

(1 + , :J "P(x, ') = II g(")"P(X, ") d~' d'YJ'. (LlO) 

G 

Here, 

and G = G+ V G- is a certain figure-eight-shaped 
region of the complex plane. (See Fig. 1, which is 
reproduced here from Ref. 2 for convenience.) Note 
that the convenient notation 

/(~, 'YJ) =/W (1.12) 

is by no means intended to imply that / is an analytic 
function of ,. 

The evident similarity between Eq. (1.10) and the 
standard form of the I-dimensional transport equa
tion! is exploited in Ref. 2 by applying to Eq. (1.10) a 
variation of the singular-eigenfunction technique. 
Thus, one seeks eigenfunctions of the form 

"Pv(X, ') = e-x1vcf>(y, '), (1.13) 

where cf>(y, ') is a generalized function of the complex 
variable " defined for test functions with support in 
G. Discrete and continuum "modes" are obtained 
from Eqs. (1.10) and (1.13), and these are then shown 
to possess the usual ("half-range" and "full-range") 
completeness and orthogonality properties. Without 
attempting to reproduce the work of Kaper here, we 
wish to remark on a few of the differences between the 
singular-eigenfunction theory of Eq. (1.10) and the 
conventional I-dimensional analysis. 

Primary among these differences is the mathema
tical complexity of the 3-dimensional dispersion 
function 

A(y) = 1 +ff yg(,) d~ d'YJ. (1.14) 
'-'11 

G 

A(y) is analytic "almost nowhere" inside the region G. 
Only for Y ¢ G can it be written in closed form: 

A(y) = A(v), v ¢ G, (1.15) 

A(y), like the I-dimensional dispersion function which 
it resembles, has the two roots 

(1.17) 

where, denoting the knownl I-dimensional roots by 
±L, we have 

(1.18) 

However, because of the qualification y ¢ G on Eq. 
(US), one cannot conclude in general that the ±Yo 
will be roots of A. This technical difficulty (which, as 
we shall see below, has only a temporary significance) 
is dealt with in Ref. 2 by defining the function 

le(B2) = 1, 0 < B2 < 1 - L-2, 

=0, (1.19) 

Now when le(B2) = 1, it is clear from Eq. (1.18) that 
±Yo ¢ G, so that Eq. (1.15) holds and 

A(±yo) = 0, le(B2) = 1. (1.20) 

Equation (1.20) yields, in the usual way, the discrete 
modes 

"P±(x, ') = e'fX1v°cf>±W, (1.21) 

cf>±W = ±vog(±Yo)J(±yo - D. (1.22) 

But it must be observed that these modes do not occur 
in the case le(B2) = O. 

Equation (1.10) always possesses a continuum of 
eigenvalues. Here, the continuum is 2-dimensional: 
all '11 E G and the corresponding eigenfunctions 

"Pix, ') = e-xlCcf>(y, '), (1.23) 

cf>(y, n = yg(y)J(y - ') + A(y)b(y - n (1.24) 

are generalized analytic functions, with the definitions 

«'11 - ,)-l, "Pm) == II y"P~'), d~ d'YJ, (1.25) 

G 

(be-II - '), 1p(m == 1p(y) , 'liE G, 

=0, y¢G. (1.26) 

The formal similarity of Eq. (1.24) to the familiar 1-
dimensional continuum modes is perhaps deceptive. 
Note, for example, that the integral of Eq. (1.25) 
exists without any principal-value interpretation. 
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The proof of full-range orthogonality for the eigen
functions of Eqs. (1.21)-(1.24) is as trivial here as it is 
in the i-dimensional theory. However, rather com
plicated arguments are required to prove their full
range completeness, half-range orthogonality, and 
half-range completeness. Essential to these arguments 
is a "theorem" which, ignoring details of rigor, may 
be stated in the form4 

(1.27) 

In particular, it follows from Eq. (1.27) that 

~~ = 0, ,¢G, 

= -7T'g(O, 'E G. (1.28) 

This theorem plays a role here somewhat analogous to 
that of the Plemelj formulas in the conventional theory. 
It is used in the half-range orthogonality proof, for 
example, to find a function XC,) which is analytic for 
, ¢ G+, continuous on the boundary aG+ of G+, and 
which satisfies 

Of course, the degree of complexity of the complete
ness and orthogonality proofs has little bearing on the 
task of solving specific problems. Indeed, Kaper shows 
that this task proceeds in a quite straightforward 
manner. Given a problem of the general form of Eq. 
(1.1), with the addition perhaps of inhomogeneous 
terms, and conditions specified on boundary planes 
perpendicular to the x axis, we first transform the 
angular density and angle variables according to Eqs. 
(1.7)-(1.9). Then, as in the I-dimensional theory, we 
expand the unknown transformed density "P in terms 
of the eigenfunctions of Eqs. (1.21)-(1.24), and expect 
the given boundary conditions, together with the 
appropriate (half-range or full-range) orthogonality 
relations, to provide the expansion coefficients. For 
purposes of comparison with a quite different approach 
to be described below, we wish now to examine the 
solutions Kaper obtains in this way to two very simple 
problems. 

A. The Infinite-Space Green's Function 

The infinite-space Green's function satisfies, for 
all r, 

(n . V + l)Ng(r, n) 

=!:.- Jdn'Ng(r,n') + b(r)tXn - no) (1.30) 
477 

and is found by Kaper to have the representation 

N ( n) = _1_ fdB -iBI,)·rl.) "Pix, ') 
9 r,"O:; 2 (",)e , 

(277) 1 - IB(:t}.Q(",) 

(1.31) 
"Pix,O = ±Xc(B2)a±"P±(x,O 

± II A(,')"P,,(x, 0 d~'drJ', x ~ 0, (1.32) 

a+ 
where5 

(1.33) 

Am = gao) I ~~:: ~:~ I [NWt
1
¢a, '0), (1.34) 

and the N's are certain quantities defined in Ref. 2. 
What is especially interesting for our purposes here 

is the transformation of the solution afforded by 
Eqs. (1.32)-(1.34) into a form directly suitable for 
evaluation. In particular, we wish to express the 
integral over the region G+ or G- [in Eq. (1.32)J in the 
much more tractable form of a line integral. Assuming 
for definiteness that x > 0, we have 

and we have noted that 

g('o) I a(~o, 1]0) I = ~ ~ . (1.37) 
B(flo, fio) 477 flo 

Making the appropriate substitutions from Eqs. (1.21)
(1.24) and (1.34), and integrating the b-function terms, 
we can write Eq. (1.36) as 

where 

X+W = 1, 'E G+, 
= 0, ,¢ G+, (1.39) 

12 can be made to appear much less formidable if we 
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avail ourselves of the "theorem" (1.27) and its corol
lary (1.28). These are easily seen to imply that the 
integrand in Eq. (1.40) may be written in the form 

1 () ( e-flJg' ) 

1T a,' A(,')(r - ,)a' - '0) 
-fIJi(' 

e [~(" _ '0) - ~a - '0)]' (1.41) a - 'o)A(n 
We observe that the ~-function terms in the expression 
(1.41) are precisely such as to cancel (upon integration 
over G+) the first two terms in Eq. (1.38). Furthermore, 
the integral over G+ of the first term in (1.41) is readily 
converted, by means of what is essentially Stokes' 
theorem, into an integral over the boundary (}G+. In 
this way we find that Eqs. (1.38) and (l.40) reduce to 

e-flJ/{o 

I 1 = X+ao)ba - '0) 'ogao) 

1 r e-flJ /(' dr 
+ hi Ji!G+ A(n(,' - oa' - '0)' (1.42) 

With regard to the line integral in Eq. (1.42), one 
further significant manipulation is allowed: Since 
" E (}G+, we may substitute for A(n the much more 
analytically tractable function A(n [ef. Eq. (1.16)]. 
It is clear that the latter function has its only singulari
ties, branch points, at 

r= ±(J., 
(J. = (1 + B2)-!. 

(1.43) 

(1.44) 

We choose the cut 1 = 1+ + 1- as joining these two 
points along the real axis as in Fig. 2. Now we define 
a region of the complex plane G+ to be the region G+ 
with the exclusion of a small neighborhood of the cut 
I, and observe that the integrand in Eq. (1.42) is ana
lytic throughout the interior of G + except for the 
following: 

(i) There will be a pole at r = ,(r = '0) unless 
,ao) E G- or ,ao) E I; 

(ii) there will be a pole at r = Vo unless Xc(B2) = 1. 
[It is important to note, from Eq. (1.33) and the 
known factl that ILl> 1, that in any case Vo ~ I.] 

With these remarks, it is evident that we may write 

1 r e-x/{' d,' 
2m Joa+ Acn(r - ,)a' - '0) 

-xi( 

A(')~' - '0) X+(O 
e-flJl(o e-xlv0 [1 - X (B2)] 

+ ' X+ao) + _, c 
A('o)ao - ') A (vo)(vo - O(vo - '0) 

1 r e- flJ /(' d,' 
+ 21Ti )1+' A(ncr - ,)(r - '0) . (1.45) 

FIG. 2. Cuts and integration 
contours. 

Here, of course, 

X+W == 1, 'E G+, 
== 0, 'E G- U /+, (1.46) 

and /+' is a path surrounding the cut /+ (cf. Fig. 2). 
Note that we have recovered in Eq. (l.45) both the 
previously cancelled terms of Eq. (1.38), in somewhat 
altered form, and th~ discrete term in the case 
Xc(B2) = 0. 

The right-hand side of Eq. (1.45) represents an 
improvement over the left-hand side for two reasons: 

(i) The integration path for the line integral is much 
simpler. Indeed, when neither, nor '0 is on /+, we may 
write 

1 r e-x /(' d,' 

21Ti JI+ Acna' - oa' - '0) 
1 ra

, e--flJ/
{' (1 1) 

= 21Ti Jo d, a' - ,)a' - '0) A -en - A+(n ' 
(1.47) 

where the A± are the boundary values of A on its cut. 
In case either, or '0 is on /+, we avoid the pole by a 
small semicircle and may write the integral in terms of 
a principal value plus pole contributions in the con
ventional way. 

(ii) More significantly, we have isolated in Eq. 
(l.45) the asymptotically dominant contribution to the 
integral over (}G+. Indeed, it is evident from Eqs. (1.18) 
and (1.44), that the discrete term [which must, regard
less of the magnitude of B2, occur in "p(x, m always 
dominates the integral of Eq. (1.45) for large x. 

Substituting Eqs. (1.42) and (1.45) into Eq. (1.35) 
and reverting to the more physical quantity Ng , we 
conclude 

Ng(x, Q) 

= CO I a(~o, rio) I -le-"'/{o~(, - , ) 
X+ ° (}CfLo, eo) flo ° 

c "0 ( e-
xlvo 

+ 41T fLfLo k(vo)(vo - O(vo - '0) 
-xl( -flJl(o 

+ X+W A(O~' _ '0) + ;(+('0) Aa~(,o _ ') 
1 r e-xg'd,' ) 

+ 27Ti )1+' Acna' _ oa' _ '0) , x> 0, (1.48) 
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where the correct functional dependence is ultimately 
to be obtained by means of Eq. (1.8). We omit this 
final step and merely draw attention to the fact that 
Eq. (1.48) involves only A,6 which, unlike A, can be 
written in closed form; there are no 2-dimensional 
integrals, explicit or implicit, in our final expression 
for N. 

B. The Albedo Problem 

If Na(x, B(",) ,n) satisfies the homogeneous equation 
(1.1) for x > ° and the boundary condition 

Na(O, B(",) , n) = b(fl - flo)b«(J - (Jo), 

for fl > 0, flo < 0, (1.49) 

then the corresponding "Pa satisfies Eq. (1.10) for 
x> ° with7 

(0 ~)=floO(~o,'YJo)bC{_~) ~ ~ EG+. (1.50) 
"Pa' ~o O(flo, (Jo) 0" 0 

Using the half-range completeness and orthogonality 
relations, Kaper obtains from Eqs. (1.10) and (1.50) 
the solution 

"Pix,~) = b+"P+(x, O + II B(~')"P"(x,~) d~' d'YJ', 

0+ (1.51) 
where 

BC{) = & I a(~o, 'YJo) /_1_ (bC{ - ~o) 
~o a(flo, (Jo) A({o) 

_ ~og(~o)(~o - vo)(~ - l)eW('O)-W('»). (1.52) 

AW( ~ - vo)( ~o - 1)C{0 - ~) 

b _ ~ I a(~o, 'YJo) I g(~o)ew('o)(vo - 1) (1.53) 
+ - A(~o) aCflo, (Jo) gCvo)ew(voi(~o - 1) . 

Here we have used the function 

which arises in the solution of Eq. (1.29). By methods 
similar to those used in regard to Eqs. (1.38)-(1.45), 
we may write w in the form 

wW = X+(n In Aa) - X+W In A(n + yW 
- In (~ - CI.)/a - 1), (1.55) 

where 

(Y) == __ 1 J In A(O d,'. (1.56) 
y ., 2· + y, Y 

7T1 I ., -., 

The last term in Eq. (1.56) arises from an integration 
along the cut of In A, which cut is taken to be along 
the real axis inside G and is to be distinguished from 

the cut of A itself. [Throughout this discussion of the 
albedo problem we assume for convenience that 
Xc(B2) = I; the actual value of X.(B2) is, of course, as 
irrelevant to the final answer here as it was in the 
infinite-space case discussed above.] 

Our task now is to substitute Eqs. (1.52) and (1.53) 
into Eq. (1.51), and to reduce the integral over G+ to a 
simple branch-cut integral. These manipulations are 
somewhat lengthier than, but otherwise very similar to, 
the procedure we performed above for the infinite
space Green's function. Omitting both the detailed 
calculation and the general result, we state here only 
the most physically interesting result, namely, that the 
emergent angular density, which according to Eqs. 
(1.51)-(1.53) is given by 

A C n "PaC{) ( ) Na 0, B(",) , .:.c.) =. , fl < 0, 1.57 
l-/B(",)"n(",) 

ultimately reduces to 

Na(O, B(",) , n) 
c "o(~o - vo)C{ - CI.)eY('o)-r({) 

- - - , fl < o. 
47T [A(~o)]a - vo)('o - CI.)({ - ~o) 

(1.59) 

We have placed the factor A(~o) in brackets to indicate 
that it is to be replaced by I in the case ~o E /+. The 
fact that Eq. (1.59), like Eq. (1.48), involves A rather 
than A follows essentially from Eq. (1.55). 

It is perhaps worth mentioning that the crucial step 
in obtaining Eq. (1.59) from Eq. (1.58) depends upon 
the observation that Eq. (1.54) implies 

awW=O 
a~ , 

-7T'gW 
A(O ' 

(1.60) 

Using Eq. (1.60), the surface integral in Eq. (1.58) may 
be written in terms of some b-function contributions 
plus an integral over aG+; since x = 0, the contour for 
the latter may be deformed into a contour at infinity, 
with some residues. The final result is Eq. (1.59). 

Let us consider an alternative formulation. 
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2. THE FOURIER-TRANSFORM METHOD 

A rather general problem in linear transport theory 
may be stated as follows: 

Let V be some (bounded or unbounded) region of 
3-dimensional space with boundary S. We are to find 
that function 4>(r,n), for rEV and 10.1 = 1, which 
satisfies 

(0. . V + 1)4>(r,n) = ..£-. per) + q(r,n), rEV, 
417" 

(2.1) 

given the boundary data 4>.(r., 0.) and 0. inward to V; 
that is, 

the transform of Eq. (2.5) takes the form 

~(k 0.) = !.... pvCk) + q(k,n) 
, 417" 1 - ik • 0. 1 - ik • 0. 

+ 0. . r Di dr/k
•
r '4>ir., 0.). (2.9) 

1 - ik·n Js 
In obtaining Eq. (2.9), we used the representation 

1 I e-ik.(k-r') 

G(r - r') = (217")3 dk 1 + ik .0. (2.10) 

which follows immediately from Eq. (2.4), and 
assumed that 

q(r,n) = 0, r¢ V. (2.11) 

4>(r. ,0.) = 4>,(r, , 0.), 0. inward, r. E S. (2.2) Upon integrating Eq. (2.9) over all directions 0., we 

In Eq. (2.1), 4>(r,n) and per), where 

per) == I dn4>(r, 0.). (2.3) 

are the angular density and density, respectively. q 
represents any external sources which may be present, 
and, like 4>., is presumed to be given. 

In order to express Eq. (2.1) as an integral equation, 
let G(r - r', 0.), defined for all rand r', satisfy 

(-0. . V + I)G(r - r', 0.) = 6(r - r'). (2.4) 

Then, by a conventional argument, Eqs. (2.1) and 
(2.4) imply 

4>(r,n) = Ldr'G(r' - r,n)(4: per') + q(r', 0.») 

+ 0. . Is ~ dr.G(r. - r, n)4>.(r,, 0.), (2.5) 

where ni is the inward normal to V. Note that we have 
put the known function 4>.(r., 0.) in the integrand, 
instead of 4>(r., 0.); this is justified by the easily verified 
[cf. Eq. (2.10) below] fact that 

G(r. - r,n) = 0, for rEV, 0. outward. (2.6) 

Equation (2.5) holds,of course,only for rEV, the 
domain of definition of 4>(r,n). We now extend this 
domain by assuming Eq. (2.5) to hold for all r, so that 
we may take its 3-dimensional Fourier transform. 
With the convention 

j(k) = J f(r)e ik
•
r dr 

and the definition 

Pv(k) == Ldreik.rp(r), 

(2.7) 

(2.8) 

obtain the equation 

p(k) = [1 - A(k)JPv(k) + B(k) + Q(k), (2.12) 

where 

A(k) == 1 - ..£-. I dO. 
417" 1 - ik·n 

(2.13) 

is the 3-dimensional dispersion function and 

(2.14) 

(2.15) 

result of course from the given boundary and external 
source contributions, respectively. 

A "general" prescription for solving any transport 
problem of the form (2.1) can now be given: 

(i) In some way (perhaps only approximately), we 
are to solve Eq. (2.12) for J)v(k). 

(ii) Equation (2.9) then immediately provides 
~(k,n). 

(iii) Finally, we take the inverse Fourier transform 
of~. 

Of course only step (ii) is trivial. In fact, the 
practicality of this prescription is in general very 
questionable. All we hope to show is that for at least 
that class of problems considered in the previous 
section, namely, problems in which the boundaries 
depend upon only one space variable, the method 
outlined above is indeed workable. 

Our hopes for solving Eq. (2.12) rest essentially in 
the observation that 

Pv(k) = J dk' p(k')dv(k - k'), (2.16) 

where 

d (k - k') == _1_ r dr'eHk-k').r' (2.17) v (217")3 Jv ' 
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so that Eq. (2.12) can be written, in general, as an 
integral equation for p(k). 8 The geometry of a particular 
problem enters solely through the kernel dv(k); this 
will be, for the problems considered here, highly 
singular (i.e., a generalized function), with the result 
that our solutions of Eq. (2.12) will depend more on 
analyticity arguments than on the Fredholm theory. 
Therefore, before proceeding further, we briefly 
examine the properties of A(k) as an analytic function 
of, say, k.,. 

A. The Dispersion Function 

For k real, the integral of Eq. (2.13), like that of 
Eq. (1.14), may be written in closed form. We thus 
find the analog of Eq. (1.15): 

A(k) = Aa(k." B), 1m (k.,) = 0, (2.18) 
where 

(2.19) 
and 

The correspondence between these functions and the 
dispersion function used in Sec. 1 is clear: 

A(k., = -i/O = Aa), (2.21) 

(2.22) 

where 
(2.27) 

Here the ±L are as in Sec. 1. We may conclude further 
from the I-dimensional theory that 

(i) c < 1 => /KO/ > B and 1m (KO) = 0, 
Oi) c> 1 and B > IL-11 => IKol < B and 1m (KO) = 

0, 
(iii) c> 1 and B < /L-l/ => /Kol < Band Re (KO) = 

0, 

and, perhaps most importantly, that 

1m (KO) = ° => IKol < (3, (2.28) 

i.e., the roots of Aa(k) never lie on its cuts. [All these 
remarks are of course merely the translation, accord
ing to Eq. (2.22), of similar facts concerning AW2.] 

We are now prepared to apply the method outlined 
to specific transport problems. 

B. The Infinite Space Green's Function 

It is clear (and in fact well known) that this problem 
is almost trivially solved by the Fourier transform. 
Since the region V is all space and we have a point 
source with direction no at to, we find 

dV(k) = b(k), 

B(k) = 0, 

Q(k) = eik
•rO!(1 - ik . no)' 

Our basic equation (2.12) thus takes the form 

(2.29) 

(2.30) 

(2.31) 

PaCk) = [1 - A(k)]Pa(k) + eik.ro/(l - ik .no) (2.32) 

It is again to be remarked that, just as Eq. (1.15) is 
false for { E G, Eq. (2.18) is invalid outside a certain 
neighborhood of the real k., axis. However, since in 
the present formulation our basic equations are true 
for real k." we may ignore the pathological behavior of or 
A(k) for general complex k., and work exclusively with (2.33) 
the much more analytically tractable function Aa(k." 
B), which function is to be taken as defined by Eq. 
(2.20) for complex k., also. 

We use the notation 

Aa(k." B) = A3(k), (2.23) 

where, of course, k = k.,. 
As(k) has its only singularities, branch points, at 

k = ±i(3, (2.24) 
where 

(2.25) 

and we take the branch cuts l± as extending to ±ioo 
along the imaginary axis (cf. Fig. 3). Because of the 
resemblance of Eq. (2.20) to the form of the 1-
dimensional dispersion function, we may infer that 
A 3(k) has only two simple zeros, namely, 

Aa(±iKo) = 0, (2.26) 

i.e., in this translation-invariant case, Eq. (2.12) may 
be solved algebraically. Equation (2.19) yields 

c eik•ro 

~a(k,n) = - -
47T (1 - ik . n)(l - ik • no)A(k) 

eik•rO 

+ ben - no)' (2.34) 
1 - ik .no 

The 2-dimensional Fourier transform of the angular 
density 

¢a(x, k(.,) , n) = 1.. foo dk.,e-ik%"~a(k, n) (2.35) 
27T 1-00 

corresponds to the function fig discussed in Sec. 1. 
With the convenient abbreviations 

wen) == - (i/ fI,)(l - ike",) • ne",», (2.36) 

wo = w(no), (2.37) 
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Eq. (2.35) takes the form 

1>G(x, k(z) , Q) 
= _ e-ik,.,.r,.,oJ"oo dk e-ik(X'-Zo) 

27T -00 flflo 

x (~ 1 + b(Q - Qo») 
47T (k - w)(k - wo)Aa(k) k - Wo • 

(2.38) 

Here we have used Eq. (2.18). The equivalence of 
Eqs. (2.38) and (1.48) is easily seen. Indeed, for x > xo, 
we may close the integration contour of Eq. (2.38) in 
the lower half-plane by means of the path y_ which 
excludes the cut L of A 3(k) (cf. Fig. 3) and find 

¢o(x, k(z) , Q) 

_ Q( ) b(Q - Qo) ik'."r,.,o -iwo(z-zo) 
- \:I flo e e 

flo 

where 
0(fl) == 1, fl > 0, w 1- L, 

== 0, fl < 0 or wE ,_. (2.40) 

Equation (2.39), with ro = 0, differs from Eq. (1.48) 
only in notation; for example, 

Ko=l/vo, (2.41) 

and the integration variables of the branch-cut inte
grals in Eqs. (2.39) and (1.48) are related by 

k = -i/{'. (2.42) 

R 
FIG. 3. The region R of the 

complex k-plane. 

C. Half-Space Problems 

Somewhat less trivial, but still quite straightforward, 
is the application of the method based on Eq. (2.12) 
to problems involving half-spaces. 

When V is the region {x > 0, - 00 < y < 00, 

-00 < Z < oo}, we have 

P~ (k) = -- dxeik• X dr e,k'."r,., tf(x r ) 1 fOO roo 
v (2 )3 (x) r' (x) 

17 0 " -00 

(2.43) 

(2.44) 

where k == k", and we omit reference to the transverse 
variables k(",) • In Eq. (2.44) we use a common nota
tion: the subscript indicates analyticity in the upper 
half k-plane, which property is clear from Eq. (2.43). 
If we similarly use the function 

p_(k) = p(k) - p+(k) (2.45) 

which is analytic for 1m (k) < 0, then Eq. (2.12) may 
be written in the form 

A 3(k)p+(k) = - p_(k) + B(k) + Q(k), k real. 

(2.46) 

Equation (2.46) is of a standard form and may be 
solved by well-known methods.9 It is convenient to 
begin by finding a "Wiener-Hopffactorization'~ of the 
function A3(k): 

where A±(k) is analytic for 1m (k) ~ ° and both 
factors have at most polynomial growth at k I'J 00. We 
find the A±(k) by a conventionaPO procedure. First 
define the region R of the complex plane as being the 
entire plane with the exclusion of small neighborhoods 
of the cuts '+ and L. Thus the boundary of R consists 
of two contours, y + and y _, enclosing the lines '+ and 
L, as in Fig. 3. From our discussion of A3(k) above, 
it is clear that the function 

L(k) == In [Alk)(k 2 + (32)J(k 2 + K~)J (2.48) 

is analytic in R, and that (with the proper branch 
choice) 

L(k) ---+ 0, k E R. 
k--+oo 

(2.49) 

Hence we may write 

L(k) = L+(k) + L_(k), k E R, (2.50) 
where 

L±( ) = _1 r L(k') dk'. (2.51) 
27Ti Jy'f- k' - k 
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Equation (2.50) implies that 

A3(k) = [(k2 + K~)J(k2 + ,B2)]eL+(k)+L_(k) , k E R, 

(2.52) 
so that the choice 

A+(k) = [(k + iKo)/(k + i,B)]eL+(/r), (2.53) 

A_(k) = [(k - i,B)/(k - iKo)]e-L_(k) (2.54) 

satisfies both the analyticity requirements and Eq. 
(2.47). Furthermore, it is evident that 

Here P(k) is an entire function which can generally be 
taken to be zero.12 Thus, from Eq. (2.60), 

~ (k) = 1 foo dk' [B(k') + Q(k')]A_(k') 
p+ 271iA+(k) J-oo k' - k - iO 

(2.63) 
and the general half-space problem is solved. 

As a particular example we consider again the 
albedo problem, in which there is no external source 

Q(k) = ° (2.64) 

(2.55) but a boundary condition of the form 

We will take the J4(k) as being defined by Eqs. 
(2.53) and (2.54) even for k rj: R (Le., k E 1+ or k E U. 
With this convention, it should be noted that Eq. 
(2.47) holds only for k E R. It is not hard to show that, 
for k E R, 

_1 f In [(k,2 + ~2)/(k'2 + K~)] dk' = 0, (2.56) 
271i Jy_ k - k 

whence 
L+(k) = r +(k), for k E R, (2.57) 

where 

(2.58) 

r +(k) is clearly related to the function ya) of Eq. 
(1.57), and for this reason will be found useful below. 

Further identities and simplifications concerning the 
A±(k) are easily deducedll ; but we wish to return our 
attention to Eq. (2.48), which may now be written in 
the form 

p+(k)A+(k) + p_(k)A-Ck) = [B(k) + Q(k)]A-Ck) , 

k real. (2.59) 

Thus if we define the function 

F(k) == p+(k)A+(k), 1m (k) > 0, 

== - p-Ck)A_(k) , 1m (k) < 0, (2.60) 

then F(k) is analytic in the plane cut along the real 
axis, and has a discontinuity along the cut given by 

F+(k) - F-(k) = rB(k) + Q(k)]A_Ck). (2.61) 

It follows in a well-known9 way that (with properly 
behaved Band Q) 

F(k) = _1 . ('Xl dk' [8(k') +,Q(k')]A_(k') + P(k). 
2m J-ao k - k 

(2.62) 

</>.(0, y, z, Q) = ~(y)~(z)~(n - no), fl, flo > 0, 

(2.65) 

:;::;,.B(k) = i/(k - wo), 1m Wo < 0. (2.66) 

The integral of Eq. (2.63) is. entirely trivial and we 
find13 

Pa+(k) = iA_(wo)J(k - wo)A+(k), (2.67) 

whence [from Eq. (2.9)] 

~a<k, n) = id~ - no) 
- Wo 

_ ~ A_Cwo) . (2.68) 
471 flA+(k)(k - wo)(k - w) 

To check that Eq. (2.68) agrees with Eq. (1.59), it is 
only necessary to observe that, for fl < 0, ~a is analytic 
in the upper-half k = k", plane except for a pole at k = 
w. Hence, for x = 0, the inverse k", transform involves 
only a simple residue calculation. Using the explicit 
forms of the A± functions, we find the emergent 
angular density 

1>aCO, k(",) , n) 
ic (wo + iKo)(w + i,B)ef+(roo)-f+(ro) 

- - 471fl (wo + i,B)(w + iKo)(w - wo)[Aa(wo)]' 

fl < O. (2.69) 
It is easy to verify that 

whence, in view of the relations (2.49) and the fact 
that,B = .x-I, the equivalence of Eqs. (2.69) and (1.60) 
becomes evident. 

We could now go on to consider problems in which 
the region V is finite in the x direction, i.e., slab 
problems. It is in fact possible in this case also to 
derive from Eq. (2.12) a general prescription ("gen
eral" in the sense that the particular sources and 
boundary data need not be specified beforehand) 
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which provides, at least in the usual wide slab approxi
mation, the desired transformed densities.H This 
prescription involves a combination of function
theoretic techniques with a Fredholm-like iterative 
procedure. But we will not delve into these, or other 
still more complicated problems here; it is hoped that 
the above examples suffice to demonstrate the work
ability of the technique we have outlined with regard 
to that class of problems to which the singular eigen
function technique based on Eq. (1.10) is applicable. 

CONCLUSION 

Our comparison of the two methods for solving 
problems in what might be called "quasi-3-dimen
sional" linear transport theory may be summarized 
in the following remarks-remarks which can be 
expected to apply regardless of the particular problem 
considered. 

By expanding in terms of the set of functions 
{eik"'; k real} we are led naturally to the dispersion 
function A 3(k), which can be expressed in closed form 
and which has fairly simple analytic properties. On the 
other hand, use of the set of functions provided by 
Eqs. (1.21)-(1.24) (the orthogonality and complete
ness of which is neither well known nor trivial to 
prove) leads one to the much more mathematically 
formidable function A( s); one must then use the theory 
of generalized analytic functions to eliminate the 
pathologies of the latter, so that final answers ulti
mately may be expressed in terms of Am = Aa( -i/O. 

A second and, perhaps, more significant difference 
between the two methods is that, according to the 
prescription given in Sec. 2, one finds the transformed 
density p(k) [from which the transformed angular 
density ~(k, Q) is trivially obtained] first, rather than, 

as in the singular-eigenfunction technique, deter
mining the angular density first. The result is that the 
former method is almost entirely free of the mathe
matical complexities associated with 2-dimensional 
angular integrals. 

Of course both these distinctions are without force 
in the I-dimensional B(",) = ° theory.14 But when 
B(",) =;1= 0, they have the effect of making the Fourier
transform analysis substantially more elementary and 
direct. 

• This work was supported in part by the National Science 
foundation. 
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We have shown earlier how the virial coefficients can be expressed in terms of traces taken over 
products of multiparticle (on-energy-shell) scattering matrices. The traces are to be taken in the angular
momentum representation instead of the momentum representation to avoid the infinite forward N
particle scattering amplitude for N > 2 caused by certain singular diagrams. Here, we analyze and sum 
the contribution of the singular diagrams to the third virial coefficient. It is also shown that one can get the 
same result if off-shell amplitudes in the momentum representation are utilized. 

1. INTRODUCTION 

It was shown earlier that, for a gas, the virial 
coefficients can be expressed in terms of the scattering 
matrix elements describing the collisions of the con
stituent particles.! For example, the second virial 
coefficient is expressible in terms of the 2-body S 
matrix elements and, for calculating the third virial 
coefficient, it is sufficient to know the 3-body S matrix 
in addition to the 2-body S matrix. 

For the scattering involving three or more particles, 
there are certain "singular terms" in the S matrix 
which are characterized by the fact that they give rise 
to infinite forward scattering amplitudes. The purpose 
of this paper is to study the contribution of these 
singular terms to the third virial coefficient. 

The virial coefficients can be obtained from the 
coefficients bN in the expansion n r-...- 2N bNzN for the 
grand potential n in powers of z :::::: ePIl , where {J-l 
and fl are the temperature and the chemical potential, 
respectively. It was shown in Paper I that, leaving out 
numerical factors and other details, 

bs r-...- Tr (e-PH - e-PHo) 

= JdEe-PE(47Ti)-1 Tr S-1 a S. (Ll) 
OE 

The trace is taken over the free N-particle states, and 
S is the S matrix for the N-particle scattering at the 
center-of-mass energy E. To calculate the third virial 
coefficient, it is sufficient to know bz and b3 • 

Since, as is well known, the S matrix contains 
numerous singularities, one must be careful to specify 
exactly what is meant by the trace on the right-hand 
side of (Ll). In Paper I, it was pointed out that the 
only singularities which really cause any trouble are 
bound-state poles and another class of poles arising 
from multiple-scattering diagrams. The bound-state 
problem was completely solved in I, and is ignored in 

p' 
3 

FIG. 1. The double scattering term in the 
connected 3-body T-matrix. 

this paper. We also indicated the solution to the 
second problem, which we study in more detail here. 

For N> 2 the traces in (1.1) are to be interpreted 
as sums over states in the angular-momentum repre
sentation. That is, one computes the traces in the 
subspace of each J and then sums over J. Doing things 
in this order, no serious singularities are encountered 
and, in fact, the derivation of (Ll) should be under
stood as first establishing the equality of the two sides 
for each J and then summing over J. Extreme care 
must be taken when using any other representation, 
for example, the momentum representation. This is 
because the forward N-body scattering amplitude, 
which is implicitly contained in the rhs of (Ll), is 
undefined for N > 2 owing to certain "singular 
diagrams" of the type shown in Fig. 1. The forward 
amplitude blows up due to the vanishing of the inter
mediate state denominator forced by momentum 
conservation. The use of the angular momentum gets 
us around this difficulty. What we do here is study 
the singular terms for 3-body scattering and sum up 
their contribution to the third virial coefficient. At the 
same time we indicate how, with due caution, the 
momentum representation can be employed. 

This paper has the following outline. In Sec. 2, we 
review the basic aspects of the S matrix formula for 
ba and those of the singular terms. The use of the 
angular-momentum representation is demonstrated 
in Sec. 3. The singular terms are then listed and 
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summed in Sec. 4. In Sec. 5, we show that the results 
in Sec. 4 can also be obtained by using off-shell 
amplitudes in the momentum representation. Con
cluding remarks are given in Sec. 6. 

2. REVIEW 

A. The Virial Coefficients 

Consider a nonrelativistic gas of volume V, tem
perature (3-1, chemical potential fJ" and pressure p. 
The grand potential n = - p V can be written as an 
expansion in powers of z == ePIl , 

00 

n = no - V(3-IA-a L bNzN, (2.1) 
J.Y=2 

where 
(2.2) 

and where no = _(3-1A-3V is the grand potential for 
an ideal gas, and m is the mass of a gas molecule. 
When z is eliminated using (2.1) and the equation for 
the density n, i.e., 

n = - V-I ()Q/OfJ, , 

one obtains the virial series for the pressure 

00 

p = n(3-1 L a.v(A 3n)N-1, 
N~l 

(2.3) 

(2.4) 

where aN' the Nth virial coefficient, can be expressed 
in terms of the bN in (2.1). One easily verifies that 

a l = 1, 

a2 = -b2 , (2.5) 

aa = 4b~ - 2ba, 

and so on. To obtain the third virial coefficient aa, 
one needs to know b2 and b3 • The procedure of 
calculating b2 is well known.2 We shall only be 
interested in b3 here. 

It was shown in Paper I that the coefficients bN can 
be obtained from the N-particle scattering-matrix 
elements. In particular, 

which follows from Eq. (5.10) of Paper I. The trace is 
taken over the free 3-particle states in the center-of
mass (eM) frame and, for reasons mentioned above, 
in the angular-momentum basis. The quantity € is the 
total eM energy. The symbol A denotes the anti
symmetrization (for fermions) or symmetrization 
(for bosons) operation to include exchange diagrams 
due to the identity of particles. The subscript c 
denotes that only the connected diagrams are kept. 

(a) ( b) (e) 

FIG. 2. Some n = 4 terms in the expansion (2.9). 

In terms of the T matrix, the operator S is given by 

S(€) = 1 - 27Tib(€ - Ho)T(€). (2.7) 

It was shown in I that only the on-shell 1'-matrix ele
ments, i.e., those matrix elements of T(€) between 
states with energy €, appear in (2.6). 

The trace in (2.6) can also be expressed as a log
arithmic derivative 

(47Ti)-1 (Tr AS-IE. s) = (27T)-1 ~ 1m (Tr A In S)o' 
O€ c O€ 

(2.8) 

One can expand the logarithm as a series so that (2.8) 
becomes 

o 00 

-(27T)-1- Ln-1Im[Tr A(27Tib(€ - Ho)T)n]o' (2.9) 
O€ n~l 

This expansion will play an important role in our 
subsequent discussions. 

The 3-particle T matrix T contains the connected 
part To and the disconnected terms Ti , i = 1, 2, 3. 
Ti describes the scattering process in which the ith 
particle moves freely while the other two interact. 
The terms in the series (2.9) can be represented by 
diagrams. For example, Fig. 2 shows some terms with 
n = 4. 

B. Singular Terms 

It is clear that, if the T-matrix elements are non
singular functions of €, only the on-shell T-matrix 
elements appear in (2.9) because of the factors 
b( € - Ho). When the T-matrix elements have singu
larities, one must be more careful. 

According to the analysis in Paper I, there are two 
kinds of singular terms in T. First, the existence of 
bound states or composite particles gives rise to poles 
of the T matrix outside the spectrum of Ho. The 
bound-state problem was treated in detail in Paper I. 
The other kind of singular term in T is associated with 
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the "double scattering" diagram shown in Fig. 1. It 
is a term in the connected part To. It describes the 
scattering of particles 1 and 2 followed by a scattering 
of particles 2 and 3. The momentum of 2 in the 
intermediate state is completely determined by the 
initial and final momenta. The energy denominator 
of the intermediate state is given by 

[e - W(P1) - w(p~) - w(p~) + inti, (2.10) 

where w(p) = p2/2m. When the T-matrix elements are 
on-shell, i.e., when e = W(P1) + W(P2) + w(Pa), the 
term (2.10) blows up for the forward-scattering matrix 
elements, i.e., for PI = P~, P2 = P~, and Pa = P~ . 
Therefore, because of the presence of the double 
scattering term, the forward on-shell T-matrix ele
ments are undefined in the momentum representation. a 

Besides the singular term in To, there are terms in the 
series (2.9) which are not defined in the momentum 
representation. For example, in Fig. 2(c), the 15 
function for the middle part of the diagram blows up. 
From now on all terms not defined in the momentum 
representation due to the singularities described above 
are called "singular." 

It was shown in Paper I that (2.8) and (2.9) are 
well defined if one uses the angular-momentum 
eigenstates instead of the momentum eigenstates. 
The matrix elements in the angular-momentum 
representation are continuous superpositions of 
scattering amplitudes of initial and final momenta in 
all directions. The singularity in the forward direction 
is thus smeared out. 

The use of the angular-momentum basis is not just 
a mathematical device to smear out the forward 
amplitudes. It is in fact a physically reasonable choice 
from the beginning. Recall that the S-matrix formula 
for b N comes from the identity 

Tr (e-PH - e-PHo) =fdee-Pf(47Ti)-1 Tr s-11 s. oe 
(2.11) 

Since the total angular momentum J is a conserved 
quantity, the identity (2.11) can be derived for each 
J. The S matrix can be calculated for each J inde
pendently. One then sums the series in J. This way 
the forward amplitudes never appear. The formal 
manipulations in the angular-momentum representa
tion is discussed in the next section. 

3. ba IN AN ANGULAR-MOMENTUM BASIS 

A. General Formulas 

We proceed to show how the trace can be evaluated 
in the angular-momentum representation given the 
matrix elements in the momentum representation. 

In the eM frame, the momenta of the three particles 
form a triangle. They are fixed by the orientation of 
the triangle and the lengths of the three sides or, 
equivalently, the energies of the three particles. Let 
the orientation of the triangle be specified by a rota
tion R from some standard orientation. R is given by 
a set of Eulerian angles. Let the energies of the three 
particles be w = (WI' W2 , Wa). Thus, the pair (R,w) 
is equivalent to the specification of the three momenta 
PI, P2, and Ps· 

It is convenient for our discussion to use the angular
momentum eigenstates 

1fJJIl'w(R, w') = [!7T-2(2J + 1)]!~itl'(R) 
X 15(w~ - Wl)15(W~ - W2)15(W~ - w3), (3.1) 

where J is the total angular momentum, M the pro
jection of J along the Z axis, and fJ, the projection of 
J along some axis fixed in the momentum triangle. 
These states have been studied by Omnes.4 

Let CJ(Rw, R' w') denote the matrix element 
(PIP2Pal CJ Ip~p~p~) of the operator CJ. Then, by (3.1), 
we have the matrix elements of CJ in the angular
momentum representation 

(JMfJ,wl CJ IJ'M'fJ,'w') 

= f dR dR'~fII'(R)CJ(Rw, R'w')~ilAR') 
X !7T-2(2J + 1)~(2J' + l)t, (3.2) 

where dR stands for doc d cos fl dy in which oc, fl, and 
yare the Eulerian angles specifying R. 

If the operator CJ is rotationally invariant, we have 

CJ(Rw, R'w') = CJ(w, R-IR'w'). (3.3) 

In this case, we let R" = R-IR' and use the orthog
onality relations of the ~ functions to reduce (3.2). 
We obtain 

(JMfJ,wl CJ IJ'M'fJ,'w') 

= 15JJ .15}IOl'f dR"~tl',(R")CJ(w, R"w'). (3.4) 

Since the operators we encounter are all rotationally 
invariant, (3.4) is very useful in obtaining the angular
momentum representation from the momentum 
representation. Finally, the sum over states has the 
form 

J d3
Pl d

3
p2 d3

Pa15(Pl + P2 + Pa) 

= L maJdwl dW2 dWa (3.5) 
J,M,I' 

Substituting (2.8) and (2.9) in (2.6) and using the 
angular-momentum representation for the trace, we 
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have 

ba = J~(27T)-6,B f d€e-PE(27T)-1 1m (Tr A In S)o 

= 3~(27Tr6 2 (2J + 1)QJI' , (3.6) 
J.I' 

where 

QJI' = f dEe-PEt IT m dw i ,B(27T)-1 

X 1m (JM,uwl A In S IJM,uw)o 

= -,B f iI m dwie-PWi 

00 

x t L n-l Re (JM,uwl 
n=l 

X AT[27Ti6(w l + Wz + Wa - Ho)Tr-1 

X IJM,uw)o' (3.7) 

where the factor I is put in to avoid over counting. 

B. The Simplest Singular Term 

Let us consider the following example involving a 
singular term to illustrate the use of the angular
momentum basis and the fact that the singular terms 
are well defined in the angular-momentum representa
tion. 

Consider the first term in the sum in (3.7), i.e., 

c == Re (JM,uwl TIJM,uw), (3.8) 

and suppose that T is given by 

T = g2(WI + W2 + Ws - Ho + i'Y})-l, (3.9) 

where g is a constant. Equation (3.9) is the singular 
term given by Fig. 1 with Tl = Ta = g and € = 
WI + W2 + wa, i.e., it is on-shell. 

For simplicity, we let m = t so that Wi = P;' The 
relevant momenta are shown in Fig. 3. The matrix 
elements of T in the momentum representation are 

T(w, Rw) 

= g2(W I + W2 + Wa - WI - w; - w~ + i'Y})-1 

= g2[( -PI - Pa)2 - (-p~ - Pl)2 + i'Y}]-l 

= g2[2(WlWa)!Pl' (Pa - p~) + i'Y}rl . (3.10) 

Thus, by (3.4), we have 

c = ig2(WIWa)-! J dR'J);iR)P(fh' Pa - PI • p~)-\ 
(3.11) 

where P denotes the principle part. The rotation R 

brings (PI' P2, Ps) to (p~, p~, p~). Notice that the on
shell T-matrix element given by (3.10) has only a pole 
in the angle variable PI • P~, but not in the energy 
variables. 

FlO. 3. Geometry of the 
initial and final momenta. 
Pi is in the (x. z) plane. 

x 

y 

To carry out the R integral in (3.11), we first 
integrate over the azimuthal angle around p~. This 
gives 27T for ,u = 0 and zero otherwise. One then 
integrates over the angles 0 and q; as shown in Fig. 3. 
Thus, (3.11) becomes 

c = t6I'og2(WlWa)-!27T fld cos 0 

X fo
2lT 

dq;PAc~s O)P(PI • Ps - PI • p~)-\ (3.12) 

where we have made use of the fact that 

'J)to(R) = P J(cos 0). (3.13) 

The integrals in (3.12) are well defined. The summation 
over J has been carried out in Paper I. (See the end 
of Sec. 7 of Paper I.) 

4. SINGULAR TERMS 

A. Summation 

In this section, we list and sum the singular terms 
in the series 

00 

-(Trln S)c = 2n-1{Tr [27Ti6(€ - Ho)T]n}c. (4.1) 
n=l 

The trace is always taken in the angular-momentum 
representation so that all the T-matrix elements are 
well defined and on-shell. We ignore the symmetriza
tion or antisymmetrization operator A to avoid un
necessary complications. To simplify the notation, let 

b == 27Ti6(€ - Ho)T, (4.2) 

bii == 27Ti6(€ - Ho)TiGOT;. (4.3) 

The full T matrix can be written as 

b = Lbi + 2b;; + b', (4.4) 
i i:;:; 

where b ' contains no singular term. 
The singular terms are shown in Fig. 4. For clarity, 

we use a wavy line to indicate the factor Go in contrast 
to the 27Ti6( € - Ho) factor indicated by the solid lines. 
The reader can easily convince himself that there is no 
other singular term in (4.1). 
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(0) (b) (e) 

FIG. 4. Singular terms in (2.9). 

The contribution of Fig. 4(a) is 
00 

! Tr b;''b1'b1i'b
m '(m + n + m' + 1)-1 

n.m,m'=O 
00 

= L Tr 'b:'b1'b ji(l + 1)(1 + n + 1)-1. (4.5) 
l.n~O 

Similarly, Fig. 4(b) gives 
00 

L Tr 'b!'bi'bj;n(n + 1 + 1)-1. (4.6) 
Z,n=O 

Combining (4.5) and (4.6), one has 
00 

L Tr 'b1'b j ;'b: = Tr (1 - 'b1)-I'b j ;(1 - 'b.)-I. (4.7) 
n.l=O 

Since 
(1 - 'b1)-1 = 1 + 27Ti6(€ - Ho)T~, 

Eq. (4.7) reduces to, by (4.3), 

Tr 27Tib(€ - Ho)TjGoT;t, 

which summarizes Fig. 4(a) and 4(b). 
The terms shown in Fig. 4( c) give 

i Tr 'b;''b1'b;''(m + n + m,)-1 
n=l,m'=l,m=O 

00 

= L Tr 'b:'bi1(n + 1)-1 
l.n=l 

00 

= t L Tr'b~'b1 
l,n~1 

= t Tr [(1 - 'bi )-1 - 1][(1 - b j )-1 - 1] 

(4.8) 

(4.9) 

= t Tr 27Tib(€ - Ho)T;t27Tib(€ - Ho)Tj. (4.10) 

Combining (4.9) and (4.10), one obtains 

Tr 27Tib(€ - Ho)TjP(€ - Ho)-ITJ. (4.11) 

We have thus collected all singular terms. Only the 
imaginary part of (4.1) is of interest. Thus, the singular 

terms can be summarized as 

1 
- 1m [Tr In S]Sing 
27T 

= -t LTr b(€ - Ho)[TjP(€ - HO)-ITJ + c.c.] 
i"'l 

= - L (27T)-1 Tr Re ('b;; - 'bi'b j ). (4.12) 
i'" ; 

B. Evaluation 

For each angular momentum J, Eq. (4.12) can be 
evaluated in the same way as in the example in the 
previous section. The only complication here is that 
Ti and T; also depend on the energies and angles. 
Instead of (3.11), we have to calculate 

(iMp.wl T1P(W1 + W2 + Wa - Ho)-ITaIJMp.w) 

= Hw1wa)-t J dR'DtiR) Tl TaP(PI • Pa - PI • p~)-1 

== (JJ/l' (4.13) 

We use the abbreviation TITa in (4.13) to denote 

[(PIP2Pal Tl(€) IpIP~P~) 

x (plp;p~1 TaC€) Ip~p~p~)]'~"'1+"'2+"'3' (4.14) 

The contribution to ba from the singular terms is 
thus, by (3.6), 

b~ing = 3i (27T)-6L (2J + I)Q~/l' (4.15) 

where 
J,/l 

Q~/l = -i{J Re J dWI dwal: d;' 

x exp {-2{J[WI + Wa + (wlwa)l;,]) 

X 2(w1wa)1(JJ/l' (4.16) 

The mass m is always set equal to t. We have made 
use of the fact that 

W2 = (-PI - Pa)2 

= WI + W3 + 2(w1ws)t;', 

with;' defined by 
(4.17) 

We proceed to evaluate (4.15). Let R' be the rota
tion which turns PI to Pa, i.e., the rotation about the 
y axis of an angle -IX (see Fig. 3). The rotation R in 
(4.13), of course, turns (PI' P2' Ps) to (p~, p~, p~). In 
terms of the Eulerian angles, we have 

R = (cp, (J, y), 

R' = (0, -IX, 0). 
Let us define 

Then 
R" = R'R = (cp", (J", y"). 

PI . Pa = Pa • R'Pa = cos IX = A, 

PI • P~ = Pa' R"Pa = cos (J" == x. 

(4.18) 

(4.19) 

(4.20) 
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Thus, (4.13) becomes 

(JJIl = t(w1warf f dR"'J);iR,-lR")T1TaP(A - X)-l. 

(4.21) 
Substituting (4.21) in (4.16), we have 

Q~I' = -Pi f dWldwae -2/J(0l,+0l.) 

X Rei: dA i:dX f" dq/' dy"'J);iR,-lR")T1Ta 

x exp [-2PA(WIWa)f]P(A - X)-l. (4.22) 

Only the integration along the line A = x, q/ = 
y" = 0 contributes to the sum (4.15). This is because, 
when one sums over J, ft, the equality 

i7r-2 I(2J + l)'J);;,lR,-lR") = b(q/')b(A - x)b(y") 
J,I' 

(4.23) 

shows that the formally summed integrand vanishes 
except on A = x, <p" = r" = O. 

Let 

F(A, x) = exp [-2PA(WIWa)f]Tl TaIY"=q>"=o, (4.24) 

; == lC)' + x), 

~ == A - x, (4.25) 

and expand F in powers of ~: 

F(A, x) = F(;,;) + 1 (OaF - OaF) ~ + og2). 
2;' X Q:=).=§ 

(4.26) 

We now substitute (4.26) in (4.22) first and then 
sum over J and ft using the identity (4.23). The first 
term in (4.26) does not contribute by symmetry. The 
second and third terms remain nonsingular after the 
multiplication by p(1m. We obtain 

I(2J + l)Q~1' 
J,I' 

= Re 47r2( - PH J dWl dw2e-2
/J(0l,+OlS) 

X f/;(~~ - ~:t=).=s 
= 47r2

( - PH Ref dWI dwae-2
/J(0l,+0l3) 

x fl d)' exp [-2f3).( WI wa)!] 

x [-2P(WIWa)fTIT3 + (~-~) TIT1] . aJ.. ax ",=).,q>"=y"=O 

(4.27) 

Substituting (4.27) in (4.15), one obtains the contri
bution of the singular terms to ba. 

The condition that x = A, <p" = r" = 0 is the 
same as that Pi = p;, i = 1, 2, 3. The first term in 
(4.27) thus involves the product of two forward 2-
body scattering amplitudes. The second term in 
(4.27) involves the derivatives of the 2-body amplitudes 
with respect to the scattering angles evaluated in the 
forward direction. 

We have thus completed the evaluation of the 
singular terms. To gain further insight, we discuss in 
the next section an alternative form of (4.27) and derive 
the same result by using off-shell amplitudes in the 
momentum representation. 

5. FURTHER DETAILS 

A. Alternative Expression for b:Jng 

We now proceed to show that these derivatives 
with respect to angles in (4.27) can be written in terms 
of the derivatives with respect to the (off-shell) energy 
variable E. 

Let us analyze the dependence of TIT3 on x and A. 
First, consider the 2-body T matrix T3 • Figure 5(a) 
shows a general term in the perturbation expansion 
of T3 in powers of the 2-body potential. The contri
bution of this diagram to the matrix element 

is 

f d3p d3p' d3p" 
(27r)S (27r)S ... (27r)3 V(PI - ik + p") 

x .. · X V(p' - p)v(p{ - ik + p) 

x (E' - tk2 - 2p,,2)-1 

x ... x (E' - tk2 - 2p'2)-\E' - tk2 - 2l)-t, 

where 

(0) 

E' == € - Ws , 

k == p{ + p~ = - p~ 

!k+p" 

tk+p' 

tk+p 

p' 
2 

(5.1) 

(5.2) 

y 

(b) 

FIG. 5. (a) A general term in the perturbation expansion of T3 • 

(b) The geometry of the momentum unit vectors for gl' = if" = O. 
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are the total energy and the total momentum of the 
2-body system. We restrict ourselves to the case where 
p: = p? = Wi' Thus k 2 = Ws' The 2-body potential 
V(q), as a function of the momentum transfer q, is 
assumed to be spherically symmetric. 

By symmetry, the results after integrating over 
p, p', ... , pIt in (5.1) can be a function of only the 
variables 

Furthermore, this function is unaltered upon inter
changing PI and p~.5 This can be verified explicitly by 
permuting the integration variables in (5.1). We are 
only interested in the case where q/' = y" = O. Thus, 
the relevant momenta are as those shown in Fig. 5(b). 
Since k = -p~ [see Eq. (5.2)], we have 

P~ . k = - P~ . p~ = - cos IX = - A, 

Pl' k = -1)1 • p~ = -cos ()" = -x. (5.4) 

Notice that 1)1 • 1)~ is a symmetric function of x and A. 
We thus conclude from the above analysis of (5.1) 

that 

<PIP;p~1 TS(E) Ip~p~p~) = f(E, Ws , WI' A, x) 

=f(E,Wa,WI,X,A), (5.5) 

where / is some complicated function. By the same 
arguments, we arrive at the same conclusion for T1 , 

i.e., 

(PIP2Pal TI ( E) /PIP;P~) = f( E, WI' W a, A, x) 

=f(E, WI' Wa, x, A). (5.6) 
Since 

W2 = (-PI - PS)2 

= WI + Ws + 2(WIWS)!A, (5.7) 

we have, for the on-shell value of E, 

E = 2[WI + Ws + (WIWS)!).]' (5.8) 

We now substitute (5.5) and (5.6) for TITs in the 
last term of (4.27). Since/is a symmetric function of A 
and x for fixed E, WI' and ws, the only contribution 
comes from the derivative with respect to E, which 
depends on A according to (5.8), i.e., 

(:). - :x) TI Tal"'=..t,q>"=1"=O 

() () = -- fee, WI' Ws, A, x)f(E, (Us, WI' A, x) 
aJ. aE 

= 2(wI wS)! E.. Tf'(E)T[(E), (5.9) 
aE 

where E is set equal to its on-shell value (5.8). Ti,s( E) 
are the forward 2-body T-matrix elements given by 

Tr3(E) = (PIP2PS/ TI,3(E) /PIP2PS) 

=/(E,OJI,S' WS,I' A,A). (5.10) 

We have thus expressed the derivatives with respect to 
the angle variables x and A in (4.27) in terms of the 
derivative with respect to the (off-shell) energy 
variable E. 

Substituting (5.9) in (4.27), we have 

Wng = 3f (27T)-SI(2J + l)Q~1' 
J,I' 

= 3!(27T)-6( -PH ReI dW I dwae-2P «())1+())3) 

x 47T2 rIdA exp [-2PA(WIWa)!]2(w1wa)! 

X (-PTf'(E)T[{E) + :E Tf(E)T[{E») ' 

(5.11) 

C. Singular Terms in the Momentum Representation 

While the 3-body forward scattering amplitudes do 
not exist owing to the singular terms, the off-shell 
forward amplitudes are well defined. We proceed to 
show that the singular terms can be evaluated in the 
momentum representation provided one does not set 
E in the amplitude to its on-shell value. 

We can rewrite (4.12) as 

1 
- 1m (Tr In S)sing 
27T 

= - 2 J... Re Tr ti(Go - G~rr.(Go + G~)Ti' (5.12) 
i*; 27T 

The imaginary part h), going along with the energy 
variable E, must be kept finite until all the Go's are 
combined to give a function which is well defined in 
the limit 'Y} -+ O. 

The matrix elements of interest are 

t t 
(PIP2P3! (Go - GO)TI(GO + GO)T3 !PIP2P3) 

= [(E - WI - W2 - W3 + i1J)-2 

- (E - WI - W2 - W3 - i1J)-2]Tf(E)T:(E) 

= ( -2i~ Im(E - WI - W2 - Wa + i1Jrl) Tf(E)T[(E) 

= 27Ti~/(E - WI - W2 - OJa) Tf(E) T[(E). (5.13) 

We have taken the limit 'Y} -+ 0 in the last step. 
This limit is well defined. The forward 2-body ampli
tudes are well defined and assumed to be smooth 
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functions of E. We thus have 

wng = 3i (21Tr' Re (3 f dEe-fiEf d3Pl d3Pa 

X tCl'(E - WI - W2 - Wa)Tf(E)Tf(E) 

= 3i (21T)-6( - (3) Re J daPI dapaie-fl(Wl+W,+WS) 

X (-{3Tf(E)Tf(E) 

(5.14) 

It takes a trivial change of variables to verify that 
(5.14) is the same as (5.11). 

What we have just demonstrated is the equivalence 
between using the angular-momentum representation, 
where only on-shell 3-body T-matrix elements appear, 
and using the momentum representation, where the 
off-shell matrix elements are used. 

6. CONCLUSIONS 

We have discussed the singular terms in ba in 
detail and have shown that their contribution to ba 
is well defined. The nonsingular terms are expected 
to be well defined in the angular-momentum repre
sentation as well as in the momentum representation. 
Our conclusion is that, once the scattering matrix 
elements, including both singular and nonsingular 
terms, are given, ba can be calculated by the straight-

forward application of our formula. We feel that the 
same conclusion should also hold for bN , N> 3. 
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It is shown that the SL(2, C)-Poincare associative algebraic model of B6hm can be extended without 
essential difficulty to an SL(2, C)-de Sitter model which gives rise to a meson mass formula with both 
spin and isospin dependence. 

INTRODUCTION 

To overcome the well-known difficultiesl - 6 of purely 
group-theoretical methods for obtaining mass formu
las, Bohm7- 9 considered models based on associative 
algebras employing the enveloping algebras of the 
Poincare group and noncompact internal symmetry 
groups such as SL(2, C) or SL(3, C). The defining 
algebras for these models contained non-Lie algebraic 
operators and employed a coupling first stated by 
Werle. IO The meson mass formulas obtained were 

SL(2, C): m2 = m~ - bI(I + 1), (1) 

SL(3, C): m 2 = z + g[iy2 - I(I + 1) + }.2 + 2;'], 

(2) 

where mo and z are constants, band g are coupling 
constants (introduced in the Werle coupling), and 
I, Y, and ..1. are eigenvalues of the SU(2) [SL(2, C)] or 
SU(3)[SL(3, C)J Casimir operators. 

These associative algebraic structures have been 
the basis for several very interesting calculations (by 
Bohm and Sudarshanll) of the 2-, 3-, and 4-body 
leptonic decays of mesons. Of particular interest was 
the calculation of Cabibbo angles which turned out 
to be in very good agreement with experiment. 

In an earlier work,12 however, B5hm exhibited a 
dynamical group model based on the enveloping 
algebras of the Poincare and de Sitter groups in which 
a mass-spin relation of the form I3 

(3) 

was obtained (A = R-I, where R = radius of the 
de Sitter space and ;'2(X2 is the eigenvalue of one of the 
de Sitter invariants). 

the more complex SU(3) model (and the data fitting) 
for a forthcoming paper.14 

THE COMBINED MODEL 

The combined-model algebra p. is generated by the 
enveloping algebras of the de Sitter, Poincare, and 
SL(2, C) groups. We have then the Poincare-de Sitter 
algebraI5 

[Ll'v, LpuJ 

[P,"' pvJ = 0, M2 = P,"P'" > 0, 

fl, v = 0, 1,2,3, (4) 

(5) 

= i(gl'pLvu + gvuLI'P - gl'ULvP - gvpLl'u), (6) 

[B,,, BvJ = 0.2LI'VI (7) 

[LJlv, BpJ = i(gvpBI' - gJlpBv), (8) 
where 

such that 

[B" , Pvl = i;'(PpPP)-~{PpPPgl'v - PI'Pv) (10) 

and 

B"BJl = P/lP/l + *..1. 2 + ..1.2(ppPP)-IPPP"Lp/lL~. (11) 

The SL(2, C) algebra is then 

i,j,k=1,2,3, (12) 

(13) 

Before stating how these algebras are coupled, it is 
worthwhile to backtrack a little and rewrite the Poin
care-de Sitter algebras. Let us explicitly introduce the It is the purpose of this note to show that the unifi

cation of these two different modelsI3 (a dynamical operator 
group and algebra) into a single algebraic model can 

(14) be easily obtained, and, therefore, we can obtain a 
generalized mass formula for mesons which fits the Then, since 
existing data very welI.I4 In this paper, however, we 
will treat the mathematically simple, but physically 
uninteresting, case of spin and isospin and will retain 

1144 

[M2, Ll'v] = {M, [M, LJlv ]} = ° => [M, LJlv] = 0, 

(15) 
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we have 

[XIl,XV ] = 0, 

[X p' L llv] = i(gllpX v - gvpX Il)' 

XIlX"= 1, 

BIl = PIl + !).{XP, Lpll }, 

(16) 

(17) 

(18) 

(19) 

[BI" Xv] = i).(XpXPgllv - XIIXV)' (20) 

B B" = P PI' + J!.).2 + ).2XPX"L U (21) II Il 4 PIl ", 

and the others as listed. The reason for this step is 
that the coupling between the algebras now takes the 
simple form 

i.e., 

and 

[Lllv ' Ii) = [Ll'v, Fi) = 0, (22) 

[XIl ' Ii] = [XII' Fi ] = 0, 

[B"B", Ii] = [M2, Ii) = 0, 

(23) 

(24) 

(25) 

so we see that the operator 

A = ).2Q + bI2 (35) 

will commute with all of the operators of D. 
We note that W is, in fact, equivalent to -WIlWIl, 

where wll = !€llvp"rLP<1 and is ). independent,16 but 
is not, however, an invariant of the algebra D. 
Instead, we have as the invariant operator the usual 
Poincare invariant 

(36) 
where 

(37) 

This can be seen immediately from Eqs. (22) and (23) 
and from the fact that it is an invariant operator of 
the Poincare group. Then, 

[LIl .. r} = [PIl , r] = 0, (38) 

such that 

[BIl' r] = ° (39) 

and 
[).2Q, r] = 0. (40) 

[BIIB", Fi) = [M2, Fi ) = ibe/k{Jj, Fk}. (26) Now, by a straightforward calculation, we obtain 

As we will show, these commutators will be sufficient 
to characterize the algebra D. 

INVARIANT OPERATORS OF THE ALGEBRA 

It is obvious from Eqs. (22)-(26) and Ref. 7 that 
the invariant operators of SL(2, C), i.e., 

Rl = F2 - 12, R2 = I· F, (27) 

are invariant operators of D. 
The invariants operators of the de Sitter group, 

however, are not invariant operators of the algebra 
because of Eq. (26). We have two invariant operators12 

(28) 
and 

N = (L01' L 02 ' L 03), M = (L23 , L31 , L12)' (31) 

From Eqs. (21)-(23), we see immediately that 

(32) 
But 

[).2Q, Fi] = [B/lB", FiJ = [M2, FiJ = ibEfk{Ii' Fk}. 

Now, we know that 
(33) 

r = -X X ]f"LP + l.I!"L P P " 2 P,,' (41) 
but 

).2Q = B"B" - !).2I.rLllv 
= P pll + J!.).2 + ).2X X I1YLP - 1).2lJ1VL (42) I' 4 p <1 y"2 pv 

or 
).2Q = PIlPI' + t).2 - ).2r = ).21X2. (43) 

We note that if a dynamical group approach is 
employed completely, as was done in Ref. 12 (where 
now ).2Q is a de Sitter invariant operator), we have 
r invariant and, therefore, we require that PIlPIl also 
be invariant, which, consequently, gives no mass 
splitting (as was incorrectly implied in Ref. 12). In 
this case, however, ).2Q is not an invariant operator 
of D and the mass splitting can be nontrivial. 

The maximal commuting system is then 

where the first four are invariant operators which 
label the states, Sa is the third component of the spin, 
and we add Pi by convention. 

To find the appropriate representation space, we 
first consider the now classical contraction relation 
between the Poincare and de Sitter groupsP-19 

The contraction is performed in the limit A -- 0 and, 
to obtain the correct representation of the Poincare 
group, we require that, in the limit A -~ 0, 

(45) 
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since, in the limit). -+ 0, 

(46) 

Since Wp.WIl is independent of )., we still have the spin
invariant r = S(S + 1). 

However, in the limit b -+ 0, the algebra D goes 
into the product of the enveloping algebras of SL(2, C) 
and the de Sitter group, so that we have the diagram 
of Fig. 1. The representations of the algebra Dare 
obtained by finding the complete set of commuting 
observables and constructing the appropriate rigged 
Hilbert space,21,22 as was done in the earlier work.' 

Since, in the limit b -+ 0, the algebra goes into 
€(SL(2, C» x €(de Sitter), we conjecture that the 
algebra D can be represented in a subspace of the 
rigged Hilbert space (RHS) 

CPl ® CP2 C HI @ H2 C (CPl ® CP2)"', 

where CPl c HI C cpf is the RHS of €(SL(2, C» labeled 
by eigenvalues (c, ko) and CP2 C H2 C cP~ is the RHS of 
€(SO(4, 11»23 labeled by eigenvalues (~, (J = s). The 
notation (used above) and proofs that D is contained 
in the above RHS follow that given in Ref. 7 and need 
no further comment. 

A generalized eigenvector in this space can be 
labeled by the eigenvalues 

F2 _ 12 = (1 + c2 
- k~)l, F· 1 = kocl, 

r = S(S + 1)1, A = al. (47) 

Algebra 

b7 
(12) 

€<SL<2,C) X C(Oe Sitter) 

~20) 
).--0 ~ 

£(SU2,C)X(!i') 

Algebra A of ref.? 

FIG. 1. Contraction scheme for algebra D. (12) and (20) refer to 
Refs. 12 and 20, respectively. 

Then, taking the expectation value of A in the states 
D,{ ( ) gives a,A 8,(1), c,ko 

m2 = a - t).2 + ).2S(S + 1) - bI(1 + 1), (48) 

where ). is a universal constant, a is the parameter 
telling us which representation of the de Sitter group 
we are in, and b is fitted by experiment. 

Although the mass formula derived above is of 
limited utility, the corresponding formula for SL(3, C) 
case provides a unified mass formula for all mesons 
which is in excellent agreement with experiment.14 
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We define n-spherical models as follows: (1) Divide a lattice of N points into n mutually exclusive 
subsets with N l , ••• , N" points, respectively; ~ Na. = N. With each lattice pointj, associate a variable 
"I, and impose the restrictions ~ ": = N", ex = 1, ... , n; the sums are over the sites of the exth subset. 
(2) Adopt the energy expression for the Ising model with the ,,'s playing the role of the "scalar spins." 
We then prove that, in the thermodynamic limit (N ->- OCJ, N" ->- OCJ for all ex), the thermodynamic functions 
of the n-spherical model are equal to those of the ordinary spherical model. 

I. INTRODUCTION 

The spherical model of Berlin and Kacl was intro
duced as a model of an interacting many-body system, 
whose statistical thermodynamic properties can be 
computed exactly. Although the spherical model is only 
a caricature of the Ising model, which itself is a carica
ture of a real ferromagnet, it has the advantage that its 
partition function may be studied analytically. Since 
phase transitions in a statistical mechanics are inti
mately bound up with the analyticity (or lack of it) of 
the partition function, it is of great interest to be able 
to discuss the analyticity properties of the partition 
function without the necessity of drawing conclusions 
on the basis of approximate calculations, a procedure 
which is known to be fraught with pitfalls. For this 
reason, the spherical model has been studied by many 
authors.2 

The energy expression for the spherical model is the 
same as that for the Ising model, namely, 

Ej is a scalar "spin" attached to the jth lattice site; the 
first sum is over nearest-neighbor pairs and the second 
is over all sites. J is the "exchange integral," positive 
for ferromagnetism, negative for antiferromagnetism, 
and ft is the magnetic moment of a "spin." The 
spherical model replaces the N constraints Ej = ± 1 , 
j = 1, ... ,N, of the Ising model by a single con
straint 

(2) 

where N is the number of sites on the lattice. We must 
also mention the mean spherical model of Lewis and 
Wannier,3 where the constraint is 

<~ E~) = N, (3) 

the brackets meaning ensemble average. 
In an attempt to suppress partially the fluctuations 

inherent in the spherical model, we examined what we 

called the bispherical model. The lattice was divided 
into two mutually interpenetrating sublattices, and 
two constraints were imposed, namely 

(4) 

on each sublattice separately. This procedure might be 
thought to be especially reasonable in the case of 
antiferromagnetism, where the two interpenetrating 
sublattices have physical significance. Much to our 
surprise, the thermodynamic properties of the bispheri
cal model were identical to those of the spherical 
model. This led us to define a whole class of general
izations of the spherical model and to prove a theorem 
concerning them. 

II. MAIN CONTENT 

The class of models we wish to discuss is the follow
ing. Divide up the N lattice sites into n mutually 
exclusive groups of N l , •.. ,Nn sites, respectively. 
Retain the energy expression (1), but impose the n 
constraints 

I E~ = N a , (X = 1, ... , n, (5) 

there being one such sum for each group of sites. We 
call this the "n-spherical model," or "n-model" for 
short. Clearly, the N-model is the Ising model, and the 
I-model is the ordinary spherical model. We can also 
define mean-n-models by replacing the sums on the 
left-hand side of (5) by their mean values. 

We now prove the following theorem: 

Theorem: In the thermodynamic limit (N ~ 00, 
each N j --+ 00), for any finite n, the thermodynamic 
functions of an n-spherical model are equal to those of 
the ordinary spherical model. 

Proof' The proof begins by considering mean-n
models. The partition function of a mean-n-model is 
given by 

B(n) = r· JdNEexp [-tJE{E} -a.~Ya.~E~} (6) 

1147 
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where the y" are determined by the n equations 

olnS(n) _ -N (X - 1 .. , n (7) 
oYa - ", -, ,. 

The sums in the exponent in (6) are over the N" sites 
corresponding to the IXth constraint. The free energy 
F(n) of the mean-n-model is given by 

Q(n) = exp [-.8F(n)] = Sen) exp (I YItNa)' 

Now let us consider a mean-n-model and a mean-II
model with, say, n > m. Furthermore, let the con
straints of the mean-m-model be expressible as sums of 
the constraints of the mean-n-model [e.g., as Eq. (2) 
is the sum of Eqs. (4) for the two sublattices]. Now the 
partition function for these models can be thought of 
as arising from maximizing the entropy expression 
subject to the given constraints, or alternatively, 
minimizing the free energy. Hence we have Q(n) ~ 
Q(m) for this case, since the constraints of the mean
m-model are subsumed in those of the mean-II-model. 
Therefore, for any n, we have 

Q(N) ~ Q(n) ~ Q(l). (8) 

We now show that Q(N) = Q(l), from which it 
follows that all mean spherical models have the same 
free energy. The proof of this is simple. Equations (7) 
for the mean-N-mode1 become 

a In SeN) = -1, (X = 1, ... , N. (9) 
OYIZ 

One set of roots of Eqs. (9) is 1'1 = 1'2 = ... = YN = 
1', by symmetry. This set of roots gives a Q(N) which 
equals Q(1), where there is only one I' to start with. 
But, should any other set of roots exist, they must 
yield a Q(N) ~ Q(1) and, hence, do not yield the mini
mum of the free energy. 

Thus all mean spherical models yield the same free 
energy. We must now extend this result to spherical 
models proper, where the constraints are taken in the 
absolute, rather than mean, sense. The partition 
functions for n-spherical models are of the form 

Q(n) = r· J dN€ exp [-.8E{€}]]] o(NIZ - I €~) 

= (27Ti)-n r . J dN€exp [-.8E{€}] 

a+ioo 

X r· Jdnyexp [~YclNa - I€~)J. (10) 
a-ioo 

where we have introduced integral representations of 

the delta functions in the usual way. We may write, 
then, 

a+ioo 

Q(n) = (27Ti)-nr . J dnyS(n) exp [~y"N,,} (11) 
a-ioo 

If all of the N" are large, the integral in (11) may be 
evaluated by the method of steepest descents .and 

where the y's are determined by the saddle-point 
conditions 

~(I YpNp + In Sen») = 0, (X = I, ... ,n. (13) 
01'" p 

But these are just the conditions given by Eqs. (7). 
Thus, when all the Nit are large, our conclusion about 
mean-n-models carries over to n-models. 

Note, however, that we cannot say that n-spherical 
models are equivalent to ordinary spherical model for 
all n. This is because the steepest-descent argument 
used to establish the equivalence of spherical and mean 
spherical models breaks down unless all NIX -+ 00. 

Such a conclusion would have been patently wrong 
anyway, because the N-spherical model is precisely 
the Ising model, which is known not to be equivalent 
to the spherical model. 

III. DISCUSSION 

There are two main results of this paper. The first 
is that all mean-n-models are equivalent to the ordi
nary spherical model (I-model). The second is that 
n-models, for any finite n (as N -+ 00), are equivalent to 
the I-model. It might seem, at first, as though we are 
merely emphasizing a special case of a general experi
ence in statistical thermodynamics, i.e., that adding 
additional constraints consistent with given constraints 
does not change the thermodynamic properties of the 
system under consideration. But this is not altogether 
correct, for when one introduces constraints reducing 
fluctuations in spatially distinct parts of a system, one 
also introduces a boundary energy. To be sure, this is 
usually negligible compared to the bulk energy in the 
thermodynamic limit, because the surface to volume 
ratio is small; that is why the thermodynamic prop
erties are unchanged. 

However, in our case, the sublattices can be inti
mately intermixed in space, so much so that all of the 
exchange energy is boundary energy, in a sense. 
Consider, for example, nearest-neighbor interactions 



                                                                                                                                    

GENERALIZATIONS OF THE SPHERICAL MODEL 1149 

in the lattice 1 2 1 2 1 2 ... where 1 and 2 denote the 
sites of two sublattices (I-dimensional for typo
graphical convenience only). In this case it is not at all 
clear that the usual arguments hold, although our 
proof shows that the usual result is valid. 

Another consideration which indicates that our 
proof is actually required is the following. Tn the anti
ferromagnetic case, J < 0, when the magnetic field 
energy and exchange energy are of comparable 
strength, then one would expect one sublattice to 
contain a preponderance of the L E;, when only one 
spherical constraint is imposed. In the intimate mixing 
case, a 2-model prevents this from happening, and the 
I-model can have appreciably lower energies than the 
2-model. Our result shows that this does not affect 
the thermodynamical properties. We conclude that 
our result actually tells us something about the 
spherical model and is not a special case of a general 
statistical mechanical dictum. 

Our proof only holds for n finite. We conjecture that 
the theorem also holds if 11 = o(N) as N -+ 00, based 
on the following ideas. In order to obtain the maximum 
effect from the multiple spherical constraints, all sub
lattices should have the same order of magnitude of 
number of sites, N •. Otherwise, some subset of the 
sublattices will be asymptotically dominant, and one 
need only consider those. This means that N. -+ 00 as 

N -+ 00, and so a steepest-descent calculation on the 
n variables y. should go through. To make this argu
ment rigorous, one must prove the first statement and 
also investigate the uniformity of the convergence of 
the complex integrals (11) as n -+ 00. We have not 
accomplished this. 

After writing this paper, we learned that Montroll 
had introduced l1-spherical models in 19494 ; he did 
not investigate their properties. In view of our con
jecture above, we feel that his suggestion that n = N! 
will produce different behavior is probably incorrect. 

Finally, it should be pointed out that we have been 
using the term "thermodynamic properties" to mean 
properties derivable directly from the partition func
tion, i.e., the free energy an~ its derivatives. It is 
possible that other quantities, such as long-range 
order (below the transition point),may vary with the 
model within the class of models we have considered. 

• Supported in part by National Science Foundation Grant 
GP-6002. 
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Phys. 39, 2196 (1963); H. A. Gersch, Phys. Fluids 6, 599 (1963). 

3 H. W. Lewis and G. H. Wannier, Phys. Rev. 88, 682 (1952). 
• E. Montroll, Nuovo Cimento, Suppl., 6, 1 (1949). 
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The one-dimensional Laplace transform of the Gaussian exp (-r2x), 

g(r) = I:{G(x)} = Jo<Xl e-r~G(x) dx, 

was used to generate functions which could be useful as basis sets for atomic and molecular calculations. A 
particular choice of the weighting function G(x) led to functions of the form g(r) = (qr)vKv(qr), where 
Kv(qr) are modified Bessel functions of the second kind. These functions were used as basis functions for 
the helium isoelectronic series and accounted for 98.98% (H-), 99.89% (He), 99.96% (li1-), 99.98% 
(Be++), 99.996 % (06+) of the Hartree-Fock energy. 

I. INTRODUCTION 

Recently a new class of approximate wavefunctions 
constructed from integral transforms has been 
described. l This general class was based on the one
dimensional Laplace transform 

fer) = L{F(x)} = f"e-rXF(X) dx. (1) 

It can be shown that, for certain choices of F(x) , 
the f(r) will be the same as some well-known approxi
mate wavefunctions. For example, if F(x) is a delta 
function, we obtain the simple Is Slater orbital e- r ; if 

F(x) = 0, 

= 1, 

=0, 

0< x < IX, 

IX <: x <: {3, 

x> (3, 

we obtain the Hulthen function2 [exp (-ocr) -
exp (-{3r)](r, which is a linear combination of an 
infinite number of screened I s orbitals with orbital 
exponents ranging continuously in the interval oc to (3, 
each orbital having the same weight in the combina
tion. The virtue of this general class of functions 
[Eq. (1)] is that F(x) may be chosen, in a variational 
manner, to appropriately weight the "orbital exponent 
space." Another advantage to this treatment is that 
extensive compilations3 of Laplace transform pairs 
facilitate the generation of new types of basis func
tions, and that these can be compared and related to 
each other much more readily in terms of their inverse 
transforms [F(x)]. Furthermore, a number of useful 
theorems concerning Laplace transforms can be used. 
A computational advantage is that, in evaluation of 
matrix elements, integration over physical coordi
nates may be performed first, followed by integration 

over the parameter space. The authors have found 
that this is often a great deal easier than first integrat
ing over the parameter space. 

In a previous publication,4 one of us has used Eq. 
(I) with F(x) = X ll - l exp (-Ax)(f(/1) to generate the 
basis functions 

fer) = (r + A)-Il, 

and successfully applied these functions to the helium 
isoelectronic series. In this paper, we have applied the 
method to the function exp (-r 2x), 

I <Xl 2 

g(r) = L{G(x)} = 0 e-r XG(x) dx, (2) 

which is the Gaussian analog to Eq. (1). Currently, 
there are two commonly used basis functions: Slater 
and Gaussian type; as the transform procedure for 
the former has been developed, it was felt to be equally 
important to do so for the latter. The ubiquity of 
Gaussian wavefunctions is well known, mainly 
because integrals involving them are relatively easy 
to evaluate. 

Having chosen functions of the form of g(r), we 
next have to choose the weighting function G(x). 
Criteria for doing this have been explored previously.4 
In the present case, we can see that, if exp (-r 2x) were 
the exact eigenfunction of the wave equation for some 
particular value of x, then in this limit G(x) should 
be the delta function. However, in most cases 
exp (-r 2x) will not be an exact eigenfunction and we 
expect G(x) to be a shape function. Further, it would 
be useful if G(x) was such that lim g(r), as r --+ 00, 

was of exponential form. These criteria are met by 
choosing 

(3) 

1150 
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With this choice of weighting function, we obtain 
[see Eq. (55) of Ref. 5] 

g(r) = 2v+1kv(qr)/q2v. (4) 

The function k.(qr) is proportional to 

r2v exp (-qr) f'J exp (-2qrt)[t(t + l)]v-! dt; 

if 'I' = t it is exp (-qr). Without loss of generality, 
we may therefore take as basis functions 

1p(r) = kv(qr). (5) 

We will call kv(qr) the reduced modified Bessel func
tions of the second kind which are related to the 
normal modified Bessel functions of the second kind 
[K.(z); see Eq. (9.6.2) of Ref. 6] by the equality 

kv(z) = zYKy(z). (6) 

An additional advantage to the above choice of G(x) is 
that there are a number of useful relations concerning 
the kv(z); some of these are given in Appendix A. 

In this paper we present the results of using such a 
basis function to approximate the wavefunctions of 
a series of two-electron atomic systems. Each orbital 
is described by a function 1p(r) and, for each system, 'I' 

and q are chosen such as to minimize the electronic 
energy. We are, therefore, essentially using two
parameter functions. 

II. METHOD AND RESULTS 

The Hamiltonian for a helium-type system is 

Je = -t(V'~ + V'D - .£ - .£ + ~ , (7) 
1'1 /'2 /'12 

where z is the nuclear charge and 1'1' 1'2, and 1'12 are 
the nucleus-electron-I, nucleus-electron-2, and e1ec
tron-I-electron-2 distances, respectively. If the two
electron wavefunction is given by 

0/ = 1p(r1)11'(r2), 

then the electronic energy E is 

f f o/*Jeo/ d'Tl d'T2 
E==--"-------f J '1"*0/ d'Tl dT2 

where 

s = f 1p*(r)1p(r) dT, 

T = f 1p"'(r)(-tV'2)V'(r) dT, 

V" = f 1p"'(r) ( - ;)1p(r) dT, 

(8) 

(9) 

(10) 

(II) 

(12) 

and 

Ve = J J 1p*(r1)1p(rl) (~J 1p*(r2)1p(r2) dTl dT2 . (13) 

Using Eqs. (5) and (6) and the equality7 

f"X S
-

1K!(aX) dx = 2S
-

3a-S [I'(ts)]2B(ts + v, ls - v), 

Re s > 2 IRe vi, Re a > 0, (14) 

where B(x, y) is the f3 function, S, T, and V" re
duce to 

S = 22v+2q-37T [I'(V + iWB(21' + t i), (15) 

T = 22v+1q-17T[I'(1' + %WB(21' + t, t), (16) 

V" = _Z22V+1q-27T[I'(V + 1)]28(2'1' + 1,1). (17) 

The two-electron integral Ve may be reduced (see 
Appendix B) to the form 

Ve = 167T2q-5(2v + 1 )-1 

X ioolV+4[K;(P)K~+l(P) - K~(p)] dp 

= 167T2q-\2v + 1)-1[('1'). (18) 

An extensive search of the literature revealed no 
analytical form for the integral I( '1') if 'I' is unrestricted. 
1('1') was therefore evaluated numerically for 40 
different 'I' values equally spaced from 'I' = 0.025 to 
1.975 and the results used by the method of least 
squares to fit a 25-term linear combination of 
Chebyshev polynomials of the form 

24 

I(v) = I a;1~[(v - 1.0)/0.975]. (19) 
i~O 

This series was then used to evaluate /('1') for any 'I' 

value in the range 0 to 2.0. The details of this approach 
are given in Appendix B. 

The electronic energy E is therefore finally a func
tion of q, v, and nuclear charge z. The values of q and 
'I' which minimized E for z = I, 2, 3, 4, and 8 were 
found by using Powell's minimization methodS which 
does not use derivatives. All calculations were carried 
out in double precision on either an IBM 360/50 or 
360/65 computer. In Table I we present the values of 
q, '1', and E which were obtained and also the exact 
Hartree-Fock results taken from Roothaan and 
Weiss.9 

III. DISCUSSION 

The energies presented in Table I show that integral 
transform Gaussian functions are capable of sur
prisingly high accuracy, considering the fact that they 
contain only tll'O variable parameters. For the helium 
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TABLE I. Parameter values and energies for He and some He-like ions. 

Atom or ion z y q 

H- I 0.222364 0.551520 
He 2 0.357521 1.521673 
Li+ 3 0.404532 2.512546 
Be++ 4 0.428263 3.508142 
06+ 8 0.464057 7.501736 

R This work. II Ref. 9. C -(1 - Stz)2/31T. 

series, they account for 98.98 % (H-), 99.89 % (He), 
99.96% (Li+), 99.98 % (Be++) , and 99.996% (06+) of 
the Hartree-Fock energy (which is the best result one 
can obtain with orbitals). Strictly, comparison should 
be made with normal Gaussian wavefunctions from 
which our basis functions are derived, and here the 
situation is even more dramatic-a two-term Gaussian 
wavefunction (having three variable parameters) for 
He produces only 95.99% of the Hartree-Fock 
energy,1o and it is not until one reaches a five-term 
Gaussian wavefunction (nine variable parameters) 
that one produces an energy for He surpassing that 
of the integral transform Gaussian function. In Table 
I we also show the energies of the ions, using single 
optimized Gaussian orbitals; there do not appear to 
be, in the literature, any more complex Gaussian 
wavefunctions for these ions. 

However, the calculation of near Hartree- F ock 
energies with integral transform functions is only one 
aspect of this work. The other is to investigate and set 
up criteria for the proper choice of weighting factors 
[G(x) of Eq. (2»), and in Fig. 1 we show the optimized 

1.0 

.8 

)( .6 
c 
E 

(.!) 

"'
~.4 
x 
(.!) 

. 2 

ER 
Optimized one-parameter 

Hartree-Fock energl Gaussian energy" 

-0.48296 -0.48793 -0.35472 
-2.85853 -2.86168 -2.30099 
-7.23366 -7.23641 -5.94491 

-13.60872 -13.61130 -11.28648 
-59.10880 -59.11114 -47.74648 

G(x) of the form exp (-q2/4x)/xv i-l, normalized to 
G(x)max = 1, which were found in this work. It is 
pleasing to discover that, as suspected, they rise 
sharply and then fall off slowly and that, as the 
nuclear charge is increased, the higher exponent range 
is emphasized. 

The sudden rise of G(x) to its maximum value 
suggests that a weight function that is almost piece
wise continuous rather than just continuous may be 
quite useful. First, a finite discontinuity in G(x) 
necessarily implies that g(r) = exp (-ru2)f(r), where 
the discontinuity occurs at x = (I.. Secondly, the 
final-value theorem of Laplace transformsll states that 

lim rg(r) = G( 00), 
r-->O 

and thus for our purposes lim G(x), as x ->- 00, should 
be finite. The simplest way to assure this is to make 
G(x) == 0 for x> {J, {J > (I.. [This also makes g(r) an 
entire function.] Finally, the initial-value theorem 
states that 

lim rg(r) = C(O+), 
r--> 00 

FIG. 1. Plots of normalized weight 
functions G(X)/Gmax vs X/Z. z is the 
nuclear charge. 

Gmax = G(Xmax) = [4(y + l)/q2]vi 1 

X exp (-y - I), 

Xmax = q2/4(v + I), 

~z = (1 - 8!z)2/91r are the opti
mum orbital exponents of the one
parameter Gaussian orbitals exp (- ~.r2) 
for the He series . 

OUWL-__ L-__ L-__ ~~ ____________ J-____________ ~ 

o ~I ~2 ~3 2 3 
X/Z 
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so we know that G(O) should vanish. In fact, the 
Hulthen function satisfies all three of these conditions, 
and this is perhaps one reason for its success. We 
have already found simple yet general weight functions 
that satisfy the above criteria: 

G(x) = 0, ° <: x < (J., 

= {(3 - x)'\ (J. <: x <: (3, 

= 0, x> {J, 

and calculations are in progress for N = 0, 1, 2. The 
results are promising and will be given in a later 
publication. 

(n Fig. 1 we have also indicated the position of the 
optimized exponent [= (l - 8!Z)2/97T] of a one-term 
Gaussian wavefunction for Z = 1, 2, 3, and 4. The 
positions of these exponents clearly demonstrate that 
it is important to add in other Gaussian functions 
with exponents of smaller value. The energies for the 
one-term Gaussian wavefunctions are given in Table I. 

Finally, it is worth mentioning that the reduced 
modified Bessel functions [kv(qr)], which in this work 
were the natural outcome of the transform method, 
can be considered in their own right as useful basis 
functions for atomic and molecular calculations. 
Attention was first drawn to this point as long ago as 
1963 by Shavitt,5 who saw them as a form of "frac
tional quantum number" orbital. The calculations 
presented above would seem to go some way towards 
justifying their usefulness. 
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APPENDIX A: USEFUL RELATIONS FOR kJz) 

We have 

kvCz) = zVKJz) 

= 2v-
11'" (v-1 exp (-( - z2f4t) dt, 

dkv(z) = -7k (",) 
dz - v-I ~ , 

k.+1(z) = 2vkvCz) + z2k._1(z), 

k!(z) = (7T/2)! exp (-z), 

kt(z) = (7T/2)1"(1 + z) exp (-2), 

k,,+t(z) = (7T/22n+1)t exp(-z) 
n 

X I(2n - i)!(2z)iji!(n - O!. 
i=O 

APPENDIX B: EVALUATION OF V. 

The two-electron integral Ve is given by 

V .. = f f k~(qrl)(rli)k~(qr2) dTl dT2' 

I ntegration over all electronic coordinates except r1 

and r 2 reduces the above integral to 

167T2100 rlk~(qrl{rl L~ r2k;(q r2) dr2 

and by using the relation 

+ J:lr~k~(qr2) dr 2] drl , 

raJ (j(x, y) dy dx =foofOOj(X, y) dx dy, Jo Jo 0 Y 

we obtain 

327T21OO rik;(qr1{f: r2k~(qr2) dr2] dr1 • 

The inner integral may be found from Eq. 11.3.31 
of Ref. 6. We then obtain, after substituting p = qrl' 

Ve = 167T2q-5(2v + lr1J{v), 
where 

J(v) = IX) p4V+4[K~(p)K~+1(P) - K!(p)] dp. 

Though integrals over the product of four Bessel 
functions can be found analytically,12 there does not 
appear to be any analytical form in the literature for 
integrals over the product of four reduced modified 
Bessel functions. It was therefore decided to evaluate 
J(ll) numerically, using a Gaussian-Laguerre quadra
ture formula 

lcr/(X) dx = i~l Wi exp (Xi)j{Xi ) 

and taking n = 32. The abscissas (Xi) and weights 
(11';) were taken from Krylov,13 This necessitated the 
evaluation of the modified Bessel function Kv(z) at 
a number of points. Since there is no series formula for 
Kv(z), it was evaluated using an extended trapezoidal 
rule 

L"'j(X) dx = yeO) + %/(rl1), 

which was applied to the known equality [Eq. (5) of 
Ref. 14] 

KvCz) = 27T! exp (-z)(2zrV 

X i+ooexp(-x2)x2V(2Z + x2Y-!dxjr(v + t) (BI) 

Though normally the trapezoidal rule is a crude 
method for integral evaluation, for this particular 
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type of integral it is extremely accurate.I5 For a 
given spacing h, the accuracy increases with increasing 
z and increasing v. Because of the latter point it was 
decided to use recurrence relations (Eq. 9.6.26 of 
Ref. 6) and recur up v values below 2.5. For 1.5 <: 
v < 2.5, we used 

Kv(z) = Kv+2(z) - 2(v + 1)z- l K v+1(z) (B2) 

and, for 0 < v < 1.5, 

KvCz) = -2(v + l)z-l KV+3(z) 

+ [I + 4(v + 1)(v + 2)/Z2]Kv+2(z). (B3) 

For a spacing of h = 0.01 and using the above 
method, we could evaluate K.(z) to at least eight 
significant figures (by comparison with values in the 
Handbook6

) for 0 < v < 2.5. 

TABLE II. Values of the coefficients ai which appear in Eq. B4. 

ao 0.35394 35479 15791 (+02) 
al 0.64008 20573 26086 (+02) 
a2 0.48186 32055 07485 (+02) 
a. 0.30841 37226 51208 (+02) 
a, 0.17153 11497 48487 (+02) 
as 0.84366 87216 99388 (+01) 
as 0.37248 63238 70390 (+01) 
a7 0.14938 42361 02270 (+01) 

as 0.54965 14585 49135 (+00) 
a. 0.18705 71051 55576 (+00) 

a10 = 0.59288 42934 38942 (-01) 

au = 0.17602 60273 92932 (-01) 

au = 0.49200 63307 90673 (-02) 

a18 = 0.13001 92495 73327 (-02) 

a14 = 0.32609 72634 96194 (-03) 

a15 = 0.77880 90840 81385 (-04) 
a,a = 0.17788 54897 33853 (-04) 
a17 = 0.38978 60192 68732 (-05) 

a'8 = 0.84410 41927 65371 (-06) 
alP = 0.17967 05340 86563 (-06) 

a20 = 0.57633 37185 27167 (-07) 

a21 = 0.20665 99346 79070 (-07) 

a22 = 0.21521 94156 22414 ( -07) 

a23 = 0.96540 90844 91849 (-08) 

a24 = 0.69663 27958 93493 (-08) 

The integral lev) could then be evaluated using the 
aforementioned 32-point Gaussian-Laguerre quadra
ture. The accuracy of this procedure is shown by the 
fact that 1m, l(i), and leV, having half-integer values, 
can be found analytically to be 0.1927657109, 
12.94662706, and 7014.70333, and the numeri· 
cal method gives 0.192765714, 12.94662711, and 
7014.703337,. respectively. 

A 25-term combination of Chebyshev polynomials, 
T;(x), was then least-squares fitted to 40 values of the 
integral for v = 0.025(0.05)1.975, i.e., 

24 

1(1') = I a/f;[(v - 1.0)/0.975]. (B4) 
;=0 

Agreement between l(v) from Eq. (B4) and from 
direct calculation was better than eight significant 
figures for 0 < v < 2.0. The coefficients ai are given 
in Table II, and it was with these and ·Eq. (B4) that 
Ve was evaluated in the minimization procedure. 
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The C1ebsch-Gordan coefficients for the reduction of an n-fold tensor product of nonrelativistic free
particle states into one over-all state are calculated. The degeneracy parameters resulting from this 
decomposition are then cast into Galilean-invariant functions of the particle momenta. Finally, the 
reduction is applied to the scattering matrix for nonrelativistic reactions involving an arbitrary 
number of final particles. 

I. INTRODUCTION 

There has long been an interest in the quantum
mechanical applications of the physical representa
tions of the Galilei group. Bargmann1 first showed the 
need for constructing representations on a one
parameter extension of the GaliIei group in order to 
obtain physically meaningful representations. Using 
Bargmann's analysis of the central extension, L6vy
Leblond2 constructed physical representations of the 
Galilei group for 1- and 2-particle systems with the 
aid of little group theory and used Galilean invariance 
to establish many of the characteristics of nonrela
tivistic systems. Voisin3 used Mackey's theory of 
induced representations4 to construct physical repre
sentations of the Galilei group and to couple two 
single-particle states both in terms of helicity and spin
orbit coupling. 

The purpose of the present work is to provide an 
extension of Voisin's treatment to the problem of 
coupling n single-particle states. The usual method of 
doing this relativistically involves a stepwise coupling 
of particle systems in several different frames.5 The 
method of coupling to be used here effects a symmetric 
reduction of the n-fold system such that all single
particle states are reduced at once into the over-all 
state. This is convenient since the over-all state is then 
symmetric under particle interchange, thereby facil
itating the construction of symmetric or antisym
metric states when some of the n particles are the same. 
It is also found that the set of degeneracy parameters 
that results can be written in the form of Galilean 
invariants having the same significance in any reference 
frame. 

The second section of the paper reviews the use 

single-particle states to one over-all state. Throughout 
this section the results of Mackey's theory of induced 
representations4 are heavily employed; in particular, 
the method used in reducing the n-fold tensor product 
of single-particle states and in actually calculating the 
Clebsch-Gordan coefficients is taken from work of 
Klink and Smith,6 which should be referred to for a 
more complete discussion of the relevant mathematics. 
In the fourth section, the degeneracy parameters 
resulting from the n-fold tensor product reduction are 
cast into the form of Galilean invariants involving 
quantities that are interpreted as the momenta .of 
"particles" constructed in analogy to the reduced-mass 
"particle" of 2-body mechanics. In the fifth section, use 
is made of the Clebsch-Gordan reduction of the third 
section to write a partial wave analysis of the 
scattering amplitude for a nonrelativistic scattering 
problem involving two incoming and (n - 2) outgoing 
particles. 

II. CONSTRUCTION OF PHYSICAL 
REPRESENTATIONS OF THE 

GALILEI GROUP 

The Galilei group G consists of all transformations 
linking inertial reference frames; the most general 
transformation of x and t under G is 

x' = Rx + vt + a, 

t' = t + b. 

This can be represented in matrix form as 

(~:\) = (~ v :) (~), 
I, 0 0 1 1, 

(1) 

(2) 

of the central extension of the Galilei group and treats where R represents the subgroup of proper rotations in 
the construction of induced unitary representations of three dimensions, SO(3), v represents an arbitrary 
the central extension defined on a single free-particle "pure" Galilei transformation, a represents an arbi
basis state in a manner very close to that used by trary space translation, and b represents an arbitrary 
Voisin. The third section is devoted to the calculation time translation. While the matrix display of elements 
of the Clebsch-Gordan coefficients that relate the n gives the correct combination law of elements of G by 

1155 
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simple matrix multiplication, it will be more useful 
to write the elements g of G in the form 

g = (R, v, a, b]. (3) 

The combination law of gIg2 is 

gIg2 = [RIR2' RIv 2 + VI' Rl a 2 + v1b2 + a1, bi + b2]. 
(4) 

The goal in this section is the construction of irre
ducible representations of G that are unitary operators 
acting on momentum space wavefunctions of a free, 
nonrelativistic particle. It is well knowni that there is 
a one-to-one mapping between physical states and 
rays in a Hilbert space where a ray cp == tep for 17! = 1. 
The vector ep is then called a representative of the 
ray cpo 

Therefore, the most general basis for representations 
allowed by quantum mechanics consists of rays and 
not vectors. This does not mean that rays must be used 
in constructing a representation consistent with 
quantum mechanics, only that their use is permitted. 
lndeed, it is often possible to fix the phase by setting 
7 = 1 for all rays, thereby generating a vector repre
sentation of the group. An example of this is the 
Poincare group in which vector representation can be 
interpreted physically. 

However, when one attempts to set 7 = 1 for the 
Galilei group, it is found that the representations 
constructed are not consistent with the known trans
formation properties of momentum and energy under 
G. These properties are easily derived from Eq. (1) and 
the fact that E = p2j2M + v in any given reference 
frame (M denotes the mass of the particle and v 

denotes the constant internal energy of the particle). 
Differentiate Eq. (1) with respect to time, multiply by 
M, and substitute into the energy relation above to 
obtain 

p' = Rp + Mv, 

E' = E + Rp· v + lMv2
• (5) 

However, it is found that vector representations con
structed on G proper give only 

p' = Rp, 

E' = E + Rp·v 

and so are too restrictive to be used as physical repre
sentations of the group. 

The introduction of phase arbitrariness in the basis 
vectors of the representation allows one to construct 
representations that are consistent with Eq. (5), and 
thus provides a physical representation of G. By a 
representation of G one means that for each element of 
G there exists a homomorphic mapping that preserves 

the multiplication law of G by an operator U. This 
operator ray is defined as 0 = fU for 11£1 = 1, where 
U is called an operator representative of U so that 
cp' = Ucp and D(gl)U(g2) = D(glg2) for all g E G. 
For two elements of G, gl and g2' one can then 
associate operator representatives, U(gl) and U(g2)' 
with the product law 

U(g1)U(g2) = m(gl, g2)U(g~2)' Im(gl' g2)1 = I, (6) 

where m(gl, g2) is a continuous function of gl and g2 
defined for some neighborhood of the identity of G. 
Bargmannl has shown that, by substituting SU(2) 
for SO(3) (i.e., by using the covering group of G), 
m(g!, g2) can be defined continuously over the entire 
group manifold of G. Letting O(gl) = exp (i0l)U(gl) 
and D(g2) = exp (i02)U(g2) then gives 

U(gl)U(g2) = U(glg2) = ei[OI+02+q>(YIo02)]U(glg2), (7) 

where m(g!> gz) == exp [iP(gl' g2»)' ep(gl, gz) is called 
the local exponent of G, or,in this case, simply the 
exponent of G,since W(gl,g2) can be defined every
where. The combination law of operator representa
tives led Bargmann to define the central extension of 
the Galilei group G with elements g = (0, g), where 
g E G and 0 is any real number. The combination law of 
G is then 

glg2 = [010 gl][OZ' g2] 

= [01 + f)2 + ep(gl, gz), glg2]' (8) 

The motivation for defining G is that one can work 
with vector representations of G that are equivalent to 
projective representations of G. This allows the use of 
ordinary representation theory. The ability to create 
representations of G consistent with Eq. (5) stems 
from the freedom available in the choice of ep(gl, g2)' 
It will be shown later that setting P(gl' g2) = VI • 

R1a2 + iv~b2 will yield such representations. 
G can be decomposed into semidirect products of 

subgroups 
G = T x [V x SU(2)], (9) 

where T is defined as the invariant subgroup con
taining elements 0, a, and b, V is defined as the sub
group of pure Galilei transformations v, and S U(2) is 
the simple covering group of rotations. 

In order to use induced representation theory on G, 
it is first necessary to decompose G into a product of 
some subgroup H with right-coset elements go: 

(10) 

The symbol U means a union over all right cosets. 
Any subgroup of 0 can be used to induce a representa
tion, but in order to obtain irreducible representations 
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of G, H == T x L must be used. L denotes the little 
group restriction of V X SU(2) above. 

When representations of H are known, induced 
representation theory provides the mathematical 
machinery for generating representations of 0. 
Physically, for the Galilei group, this means that H 
provides representations of 0 in the rest frame of the 
system. Induced representation theory then says what 
the representations look like in any Galilei frame 
generated from the rest frame by a pure Galilei 
transformation. 

Since T consists only of translations plus the ex
tensions {O}, it is Abelian and its unitary irreducible 
representations are all I dimensional. They can thus 
be written as 

C(a, b, 0) = exp i(MO + Eb - P • a), (II) 

where M, E, and p can be shown to be eigenvalues of 
the representations of the Lie-algebra elements of G, 
generating infinitesimal phase, time, and space trans
lations. The minus sign in front of p . a is merely a 
convention suggested by the form of the Lorentz inner 
product. It is convenient to introduce a 5-dimensional 
scalar product with vectors 

p = m and a = (:) 

so that 

(12) 
where 

(3 == (~l ~ ~). 
o 0 I 

Since T is normal, gT = Tg for all g E 0. This allows 
one to define an orbit as the set of representations of 
T generated by arbitrary inner automorphisms of T 
induced by g E 0 or as the set 

{!.:P'(a) such that !f(a) = \:P(gag-I) for all g EO}. 

To determine the relation of p' and p, calculate gag-I: 

ga'g-l = [0, R, v, a, b][O', J, 0, a', b'] 

X [-0 + v • a - iv2b, 
R-l, -R-1v, R-1vb - R-Ia , -h] 

= [£I' + v • Ra' + tv2b', J, 0, Ra' + vb', b']. 
Then, 

\:P(ga' g-I) = exp i[MCO' + v. Ra' + tv2b') 

+ Eb' - P . (Ra + vb')] 

= exp i[MO' + (E - P • v + tMv2)b' 
- (R-Ip - MR-Iv). a'] 

= \:P'(a') = exp i(M'e' + E'b' - p' • a'). 

Comparing coefficients of 0', h', and a' gives 

M=M', 

E = E' + Rp' • v + _~MV2, (13) 

P = Rp' + Mv. 

Also, E' - p'2j2M = E - p2j2M = v. Thus, we are 
led back to Eq. (5) by having chosen rp(gl, g2) = 
VI· R1a2 + lvib2' In terms of the five vectors intro
duced previously, Eq. (13) can be written 

p' = r-I(R, v)p, (14) 

where the matrix r(R, v) and its inverse are defined as 

( 

R 0 

rCR, v) == vTR 1 

o 0 

(15) 

The orbit of p and E is thus seen to be all p' and E' 
consistent with constant M and v that can be reached 
through Galilei transformations of p and E. 

L is defined as the subgroup of V X SU(2) that 
leaves at least one element p, E of the equivalence class, 
labeled by M and v, invariant. That is, 

fi = r-l(R, v)fi. 

It is convenient to choose p = 0 and E = t', which 
can be written 

With this choice, L consists of all rotations R and no 
elements of V. R E SU(2) has representations in the 
form ofWigner D functions, D~m,(R). The representa
tions of H = T x L are 

.Je(p,J)(a, R) = exp(ifiTf3a)D~m.(R) 
= exp (ifi . a)D~m,(R). (16) 

A right-coset decomposition of 0 with respect to 
His 

[0, R, v, a, b] = [0, R, 0, a, bUO, J, v', 0, 0], (17) 

where y' = R-1v is in V, the subgroup of pure Galilei 
transformations. As shown in Ref. 6, the representa
tion induced by H acts on functions that may be con
sidered to be functions over right-coset elements of G 
such that 
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where 
(18) 

Here the functions I(ge) are Im(v), that is, they are 
functions over velocity elements of G with m arising 
from the (2J + I)-dimensional representations of the 
inducing subgroup. The Im(v) are square integrable 
and form a Hilbert space with norm 

11/112 =m~J J df.l(V) Iln.(v)12 < 00, (19) 

where df.l(v) is the invariant measure over the coset 
manifold of G, G/H. 

The induced unitary irreducible representation of 0 
is 

U(go)fm(V) 

= Im([O, I, v, 0, 0][00 , Ro, vo, ao, boD 

= 1 m[OO + V· ao + iv2bo, Ro, v + vo, ao + vbo, bo] 

= 1 m([OO + V • ao + tv2bo, Ro, 0, ao + vbo, bo] 

x [0, I, Ro\v + Yo), 0, 0]) 

= exp [ipTr-1T(I, v)pao] I D~r,.,(Ro)fm,(RO\v + vo» 
m' 

= exp {i[r-I(l, v)pfpao} L D~m.(Ro)fm,(Rol(v + Vo» 
tn' 

= exp [ir-l(l, v)p . ao] L D~m,(Ro)lm,(Rol(v + yo»~. 
m' (20) 

So far the induced representation U(g) has been 
defined on vectors Im(v) in a rather abstract Hilbert 
space. To give the representation more physical 
meaning, let Im(v) = CfYm(P) with P = r-l(I, v)p, 
where CfYm(P) can be interpreted as the momentum space 
wavefunction satisfying the free-particle Schrodinger 
equation. This definition is possible since the transfor
mation properties of P have been uniquely specified: 

U(go)CfYm(P) == U(go)fm(v) 

= exp [W-l(I, v)p' ao] I D~m,(Ro)CfYm.(P'). 
m' 

Since p = r-I(I, v)p, Eq. (20) implies that 

p' = r-I(I, Rol(V + voHp = r-l(Ro' vo)p 

and thus 

U(go)CfYm(P) = eiP'aoL D;;'m,(Ro)CfYm.(r-l(Ro, vo)p)· 

m' (21) 

Let 1 [vMJ]pm) denote the state vector in Hilbert 
space corresponding to the wavefunction CfYm(P). The 
labels v, M, and J denote the internal energy, mass, 
and spin, respectively. They constitute a complete set 
of irreducible representation labels of G. The normal-

ization of the states is taken to be 

([vMJ]pm I [vMJ]p'm') = b3(p - p')b1llrn,. (22) 

A general state 111') can be written 

111') = ~ J df.l(p, E)CfYm(P) 1[t'MJ]pm), (23) 

where df.l(p, E) == d3p dEb(E - p2/2M - v) is the 
invariant measure. Then, 

U(go) 111') = ~ J df.l(p, E)[U(go)CfYm'(P)] 1[I,MJ]pm') 

=m~' J df.l(p, E)eiP'aoD;;"rnn(Ro) 

x CfYmn(r-l(Ro, vo)p) 1 ['1-,MJ]pm'). 

Let r-l(Ro, vo)p = p'; also, with df.l(p', E') = df.l(p, E), 

U(go) 111') = m~n J df.l(p', E')eir(Ro,Vo)p'·aoD~'mn(Ro) 

x CfYmn(P') 1 [vMJ](Rop' + Mvo)m'), 

U(go) 111') = L Jdf.l(P, E)einRo,vo)p'aoD;;"m(Ro) 
m'm 

x CfYm(P) 1 [vMJ](Rop + Mvo)m'), 
but 

U(go) 111') = ~ J df.l(p, E)Tm(p)U(go) l[l'MJ]pm). 

So, finally, the induced irreducible representation of 
the extended Galilei group can be written 

U(go) 1 [vMJ]pm) = eirtRo,vo)p'aoL D;t:m(Ro) 
m' 

x 1 [vMJ](Rop + Mvo), m'). (24) 

III. CLEBSCH-GORDAN COEFFICIENTS FOR 
COUPLING n SINGLE-PARTICLE STATES 

UNDER THE GALILEI GROUP 

The method of finding induced representations 
defined on single-particle states is easily extended to 
the tensor product of n single-particle states. Define 
the outer product group (01 , O2 ,''' ,Gn), consisting 
of an ordered set of elements gi E O. This product 
group is decomposed with respect to an outer product 
subgroup (HI' ... , Hn ), where each Hi is chosen to 
induce irreducible representations of G and, hence, has 
representations of the form of Eq. (16). The right
coset elements are then elements of V, the subgroup of 
pure Galilei transformations. The decomposition is 

(G I ,"', Gn) = U (HI"'" Hn)(v l ,"', vn ). (25) 
Vi 

(HI' ... , Hn) has representations 

X(th J " ... ,pnJ nl( a
l 

, Rl , ... , an' Rn) 

= IT exp UA . ai)DJi(Ri), 
i=l 
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where 

(26) 

and induces a unitary representation defined on 
functions of velocity elements 

1m, ... mn(Vl , ... , vn)· 

These are square integrable and form a Hilbert space 
having norm 

J, J" f 
IIIII = m~J:' ·m"~J .. d{l(VI}'" dp.(vn} 

x I/m""m,,(vl ,"', Vn)j2 < 00. (27) 

They also have the property 

fm", .m .. (gl, ... ,gn) = Je(hl' ... , hn) 

x /ml'" m,,(vl , •.. , vn), 

where 
(28) 

In general, U(go) acts on/(go" ... , gc.), where ge. are 
right-coset elements, to give 

U(go)/(gel' ... , gc) = f(gc,go, gc,go, ... , gengo). 

(29) 

The induced representation for the outer-product 
group is then 

U(go)/m, ... m.(vl , ••• , vn) 

= 1 ml ... m.([[O, I, Vl , 0, 0], ... , [0, 1, v n' 0, On 

x ([00 , Ro, Yo, ao, bo],"', [00 , Ro, Yo, ao, bo]]) 

= Iml"'m,,([OO + VI' ao + tvibo, Ro, VI 

+ Yo, ao + vlbo, bol,"', 

[00 + vn ' ao + tv,~bo, Ro, vn 

+ Yo, ao + vnbo, boll 

= 1m, ... m,,([[OO + VI' aO + tvibo , Ro, 0, aO 

+ vlbo, bo],' .. , 

[00 + Vn ' aO + tv~bO' RO' 0, aO + vnbo, boH 

X ([0, I, Rol(VI + Yo), 0, OJ, ... , 

[0, I, Rol(Vn + Yo), 0, OJ]) 
= exp [i(r-l(I, V1)ftt)T pao]' .. exp [i(r-I(J, V1I )P1I)T paol 

X ! D~~ml,(Ro) ... L D~:mn.(Ro) 
mI' mn' 

x Iml''''m,,·[Rol(Vl + Vo),"', ROl(Vn + Vo)] 
= exp [ir-l(I, VI)Pl . ao] ... exp [ir-l(I, Vn)fin . ao] 

X L D~~ml.(Ro) ... L D~:mn.(Ro) 
m1' ffl n ' 

X Iml' ... mARol(Vl + Vo),"', ROl(Vn + Yo)]. 

(30) 

The representation as defined over Im,," m" (VI' ... , 
Vn) is reducible, and the main object of this paper is to 
effect a reduction of this reducible representation 
through the use of double cosets that will allow calcu
lation of the Clebsch-Gordan coefficients. Of primary 
significance in what follows is a result of Mackey4 that 
induced representations defined on tensor product 
spaces are· equivalent to induced representations 
defined on subspaces labeled by double eosets. 

A double-coset decomposition of a group G is 
defined as 

(31) 

where H and H' are both subgroups of G. The gD are 
elements of G labeling the double cosets. Using this 
decomposition, it is possible to construct induced 
representations on functions F D(g) for g in Gf H D 
which are square integrable in the subspace labeled 
by D. H D is the subgroup inducing representations on 
this subspace and is defined as 

(32) 

The direct integral decomposition of f(gc} is then 

11/112 = f dD IIF D112. (33) 

Applied to the outer product of the extended Galilei 
group, 

(Gl , 6 2 ,"', Gn) 

U (HI, H 2 ,···, Hn) 
Dl,D2.···,D. 

X (gDl' gD., ... , gD,,)(O, 0, ... ,0), (34) 

where (0, G, ... ,6) is the diagonal subgroup of 
(61 , 62 , ••• , G n) consisting of the same element 
g E G in all positions. It is clear that the double-coset 
elements are elements of V, 

[[01 , R{, VI' aI' b1],"', [On' R~, Vn, anbnU 

= [[01 , Rl , 0, a l , btl, ... , (On' Rn , 0, an , bn11 

X [[0, I, VDl' 0, 0],"', [0, I, VD", 0, OJ] 

X [[0, R, V, a, b], ... , [0, R, v, a, b 1]. (35) 

The V D are chosen to be the smallest set consistent 
with a' unique coverage of elements of the Quter 
product. A convenient choice is 

VD
1 

= 0, 

vD • = (0,0, VD.,), 

vD • = (VD3Z ' 0, VD.)' 
v D arbitrary for i = 4, ... , n. , 

(36) 
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Then, 

HD = (VD1 ,' ", VD.)-l(Hu H2 ,"', Hn) 

x (VD,"", vDn) II (G,"', G) 

= [[0, I, -VD" 0, 0],' . " [0, I, -VDn ' 0, OJ] 

X [[01 , Rl , 0, aI, b1), ••• , [On' Rn, 0, an' bnJ] 

X [(0, I, VD" 0,0], ... , [0, I, VD", 0, OJ] 

II [[0, R, v, a, b), ... , [0, R, v, a, bl] 

= [[01 - VDl • a1 + !V~lbl' R1 , 

RIvD, - VD" al - vD,b!, btl,' . " 

[On - VD .. • an + !v~nbn' Rn, 

RnVDn - vD fI , an - vD"bn, bn1l 
II (G, G, .. " G). (37) 

Now, sincevD, = 0, RtVD, - VD, = 0, and ° II V = 
0. Then, 0 II v = R2vD. - VD

2 
II V = ... = RnVDn -

VD II v = O. Since v is arbitrary, R; can be at most a 
rotation about vD, for i = 2, ... ,n. For n = 2, there 
is only one nonv;nishing VD' so that R1 can be taken 
to be U(1) and R2 = R1 = U(l). For n ~ 3, there are 
at least two different VD'S. Since Rl = R2 = ... = Rn, 
only R; = I will work. Because a number of authors 
have treated the problem of coupling two particles, 
the remainder of this paper will treat only the case of 
n ~ 3. Then, 

HD = ([0, 1,0, a, b], ... , [0, I, 0, a, bl]. (38) 

In order to have a unique association of elements on 
the left and right sides of the double-coset decomposi
tion, the elements of H D must be divided out of the 
diagonal subgroup. The result is 

[[01 , R1, VI' aI' bt ],"', [On' R~, Vn ' an' bnll 
= [[01 , R1 , 0, aI' b1], ••• , [On' Rn , 0, an' bn l1 

X [[0, I, VDl' 0, 0], ... , [0, I, VD", 0, OJ] 

X [[0, R, v, 0, 0], ... , [0, R, v, 0, OJ] 

= [[01> RI , 0, a1 • bI},"', [On' Rn , 0, an' bnJ] 

X [[0, R, v + vD" 0, 0],"', [0, R, V + vDn , 0, 0]]' 

(39) 

Now, one can define functions carrying representa
tions induced by H D as 

F[ml,VD,l(R, v) == F m,'" mol(R, v + VD,), 

(R, v + vD.), ... ,(R, V + vD,,)]' 

Under an arbitrary transformation F[lIIj'YJ),}(R, v) 
transforms as 

U(go)F[ml>YD,lR, v) 

== U(go)F m,'" m,.[(R, v + VD,)' ••• ,(R, v + v]),)] 

= Fm1 ". m"cnO, R, v + Vl>t' 0, OJ, ... , 
[0, R, v+ vDn' 0, OJ] 

X [(00 , Ro, Yo, ao, bol,"', [00 , Ro, Yo, ao, bo]]) 

= F mt'" mJ[Oo + (v + vD), Rao + Hv + VDl)2bo, 

RRo, Rvo + v + VD1' 

Rao + (v + VDl)bo, bol, ... , 

[00 + (v + VD,,)' Rao + !(v + vD,lbo, RRo, 

Rvo + v + VD .. , Rao + (v + vD.)bo, boJJ 

= F m,'" m,,([[OO + (v + VD)' Rao + !(v + VD)2bo, 

1,0, Rao + (v + vD)bo, bol, ... , 

[00 + (v + VDn)' Rao + !(v + vDYbo, I, 0, 

Rao + (v + vDn)bo, bol] 

X [[0, RRo. Rvo + v + vD,. 0, 0],"', 

[0, RRo, Rvo + v + vDn • 0, 0]]) 

= exp [ir-l(R, v + VD,)fit . ao] ... 

exp [ir-1(R, v + VD,JPn . ao] 

x Fm,"'mJ(RRo, Rvo + v + VD),"', 

(RRo, Rvo + v + vD.,)l 

= exp [ir-1(R, v)p . aoJFrm;,vD/RRo, Rvo + v), (40) 

where p means (f) and is defined by 

r-1(R, v)jJ == r-1(R, v + VD,)P1 

+ ... + r-l(R, v + VD.)Pn 
or 

P
N = reI, -VD )fit + ... + r(l, -VD )Pn. (41) , .. 

Since the subscripts [mi , v Di l are left invariant under 
an arbitrary Galilei transformation, it is clear that they 
label degenerate subspaces of the invariant subspace 
of Hilbert-space vectors labeled by M and v. Equation 
(41) yields the following equations for the components 
ofp: 

Ii = -MIVD~ - ... - MnvDn' 

£ = VI + lMIV~l + ... + Vn + !Mnv~ .. , (42) 

M=M1 +···+M .. . 
The Clebsch-Gordan coefficients relate the n single

particle states to one over-all single-particle state 
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through the equation 

I [t'IM1J1]P1ml ) I [V2M2J2]P2m2) .. , l[vnMnJn]Pnmn) 

= .~o miJ ~ f dfJ(p) 

X ([t·MJ]pm, 'rJ1 [v1M1Jdp1m1, ... , 

[vnMnJn)Pnmn) l[vMJ)pm, 'rJ), (43) 

where 1'/ denotes the set of degeneracy parameters 
distinguishing subspaces within the representation 
characterized by v, M, andJ. To obtain these Clebsch
Gordan coefficients, introduce the functions 

D~~~~](R, v) 
defined as 

D[VMJ](R ) 
p'm'pm ,v 

== ([vMJ]p'm'l U(R, v) I [vMJ]pm) 

= I D~Nm(R) ([vMJ]p'm' I [vMJ](Rp + Mv)m") 
m N 

= D~'m(RW(P' - (Rp + Mv». (44) 

It is desired to leave p arbitrary and choose p' such 
that the D functions will transform like basis functions 
for the induced representation when the operator 
U(R, v) acts to the left. Then, since U(R, v) acting to 
the right causes the D functions to transform like the 
state vectors I (vMJ]pm), one can regard them both as 
concrete realizations of I (v MJ]pm) and as basis 
functions for the induced representation. This feature 
permits the Clebsch-Gordan coefficients to be ex
pressed as an integral over (R, v) because of the 
already completed double-coset reduction of basis 
functions for the n-fold tensor product. 

Correct choices of D functions to represent the 
state vectors appearing in the Clebsch-Gordan co
efficients must now be made. Choose 

F[mi',vD/R, v) to be D~~p~J](R, v), 

where k is an additional degeneracy parameter. Like
wise, choose 

Ffmi,Vli/R, v) 

= F;,.1· ... m3(R, v + vn),' .. ,(R, v + VDn)] 
to be 

Then, 

(['uMJ]pm, m;vD,k I (vIMIJl]Plml' ... , 

[vnMnJn]Pnmn) 

= N fd(R v)D[VM:Jj*CR v) J , pkpm , 

= N J J d(R, V)J3(p - (Rp + Mv»Df:(R) 

X IT 83(Pi - [Rpi + M;(v + vn)])D~~'mlR), 
;=1 

(45) 

where N J is a normalization constant. The 0 functions 
imply 

p = Rp + Mv, 

Pi = RPi + M;(v + vn) = 0, i = I,'" ,n. (46) 

Now Eq. (42) can be used with the above to obtain 
the expected conservation of momentum and energy 
for the over-all state: 

n 

p =Ipi' 
i=l 

n 

E='IEi' 
i=1 (47) 

When the integration over CR, v) is performed, the 
Clebsch-Gordan coefficients are found to be 

([I·MJ]pm, m;kvDi I [v1M1J1]Plml, ... , 

[unMJ n)p"m n ) 

= N J8
3 

( P - t Pi) 8 ( E - t Ei) 

X J( M - t Mi) Dt:CR) 11 D~:'mlR). (48) 

The significance of the rotation R appearing in the 
Wigner functions will be clarified in the following 
section. 

IV. INTERPRETATION OF THE DEGENERACY 
PARAMETERS AND THE ROTATION R 

At this point the set of degeneracy parameters is of 
the form [m;, k, vnJ It is desirable to express the 
v ni in terms of quantities that have more physical 
significance. To do this, construct a coordinate system 
as shown, where R is defined as the position vector of 
the center of mass, r i is defined as the position vector 
of the ith particle, and r; denotes the position vector of 
the ith particle relative to the center of mass (see Fig. 
1). Let T represent the total kinetic energy of the 

x center of mass 

FIG. I. 



                                                                                                                                    

1162 R. E. WARREN AND W. H. KLINK 

system: 

T = 1 iM/i2 = 1 !M;(R + t;)2 
i 

their relative kinetic energy about the center of mass. 
One can regard the Pi; as being the momenta of 
"particles" of mass M iJ , whose positions relative to 

(49) the center of mass of the system are specified by r i ;. 

since 1 Ml; = 0. Define rif == r. - r;, Then, 

1 M,(r; + rif ) = 0, 
t 

such that 

.1 1 "M ri = -,(., ;rij' M; 
Then, 

tlcl = tic - tE = (t; - t l ) - (ti - tk) = til - tik' 

t:! = ti~ + t;k - 2ta • tile' 

such that 

"MiMkM I1(.2 .2 .2) 
Trc1 = ,(., 2M22 ril + r,k - [kl 

i,N,l 

"MiMI .2 + "MiMk .2 " MkMI .2 
=,(., --ril ,(.,--rik - ,(.,--rkl , 

i.1 4M i,k 4M kol 4M 

Since all indices are dummy indices, the three sums 
are equal and 

" .,2 "Mi M,.2 "MiM i • 2 (0) Trc1 = t ,(., Mir, = t ,(., -- rif = ,(., -- [ij' 5 
i i.' 2M i<i 2M 

The rH can be regarded as canonical coordinates 
describing the relative positions of particles in the 
center-of-mass frame. Since no interactions have been 
introduced between particles, the Lagrangian L = 
Trel and the momenta conjugate to rij, defined as 

Pii' become 
oL MiMi. MiM ; 

PH = -.- = -- [if = -- (Vi - Vi) 
or;; M M 

M;p. - MiP; 

M 
(51) 

Letting Mij == M,M;/M, we have 
.2 P;j 

Tre1 = I tMijrij = 1 - . (52) 
i<i i<,2M;; 

Since E = Li Ei , 

2 p2 p2 p2 p. ., 
- + v = I -' + L t', = - + L ~ + LV., 
2M 2M. 2M i<; 2Mij 

such that 
P;; V=IVi+'L -. 

;< j 2Mij 
(53) 

The total internal energy v is seen to be the sum of the 
internal energies of the n single-particle states plus 

This is a natural extension of the reduced-mass con
cept of 2-body mechanics. The reason for defining the 
Pif is that it is now a simple matter to express the V Di in 
terms of Pi; : 

RPi = -Mi(V + VD)' 

Rp, = -M,(v + VDJ (46') 

Therefore, 

R(M,p. - M,p;) = MiM;(vDj - vD), 

VD; - VD, = R(MjPi - MiP;!MiMj) 

= RP.;/M,;. (54) 

There are in(n - 1) independent Pi; and only 
(3n - 6) VD, components, so that a choice of Pi; can 
be made that will completely specify the vD,' but this 
choice will not be unique. In particular, for the set of 
VD. defined previously, the following representation 
will cover the VD, components completely except for 
(n - 2) sign ambiguities. It is clear that this repre
sentation is invariant under an arbitrary Galilean 
transformation: 

VDtz = 0, VDZz = Ip12//M12' 

P12' PIi , > 3 
vD .. = I 1M' I - , P12 1i 

VDIz = 0, VDz. = 0, 

V = ± (Pia _ P12' P13)t 
D3~ 2 I 1M' M 13 P12 13 

V . = ± (Pi3 _ P12' P13 )-·(P13 • Pli _ V V.) 
Dox M2 I I M M M Da. D.. ' 

13 P12 13 13 1i 

i ~ 4, 

(55) 

To remove the (n - 2) sign ambiguities above, con
sider quantities of the form 

(56) 

It is easy to show that these quantities are Galilean 
invariants. Now form 

(57) 
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where the last result follows from the choice of VD, 

made. These (n - 2) invariants are sufficient to re
move the sign ambiguities in the VD

i 
representation 

given. 
The interpretation of R can be made most easily 

considering P12 and P13' In terms of the double-coset 
elements used here, they are 

VD
2 

= (0,0, VD
2

) = RP12/M 12 , 

vD. = (VD •• ' 0, VD.) = RP13/M 13' 

It is clear that R must be the rotation that takes P12 
into the z axis while rotating P13 into the x - z plane 
o( the coordinate system in which the momenta are 
PI', ... , Pn' In general, R must be specified by three 
parameters; a convenient choice is the set of Euler 
angles as defined by Goldstein,? R = (cp, (), 1p). Using 
the rotation matrix given by Goldstein in terms of the 
Euler angles and the values of VD. and vD. given pre
vi9usly as functions of P12 and P13' one can specify R 
as a function of PI' P2' and P3 and masses M 1 , M 2 , 

arid M 3 • 

R can also be shown to rotate all momenta by the 
same angles in any Galilean reference frame. This 
means that the momenta can be thought of as defining 
a rigid body that rotates as a unit under R. Therefore, 
irrespective of the number of particle states coupled, 
the rotation R appearing in the Wigner functions is 
completely specified by the momenta of any three of 
the particles. The choice of these three is obviously 
irrelevant; the use of the first three here is due solely 
to the previous choice of double-coset elements. A 
different set of double cosets would lead to a different 
but physically equivalent interpretation of R. 

V. PARTIAL WAVE ANALYSIS 

As an application of the Clebsch-Gordan reduction 
calculated in Sec. III, consider the scattering matrix 
for the following nonrelativistic reaction: 

I + 2 -- 3 + 4 + ... + n. (58) 

An S-matrix element will have the form 

([VaMaJ3]Pam31 ... ([vnMnJn]Pnmnl S I [vIM1Jl]Plml) 

X I [V2M2J2]P2m2)' (59) 

In exactly the same manner used in Sec. III, the 
Clebsch-Gordan reduction, the two single-particle 
states can be shown to be 

I[VIMIJI]Plml) I[v2M2J2]P2m2) 

= Jt m~Ji~ f df.t(p) l(vMJ]pm, i1 i2vD) 

x ([vMJ]pm, i1i2vD I [v1M1J1]Plml' [V2M2J2]P2m2) 

(60) 

with 

([vMJ]pm, i1i2vD r (vIM1Jl]P1ml[v2M2J2]P2m2) 

= b3(p - PI - P2)b(E - El - E2)b(M - MI - M2) 

X D~:i2.m(R')D~;'I(R')Df.:".(R'), (61) 

where [iI' i2, v D] is the set of degeneracy parameters 
for the 2-particle case. Now let particles I and 2 define 
the z axis in the center-of-mass frame. Then, from the 
analysis of the last section, R' = I and the Clebsch
Gordan coefficients become 

([vMJ]pm, i1i2vD I [v1 MIJl]Plml, [V2M2J2]P2m2) 

= b3(p - PI - P2)b(E - E1 - E2)b(M - Ml - MJ 

Then, 
X b· +' b, b, (62) 

'1 , •• m 'Iml '2m.' 

l[tJIMIJI]Plml) I[v2M2J 2]P2m2) 

Also, 

= t * i~ N J f df.l(p) I [vMJ]pm, i1i2vD ) 

X b3(p - PI - P2)b(E - El - E2) 

X b(M - Ml - M2)bit+i •. mbilmA.m. 

= L N J I [V(MI + M2)J] (PI + P2 = 0), 
.r 

m1 + m2, m1m2vD)' (63) 

Since by Eqs. (48) and (43) 

I [vaMaJa]Pama) ... I [vnMnJn]Pnmn) 
00 J 

= L L L NJDf~(R) 
m;',k J~O m~-J 

X IT D~:'mlR) I [vMJ]pm, m;kVD), (64) 
i~a 

the S-matrix element can be written 

X ([vMJ]pm, m;kvD,I S I [v'M'J']p'm', m1m2vD), 

(65) 

where M' = Ml + M 2 , P' = PI + P2 = 0, m' = 
ml + m2' Now assume that the S matrix is invariant 
under arbitrary Galilean transformations. This allows 
one to write 

([vMJ]pm, m;kvDil S l[v'M'J']p'm', m1m2vD) 

= ba(p - p')b(E ...,.. E')b(M - M')bJJ,bm,ml+m. 

X ([vMJ]p = 0, m, m;kvDil 

X S I [vMJ]p = 0, m, m1m2vD). (66) 
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Then, 

! !!!N;NJ,Dtm(R)ir D~:~mlR) 
m(k J m J' i=3 

X 63(p - p')6(E - E')6(M - M')6JJ,6m.ml+m. 

x ([vMJ]p = 0, m, m;kvD,I 

x S I[vMJ]p = 0, m, m1m2vD) 

= ! ! N~Dt.ml+m.(R) 
mi',k J=ml+m2 

n 

X IT D~:~mlR)A(mi'.k,vDi,ml,m"VD)(1}' M, J), 
i=3 

where 

A(m;,.k.VDi,ml,m •. VlJ)(v, M, J) 

:= ([vMJ]p = 0, m1 + m2 , m;, k, VD,I 

(67) 

x S I [vMJ]p = 0, ml + m2 , m1m2vD)' (68) 

The v D, can be expressed in terms of Po as shown 
previously, and VD = [(Ml + M2)!M1M2]Pl· Let ft 
denote the set of v D in terms of Pij' Finally. the 
partial wave expansio~ becomes 

(3,4, ... , nl S 11,2) 
CJ) 

! ! N~Dt.ml+m.(R) 
J=ml+m2 m;'k 

where 3 refers to all labels associated with particle 3, 
etc. 

As indicated previously, the choice of R has no 
absolute physical significance. If one wishes to express 
the partial wave expansion in terms of another rota
tion R', such that R = RR', then the expansion 
becomes 

(3,4,··', nl S 11, 2) 

= ! ! N~Dt.ml+m.(R) 
J mi',k 

n * 
X IT D~:'mlR)A(mi',k'I',ml.m.,v/)(v, M, J) 

i=3 
2 J - , =! ! N JDk,ml+ffl.(RR ) 

J mi.k 

X fI D~:'·mlRR')A(m{'k'I',ml.m'.VlJ)(1), M, J) 
i=3 

= !! ! N~Dt.m,(R)D~'.ml+m.(R') 
J mi',k m',mi" 

=! ! N~D~'.ml+m.(R') fI D~::mi(R') ! D;'m.(R) 
J m',m/' i=3 k,m/ 

(70) 

where 

A( " ,. )(v M J) mi ,m ,P,'I?'tbm2,VD ' , 

n 
- '" J - IT J,* -- k Dkm,{R) Dmi'mi"(R)A(ml,k,I',m,,m.,vlJ)(v, M,J). 

k,m/ i=3 

(71) 
VI. CONCLUSION 

In this paper the Clebsch-Gordan coefficients that 
relate the n-fold tensor product of free-particle states 
to an over-all state have been. calculated. Also, the 
continuous degeneracy parameters and the rotation 
that appears in the Clebsch-Gordan coefficients have 
been expressed in terms of invariants i:onstructed from 
the momenta of the particles. Although the degeneracy 
parameters and the rotation constructed this way have 
no absolute significance in the sense that many other 
choices are possible, it is felt that the choice made here 
recommends itself through its easy identification with 
the momenta of the sytem. 

Finally, the Clebsch-Gordan reduction has been 
applied to a scattering problem involving an arbitrary 
number of final particles. Using the assumption that 
the S matrix is a Galilean scalar, the maximum reduc
tion of the scattering matrix allowed by Galilean in
variance has been made. The quantities 

contain the dynamics of the system and must be 
specified by experiment or a dynamical theory. It can 
be seen that the reduction derived here implies a clear 
distinction between quantities that can be specified on 
the basis of invariance under arbitrary Galilean trans
formations and quantities that must be determined by 
a particular dynamical model or experiment. It is to be 
noted that, because of the mass supers election rule, 
mass must be conserved in a multiparticle reaction. 
If mass differences caused by binding energy are 
neglected, the mass superselection rule follows from 
baryon number conservation, at least in the domain 
of low-energy nuclear physics. It is in this domain that 
the partial wave analysis [Eq. (67)] is relevant. 
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The symmetry properties of the nonrelativistic Coulomb field problem allow one to construct an 
operator calculus for evaluating matrix elements of the multipole operator r-O. By means of this operator 
calculus an explanation is given for the vanishing of certain radial integrals treated earlier by Pasternack 
and Sternheimer,as well as for the value of similar integrals occurring in Coulomb excitation. 

I. INTRODUCTION 

The 0(4) symmetry of the hydrogen atom has been 
of great interest as a model for high energy physics 
and the relevant literature is now quite large. l A 
knowledge of the dynamical symmetries of this 
quantum-mechanical problem, for which the exact 
solutions are known, has been of considerable 
importance in understanding the appearance of these 
symmetries in particle physics where the equations 
are not known. 

It has been shown by Pasternack and Sternheimer2 
using direct evaluation that the following radial 
integrals vanish: 

FN1+L - Fmr2 dr == (I + LI-I/) i
oo 1 1 

o r'l r" 

= 0, for 2::; q ::; L + 1. 

(1) 

Here Fm(r) is a nonrelativistic bound-state radial 
wavefunction of the hydrogen atom, normalized as 
usual: 

1 
(I + LI-Il) = 1, when L = ° = q. (2) 

r'l 

It is the purpose of this note to point out that there is 
a physical interpretation of this result related to the 
0(4) symmetry of the Coulomb field; in particular, 
the Pasternack-Sternheimer results are particular 
matrix elements of operator identities which are 
abstractly valid in general. The existence of this opera
tor calculus is a direct consequence of the 0(4) 
symmetry. Our results allow of generalization to radial 
integrals wherein continuum functions Fill are used: 

(1 + LI ~lll) 
r 

= 2
L

kf {r(L)}21 r(l + 1 + if}) I. (3) 
r(2L) r(l + 1 + L + i'Y}) 

To understand these results most easily, it is con
venient to work in the framework of a Pauli spin-t 
particle in a Coulomb field. While this nonrelativistic 
spin (NRS) system has been elaborated elsewhere,3 
we shall briefly note down some of the key results 
needed for our operator derivation of the above equa
tions. The spherical spinors (spin-angle functions), 
describing the motion of a Pauli spin-t particle in a 
nonrelativistic Coulomb field, are defined as 

X~ = L, C(/(x), t,j; f-t - 7, f-t)Y~(;;;)X!, (4) 
r 

and these satisfy the following equations: 

(0' L + I)X~ == Kl = -XX:, (Sa) 

o· iX~ = -X~"" 
(0' i)2 = 1, 

(X~:, X~) = ~"'''''~JlJl'' 
Introducing the radial momentum operator 

PT = Hi . p + p • r) +--+ - i (:r +;), 
[r,PT] = i, 

we write the nonrelativistic Hamiltonian as 

p2 Cl.Z 
H=---

2m r 

= p; + (Ki - Kl ) Cl.Z 

2m 2mr2 r 

(5b) 

(5c) 

(6a) 

(6b) 

(7) 

(8) 

Here CI. is the Sommerfeld fine-structure constant and 
we choose Ii = c = 1. We readily notice 

PT = i-l[r, mH]; [Kl' H] = O. (9) 

The functions X~F NJ = '¥ N"Jl are the bound-state 
eigenfunctions. 

1165 
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II. BOUND STATES 

The vector-invariant characteristic of the 0(4) 
group, to which the nonrelativistic Coulomb field 
belongs, is the Runge-Lenz-Pauli vector .,t.3 Since 
the radial matrix elements discussed here pertain to a 
particular subspace of the Hilbert space corresponding 
to the principal quantum number N, we shall choose 
the invariant pseudo scalar "Coulomb helicity opera
tor" as 

a • .,t = k-,;2a • r(ct.zm + iPrKI - r-1Ki). (10) 

As discussed elsewhere,3 it can be shown that 

a • .,t\FN",1' = -ik;IA",qrN_xl" 

where we define 

qrN-x/l = FNI-JJ(iX':...x), 
A", :s I(N2 _ x2)il, 

kb = (f.zm/N. 

(11) 

(12) 

As a preliminary to understanding the Pasternack
Sternheimer result, we shall give some important 
operator relationships. A good number of other 
relations have also been of use, but we do not enumer
ate them here either because they are too obvious or 
they can easily be built from a·.,t, a· i, z· a X L, 
and K1 . With the help of the quantum condition 
[r,Pr] = i, the following are established by direct 
operator manipulation: 

[,-11, Prj = qr-(HO, q = integer, (13) 

r- l1p. = [2(q - 1)]-I[(3r-(H)] + q(2r l1+1)-1, 

q ~ 1, (14) 
where we have defined 

(3 :s 2mH (14') 
and 

[a • .,t, r- Il ] = qk;2K1a • ir-(H11, (15) 

Hr- l1 [r, t(3], (3] + iq[r-(q+l), (3] 

= qr-(q+1)(3 + oczm(2q + 1)r-(q+2) 

+ (q + 1){iq(q + 2) + (KI - K~)}r-(q+3). (16) 

It is interesting to note that, by taking the expectation 
value of both sides of Eq. (16) with respect to the 
basis qr N",I" one gets the recursion relation 

q(l + ! + tq)(l + t - tq) (1/ r-(H2) 11) 

= oczm(2q - 1) (1/ ,-(HI) /1) - k;(q - 1) (1/ r-<l/I), 

q = integer or O. (17) 

This was also shown by Pasternack4 by a direct 
evaluation of the radial integrals. The invariant 
operator KI anticommutes with a . i and a • .,t. Using 

this property, we easily establish the following opera
tor equations: 

[a. i, (3] = 2K1a • rr-2, (I 8) 

a • r[2(q - 1)]-1[(3, a • ir-(q-I)] 

= r-qiPr + (Kl(q - lr1 - tq)r-(H1), q ~ 1, 

(19) 
[a. ir-(q-l)ipr> (3] 

+ [q(q - 1) + 2Kd(2q)-I[a. ir-fl , (3] 

= a • r[2(q - l)r- ll(3 + 2(f.zm(2q - l)r-(I1+1) 

+ (2q)-I(q2 _ 1)(q2 - 4KDr-{a+2)]. (20) 

Taking the matrix element (qr N -'" I' [Eq. (20)] qr N",I') , 

we obtain the following recursion relation which plays 
an important role in the rest of our paper: 

q(q - 2)(1 + t + tq)(1 + t - tq) (I + 11 r-(a+1) II) 

- ct.zm(q - 1)(2q - 3) (l + 11 r-q II) 

+ k:(q - 2)(q - 1) (I + 11 r-(a-l) II) = 0, 

q = positive integer or O. (21) 

The angular operator z • 0 x L == no changes x to 
-x - 1 without affecting the radial part of the 
function qr N",I" and it commutes with Hand anti
commutes with (2K1 - 1). As has been shown else
where,3 the operators o • .,tno and noo . .,t raise or 
lower the I value (more precisely the x value) of the 
wavefunctions 'Y N",I" respectively, whereas the angular 
operators o· ino and .000 • i preserve the I value of 
the radial functions while changing x to x + 1 and 
x-I, respectively. An alternative derivation of the 
Pasternack-Sternheimer result, using certain recursion 
relations between the radial function and a few other 
interesting numerical relationships between expecta
tion values,etc., will be discussed in the Appendices A 
and B. 

We shall now proceed with the proof for the 
vanishing of (I + 11,-21/). Consider the matrix 
element 

(qr N -",-2 1" (0 • .,tno)O(noo • i),-20 • .,t 'Y N x+1 1'). (22) 

If we take x positive, then it is easy to see3 that the 
above leads to 

[(1 + 2)(21 + 3)]tC(1 + t, 1, 1 + t; /1,0, /1) 
X AH1k;2 (I + 11 r-2 1/). (23) 

On the other hand, the operator 

00r-20 • fa • .,t 

= k;200r-2(ct.zm + iP.K1 - r-lK~) (24) 

= ,-20 , fo • .,tno + k-,;2(r-2iPr - ,-3)(1 - 2K1)Oo. 

(25) 
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where we make use of the commutation relations 
between no and K1 , r-q and ipr' By means of Eqs. 
(14), (14'), and (20), we see that 

r-2ipr - r-3 = H~, r-1], (26) 

a· ir-2 = (2IXzm)-1{[a' rip,,~] + [KIa' irt,~]) 

= (2IXzm)-1[Ha. i, ~), ~). (27) 

The operator under consideration, therefore, is 

G[~, ;J(1 - 2K1) 

+ 2Cl:m[ a· r(iPr - ~l), ~ Ja .~}Qo 
= {![~'!J(l - 2K1) + _1_ [Ha. i, ~], ~]a .~}Qo 

2 r 2IXzm 

reduces to 

wak~~ {2(q ~ 1)[~' :1I~~J(1 -K1) 
+ a • i(~ + Hq - 2] 

rll 

x [1 - q - 3 Kl - _2_ KiJ~)}Qo. (34) 
q-1 q-1 r ll+ 

When q = 3, the matrix element becomes 

Clzm (I + 21 r-3 11 + 1) 

- HI + 1)(1 + 3) (I + 21 r- 4 11 + 1), (34') 

which vanishes by virtue of Eq. (21). The operator 
in Eq. (34), for q = 3, finally becomes 

(28) 

of the form of a commutator with the Hamiltonian. w a ~~ {~[~, O';/J(1 - K1) + ~[a. i; iPr' ~ J 
Hence, the matrix element vanishes between states of 
the same energy and we have 

(I + 11 r-2 11) = O. 

We can now generalize this method by considering 
the operator 

this leads to the radial matrix element (I + 21 r- II II), 
when the matrix elements of the operator are computed 
in the same basis as before. Now let us consider 

Since no commutes with the Hamiltonian, we can 
factor out n~ by using the commutation relation 

and also 

a • io.oo.oa • i == w = n~ + 2Kl ; 
The operator can now be rewritten as 

(31) 

(32) 

(33) 

The procedure hereafter consists of the following 
general steps: We expand a· ia·Jt according to Eq. 
(10), take no to the extreme right, replace r-Qipr or 
a • rr-IIip, by appropriate commutators with the 
Hamiltonian [Eqs. (14) and (19), or equivalents], 
and reduce the operator, after picking out commuta
tors with H, to a sum of terms like (const) r-II • 

Following this general procedure, we see that by 
straightforward algebra the operator in Eq. (33) 

We notice that the system of operator terms is rather 
complicated; but each one is a commutator with the 
Hamiltonian and the matrix element vanishes. When 
q = 2, we have a more trivial case wherein the opera
tor degenerates into 

too '2~ {[~, a· iJ(l - K1) + [a· riPn ~] 
2kb r 

+ K{a;r , ~ J}Qo. (36) 

We thus see that (I + 21 r- II II) = 0, when q = 2, 3. 
We shall give, without detailed proof, the results for 
(I + 31 r-q II) = 0, when q = 2, 3, 4. This radial 
integral stems from the matrix element 

('Y N -",-21" (a ·Jto.O)2(0.00'· i)3r - qa .Jt'Y N ",+11')' 

(37) 

where 

w'O'.Jt IOqio.o, 
i 

and the Oil; are tabulated explicitly in Table 1. Before 
discussing the generalization of this, we shall derive 
similar results for the continuum states. 
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TABLE 1. The operators Oq,' 

q& Operator 

q 1 - [k:2(q - 1)]-'a· A [r (q-}) , I3JK, 
q 2 [k:2(q - 1)]-'a. A[r-(Q-'), 13](2K, - 1) 
q 3 - [kg2(q - 1)]-'[r-(q-1), I3J(2K1 - l)a· A 

q 4 - [k!2(q - 1)]-'[a • rr(q-})p .. 131(4K~ - 1) 
q 5 !k;;'[,-Qa. r, 131(4K: - 1) 

q 6 -[k:2q(q - l)j-'K,[rQa. r, 13](4K~ - 1) 
q 7 [k:2(q - 1)J-'[r(q-2)a· r, 131K,(oczm) 

q 8 (k:2q)-'[,-(q-})a. r, I3]K,(q - 2 + iqK, - K,) 
2 9 (K~ - 1)(6k:)-'[a. r,-lip,,131 
2 to (1 + K,)(K~ - 1)(12k:)-'[,-2a • r, 131 
2 11 (lXzmpk;;'[(2IXzm)-'a • r(ipr - Kr'), f3J 
2 12 (1 - K:)(3k:)-' [(2oczm)-'a • r(pr - r-'K,), 13113 
3 9 oczm(6k:)-1[a. rr'ip .. I3J 
3 10 oczm(12k:)-'(1 + K,)[r-2a· r, 131 
4 9 .'0(1 - KD[a. rr-3ip .. I3J 
4 10 1~0(1 - K~)(6 + K,)[r- 4a· r, 131 
4 11 /ooczm[a· rr- 2p., 131 
4 12 3looczm(3 + K,)[r-3a • ;., 13] 
4 13 --A-[a· rr'ip .. 13113 
4 14 -3'0(1 + K,Hr2a· t, f3JI3 
4 15 (1 Soczm)-' [a • ripr, I3JW 
4 16 (l5IXzm)-'K,[r'a. r, f31132 

3 11 -lXzm(3k:)-' [(2IXzm)-'a • r(ip, - r-'K,), f3113 

a The first eight operators are common to the three cases With appropriate 
value of q in each case. 

III. CONTINUUM STATES 

The radial part of the continuum solutions of the 
Hamiltonian is derived from the bound-state function 
by analytic continuation, characterized by the quan
tum number N going over into - irJ where rJ is any 
positive number, not necessarily an integer. The 
continuum functions are normalized such that 

fQF~IF~'lr2 dr = b(rJ - '1'). (38) 

Introducing the wavenumber kG = (J.zm/17 and appro
priately modifying the operator, we replace Eq. (11) 
by 

a ·A.o/~X/l = - !..Ix + i171 o/~-X/l 
kG 

i == - - A",'Y~-x/l' 
kG 

(39) 

It is important to note that, while the operator 
relationships derived in the earlier section are valid 
even here, some caution has to be exercised in taking 
matrix elements,since some of the radial integrals are 
likely to be singular.s 

To begin with, let us consider the matrix element 

('Y~ -X-2 /l' (a ·"tOo)O{ (000 • r)lr2a ."t 

- adj}o/" x+1/l)' (40) 

This matrix element is evaluated to be 

i.ftI+1[(l + 2)(21 + 3»)iC(l + t, 1, 1+ t;p"O,p,) 

X (Al+l (I + 11 1. II) 
kc r2 

= (const)(.ftl+l (l + 11.!..1l) 
kG r2 

- .ft1+2 (I + 21..!. It + 1». (42) 
kG r2 

Using the commutation relations specified earlier, we 
can show that 

0 00 • rr-20 • A. - a • A.r-20 • rOo 

= (r-2
0 ·1'0 .A. - a ·A.o· rr-2)Oo 

- k-;2(r-2iPr - r-3)(2K1 - 1)00 (43) 

(45) 

The matrix element, therefore, vanishes and we get 
the difference equation 

which has a solution 

1 k 
(l + 11211) = (const) c (47) 

r II + 1 + ir;1 

To evaluate (' + 21 y-3 11), we examme the matrix 
element 

(0/" -X-2 /l' (a .A.OO)l[(OOO. r)2,-30 .A. 

- adj)o/~ x+J 1'), 

which evaluates to 

On the other hand, the operator reduces to a com
mutator with the Hamiltonian, as the following brief 
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steps indicate: 

a • ,iHloQoa • iQoa • ir-3a • .A; 

- a • "tQoa • "tr-3a • iQoa • H2o (49) 

= wa ·"ta • H20a . rr-3a ."t 

- a • .A;Qo[Qoa ·.A;a • rr-3 + k-;2(2r-4 - r-3iPr) 

X .00(1 - 2Kl)]a • 1'.00 (50) 

= w{a ."t[r-3
, a ."t] 

+ k-;2a ."ta. i[2r-3 iPr - r-4(3 + 2Kl)J}.oO (51) 

= w2k-;2a ·.A;a • r[r-qiPr + HKl - 3),.-4]Qo (52) 

= 2k-;2wa ."t[(3, ,.-2a • i].oo. (53) 

In the above steps, Eqs. (16) and (19) have been used. 
The matrix element vanishes and we get, as before, 

1 k2 

f/ + 21-11) = (const) c 
\,.3 1/+1+inll / + 2 + inl 

We shall give, without proof, the result for 

(I + 31 1'-4 1/>. 

The matrix element 

('Y~ -X-2,,(a ·"t.oo)2[(Qoa. r)3r-4a."t 

(54) 

- adj}'Yq x+l ,,) (55) 
yields 

(const){Al+IJtl+2Jtl+3 (/ + 31 ~ II) 
k~ ,.4 

- AI+4A1
+3

A
l+2(1 + 411-11 + 1>}. (56) 

k! 1'4 

It can be shown that the operator is equal to 

(57) 

where the l')~/s are given in Table I I. 

TABLE n. The operators O~i' 

q Operator 

4 1 -k;2a. "tHy-s, ~lK, 
4 2 k;2a· "ti[r-3, ~](2K, - 1) 

4 3 k;2i-[r-3, j3]a' .A;(2K, + 1) 

4 4 (6k!)-'[a • rr-3ip" 13](1 - 4KD 
4 5 (4k~)-'[r-'a . J., ~](4K~ - 1) 

4 6 (24k!)-' [r-'a • r, j3](l - 4Ki) 
4 7 (6k;)-'K,a. "(;[r-3, ~J 

4 8 (6k~)-'(2K, - 3)a . .,(;[r3,~] 
4 9 (6k!)-'[a' ry-4ipr, (3](3 + 2K,)(2K, + 1) 

4 10 (24k!)-'(6 + K,)[r-4a· r, (3](3 + 2K,)(2K, + I) 
4 11 -3(4k!)-'[y-4a . r, (3](2K, + 3)(2K, + 1) 
4 12 (6k~)-'[a. IT3ip" ~](2K, + 1) 
4 13 (6k!)-'l(K, + 6)[r'a. r, ~](2K, + 1) 

Thus, we see that this combination of commutators 
with H renders the matrix element in Eq. (55) zero, 
and we evaluate as follows: 

k3 

= (const) c 

Il + 1 + inlll + 2 + inlll + 3 + inl 
(58) 

IV. DISCUSSION AND CONCLUSION 

The general result for bound states arises from the 
matrix element 

('YN --x- Z", (a ·"tQo)L-\.ooa. r)Lr-qa ·"t'YNx+l,,)' 

(59) 

and the parallel result for the continuum functions 
from the matrix element 

('Yq_
X

_ 2", (a ·"tQo)L-l 

X [(Qoa· i)Lr-qa'''(; - adj]'Yqx+l,,)' (60) 

The extreme complexity of the resolution of the 
appropriate operators into a sum of commutators 
with the Hamiltonian noticed in (I + 31 ,-q II), for 
bound as well as continuum states, shows that the 
general result would be too complicated to write down. 
However, it should be established in any particular 
case because the procedure is straightforward. For 
instance, we notice first that the invariant operator 
that multiplies the whole sum of commutators with 
Hamiltonian in the cases studied is seen to follow a 
systematic rule: 

When the operator 
in the second paren
thesis multiplying 
the invariant Q o is 

(a. it) 

(a. rQoa· 1') 

The operator multiplying 
the entire sum is 

1 = (a. it)(a . it) 

w == a • r.oo.ooa • I' 

= (a· rQoa • r)(a • rQoa . 1') 

Wi == a • rQowQoa • I' 

= [a· r(Qoa • r)2](adj) 

(61) 

Secondly, .00 happens to multiply the whole sum to 
the right. Thirdly, one of the important intermediate 
steps is to manipulate 

Qoa ·.,(;a • i,-q and a ·"ta • ir-qQo (62) 
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such that no can be moved to the right or left as 
required. And at the penultimate stage, one gets a 
linear combination of recursion relations mentioned 
in Eq. (21). 

The essential point to be noted in our demonstra
tion here is that the symmetry of the Coulomb field 
permits the construction of a variety of angular 
operators,6 the matrix elements of which lead to 
interesting relationships among radial integrals. This 
is also reflected in the continuum where the "I 
degeneracy" is infinite. It has been proved elsewhere5 

that the zero-energy-Ioss limit (which means confining 
oneself to the subspace of Hilbert space belonging to 
a particular principal quantum number) simplifies the 
radial integrals considerably. Symmetry helps in the 
most convenient, though not the most general, evalua
tion of such integrals. The existence of simple recur
sion relations for monopole matrix elements, an exact 
quantum mechanical result in closed form for the 
total radiation loss in dipole bremsstrahlung, are 
specific instances in point. Furthermore, relativistic 
analogs of the operators a . rOo and a ."t0o exist in 
the case of the "symmetric Hamiltonian." 2 Thus, the 
vanishing of the matrix element 

«a • "t0o)L-1( Ooa • r)Lr-<Ia ."t) 

ought to be expected even when the relativistic basis 
functions 'Y Nxp. are used (this is why we departed 
slightly from the notation of Ref. 3 when referring 
to nonrelativistic spinors I Nx,u». 
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APPENDIX A 

An alternative step-by-step derivation of the 
Pasternack-Sternheimer result is given here. This 
procedure exploits certain contiguous relations be
tween radial functions F m and an initial recurrence 
relation between matrix elements, which is established 
with the help of Eqs. (10) and (14) as follows: 

F - -(I + 2)A!+! F 
N!+2 - (I + 1)A!+2 N! 

+ (N(1 + 2)(21 + 3) ! 
",zmA!+2 r 

N(21 + 3»)F (AI) 
- (I + 1)A!+2 N!+I' 

F - _ (I + L)AI+L-l F 
N!+L - (l + L _ l)A

I
+

L 
NI+L-2 

+ (N(l + L)(21 + 2L - 1) 1 

"'zmAZ+L r 

_ N(21 + 2L - 1))F 
(l + L _ 1)A!+L N!+L-1' (A2) 

(I + II..!.. II) 
r<I 

= -..!i. (l + 1)((1 + 1 - iql-l \ _ ~/!. \). 
",zm AI+! \rH1/ 1 + 1 \r<1/ ' 

and this leads to 
(A3) 

<1+1 
(I + LI r-<I II) = Ie<Ii(r-<1H-i), 

i=l 

(rS) == (Nlml rS INlm) == (II r' II). (A4) 

The expectation values on the right-hand side can be 
handled via Eq. (17). The values of the coefficients 
eqi for the cases studied here are listed below: 

ell = _ ..!!.-, e
12 

= N(l + 1)(/ + 1 - !q) , 
A!+! o:zmA!+1 

e _ N 2 + (l + 1)(/ + 2) 
21 - , 

Al+1A!+2 

e
22 

= _ N 2(21 + 3)(21 + 3 - iq) , 
"'zmAz+1A!+2 

e _ N 2(1 + 1)(l + 2)(21 + 3)(1 + t - iq) 
23 - 2 ' 

(o:zm) Al+1Al+2 

1 e31 = - ----
A I+1A l+2A I+3 

1 e32 =------
o:zmAI+1A!+2A I+3 

X {9N3(l + 2)2 + 3N(l + 1)(1 + 2)2(1 + 3) 

- iq[3N3(1 + 2) + N(l + 1)(1 + 2)(1 + 3)]}, 

C
33 

= _ N 3
(l + 2)(21 + ;)(21 + 5)(31 + 4 - q) , 

(o:zm) AI+1AI+2A!+3 

e _ N 3(l + 1)(/ + 2)(1 + 3)(21 + 3)(21 + 5)(1- tq) 
34 - (",zm)3A!+1A !+2A !+3 . 

Combining Eqs. (AI)-(A4), one can build the 
Pasternack-Sternheimer result for any higher case 
starting from the lowest result (I + 11,-211) = 0, 
because,as one goes to higher values of q,one can take 
advantage of all the earlier vanishing results. 
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APPENDIX B 

A number of numerical relationships (for bound states) are listed here since they can be useful in practical 
applications; it is to be noted, however, that each relation has to be applied with caution only within 
its region of validity, since the existence of the angular-momentum quantum number I in the denominator 
makes certain matrix elements singular: 

11 \ 1 kb <1\ \;:;;1 == (11;:;; 11) = 1 + t ;j' 

/!. \ _ (am I! \ 
\r31 - 1(1 + 1) \r2j' 

11\ _ k! {3N
2 

- 1(1 + 1)}/1 \ 
\~I - rxzm 2(1 - t)(1 + t) \-;aj' 

I! \ _ rxzm 5N
2 

- 31
2 

- 31 + 1 I! \ 
\r51 -. [3N 2 

- 1(1 + 1)](1 + 2)(1 - 1) \r4j' 

I~ \ = ~(35N4 - 5N
2
(612 + 61- 5) + 3(1- 1)(1)(1 + 1)(1 + 2»)/~ \ 

\r61 4rxzm (5N 2 
- 312 

- 31 + 1)(1 - t)(l + t) \r5j' 

(I + 11 - 11) = _b 
1 e (N - 1 - 1)! 
r rxzm N + 1 + 1 

= (1 + t)(l + 1 - N>(;2). 
1 1! 11) _ k bAl+l I!) 
( + I r3 - (l + 1)(21 + 3) \r2 

-~A (_I_)/~\ 
- rxzm 1+1 21 + 3 \r3j' 

(I + 11 ~ 11) = 2rxzm <I + 11 ~ 11) 
r 1(1 + 2) r 

_ ~.it; (21 - 1) 1 I! \ 
- kb 1+1 1 + 2 [3N 2 

- 1(1 + 1)] \r4j' 

<1 + 11! 11) = ~( k! ) (5N
2 

- 1(1 + 2) )<1 + 11.!. 11). 
r5 2 rxzm (21 - 1)(21 + 5) r4 
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Effective Permittivity of a Poly crystalline Dielectric 
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We use statistical variational principles to determine upper and lower bounds for the effective per
mittivity of a polycrystalline dielectric. We indicate how to derive bounds containing permittivity correla
tion functions of arbitrary order, and we obtain explicit expressions for bounds depending on one- and 
two-point correlation functions and for bounds containing one-, two-, and three-point correlation func
tions. We prove that for two classes of polycrystal, the effective permittivity may be exactly determined, 
and we use these exact expressions to show that we have obtained the best possible upper and lower 
bounds. 

1. INTRODUCTION 

In this paper we treat a polycrystalline dielectric as 
a statistically homogeneous and isotropic random 
medium. By this we mean that the permittivity tensor 
Etlx) of the polycrystal is characterized by the se
quence of correlation functions 

C ilh . "iniJxl' •.. ,xn) = (Eilh(xl)' .. Einin(xn)' 

11 = 1,2, ... , in ,jn = 1,2,3, (1) 

where brackets denote ensemble average and 

C ilil .. · inin(Xl + y, ... , Xn + y) 

= Cilil"'inin(Xl"", Xn) 

because of homogeneity. The electric field Ej(x) and 
displacement vector Dj(x) in the medium satisfy 

div D = 0, (2) 

curl E = 0, (3) 

(4) 

and, as we shall show, are uniquely determined from 
these equations once the average field in the medium 
(Ej ) is prescribed. To describe completely the electric 
field in a statistical sense we must, of course, find all 
the correlation functions 

(5) 
and 

(Eil(Xl)' .. Eim(xm)Eim+lim+1 

X (xm+1)' .. Eim+nim+n(xm+J). (6) 

This task is extremely difficult since the governing 
equations are nonlinell-r in stochastic variables. It is 
convenient, therefore, to consider a greatly reduced 
statistical description in which only the relationship 
between the prescribed average electric field and the 
average displacement field is sought. It may be shown 
that for a statistically homogeneous and isotropic 

medium this relationship must be of the form 

(Dj ) = Eeff(Ei ), (7) 

where Eeff' the effective permittivity of the medium, is 
a constant whose value depends on the correlation 
functions given in (I). An exact determination of the 
effective permittivity still requires the solution of an 
infinite set of coupled partial differential equations. 
Thus, it is important from a practical point of view to 
obtain bounds on this quantity. It is desirable, in fact, 
to have a sequence of bounds depending on succes
sively higher-order correlation functions, since it is 
reasonable to assume that the bounds will become 
increasingly accurate as more statistical information is 
included in them. In the following sections, we show 
that bounds of the type described may be readily 
determined by the use of suitable statistical variational 
principles. We also obtain two exact expressions for 
the effective permittivity for special classes of poly
crystal and are able to demonstrate that the bounds we 
have derived, containing three-point correlations, are 
the best possible bounds. 

2. STATISTICAL VARIATIONAL PRINCIPLES 

We separate the average and fluctuating parts of the 
electric field and permittivity tensor and write 

E;(x) = (Ei) + E;(x), Ei;CX) = (Ejj) + </x), 

where the bracketed quantities are constants because 
of homogeneity. We can then write (2), (3), and (4) 
in the form 

(Eii) oE; + (E j) OE;j + OE;iE; = 0, (8) 
oXi OXi oXi 

oE~ 
(ji'k - = 0, (9) ax, 

where (j;jk is the alternating tensor of Levi-Civita and 
sums are carried out over repeated indices. In media 
where <,(x) is not continuously differentiable in each 

1172 
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ensemble member (e.g., media composed ofrandomly 
oriented crystals), we can interpret the derivatives 
appearing in (8) and (9) in the mean-square senseI 
since we ultimately conceive of these equations as 
arising from the variational principles to be proved 
in this section. Alternately, we can first consider a 
fictitious ensemble in which the discontinuities have 
been smoothed, then use a limiting process to arrive 
at results for the actual ensemble. In either case, the 
validity of our final results depends on the behavior of 
the various permittivity correlation functions, and we 
will always assume that these functions are sufficiently 
smooth and well behaved for our formal manipula
tions to be valid. It can be shown that, for a statistically 
homogeneous medium, (8) and (9) determine the 
electric field uniquely if the average field is prescribed. 
Indeed, suppose there are two solutions E?)(x) and 
E~2)(X), each with the same average value (Ei). The 
difference of these solutions !J.Ei = E?)(x) -E?)(x) 
must have zero average, vanishing curl, and satisfy 

oE;;!J.Ei = 0. 
oXi 

(10) 

Since curl !J.E = 0, !J.E = V1p for some scalar function 
1p. Consider the correlation function 

Ti(r) = (Eii(X)!J.Ej(x)1p(x + r). 

Since Ti(-r) = (Eij(X + r)!J.Ej(x + r)1p(x», we find 
using (10) that 

oli(r) _ / ()AE ( )o1p(x + r)\ 
- \Eij x Ll i X / 

ori oXi 

oli( -r) 

ori 

/ ( ) OEij!J.ElX + r)\ ° 
= -\ 1p x OX

i 
/ = . (11) 

This relation, evaluated at r = 0, shows that 

and therefore, since Eij is a positive-definite tensor, 
that !J.Ei = ° almost everywhere. 

We shall now formulate the two standard extremum 
principles of classical electrostatics as statistical 
variational principles. In doing so, we make use of the 
fact that, for a statistically homogeneous medium, 
the average value of any quantity is a constant. 
Therefore, average values can be considered as 
functionals. In particular, the average energy of a 
polycrystal may be considered either as a functional 
of the electric field or the displacement field. 

Let us define the functional 

(12) 

for all mean-square differentiable, statistically homo
geneous, stochastic (DRS) vector fields A = (AI' 
A 2 , A 3) which are defined on the polycrystalline 
medium and which satisfy the conditions 

curl A = 0, 

(13) 

(14) 

and are such that the stochastic process (A~l) ,A!2) , €ij)' 
where A!k) are any two A fields, is also statistically 
homogeneous. (In the future we shall assume that all 
correlations that arise are translation invariant and 
shall not mention conditions like this explicitly.) Then 
J[A] is an absolute minimum when A also satisfies 

(15) 

i.e., when A is the electric field E(x) in the poly
crystalline medium. To prove this statement,let Ai(x) = 
Ei{X) + a,eX), where a(x) has zero average and vanish
ing curl. Then 

J[E + a] = J[E] + J[a] + 2(EijEiaj ). (16) 

Since curl a = 0, we have a = -grad q; and we can 
write the last term in (16) as 

/ oq; \ 
(€iiEiai) = -\EijEi ox/ = 0, (17) 

where this follows by manipulations similar to those 
used in obtaining (11). Noting thatJ[a] ~ 0, we have 

J[E + a] ~ J[E], (18) 

where equality holds if and only if a vanishes almost 
everywhere. 

We will assume now and throughout the remainder 
of the paper that the principal permittivities E,(X) , 
i = I, 2, 3, satisfy the inequalities 

° < ~ == min inf Ei(X) ~ max sup E;(x) == € < CXJ, 
i x i x 

where ~ and € are taken to be constants, i.e., the same 
for each ensemble member. In this case, we can define 
the tensor f)ii(X) by the equation 

0ik(X)Eki(x) = €ik(X)Oklx) = (jii' (19) 

where fJ ii is the Kronecker fJ function. Let the func
tional 

(20) 

be defined for all DRS vector fields which are defined 
on the polycrystalline .medium and which satisfy the 
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conditions 
(Bi ) = (D i ), 

div B = 0. 

(21) 

(22) 

Then I[B] is an absolute minimum when B also satis
fies 

(23) 

i.e., when B is the displacement field Di(X) in the 
polycrystal. The proof of this principle is quite similar 
to the first. We let B = D + b, where (b) and div b = 
0. Then 

I[D + b) = I[D] + /[b] + 2(OiADj ), (24) 

and we can show that the last term on the right 
vanishes since b can be represented as the curl of 
another vector. 

Using the fact that J and I take their minimum 
values, when evaluated for the actual electric and 
displacement fields, it may be shown that 

It is immediately obvious that any nonzero A' and B' 
give better bounds than (28). 

In the next section, we use (27) to find bounds on 
Eeff which involve one-, two-, and three-point corre
lation functions. To obtain a set of bounds involving 
only one- and two-point correlations it is necessary 
to derive another statistical variational principle which 
is closely related to the classical ones on which (27) is 
based, and is a generalization of a principle obtained 
by Hashin and Shtrikman.2 We have already noted 
that (EijE;Ej) = (EijEj)(Ei)' Ifwe let oc be an arbitrary 
positive constant and we add and subtract oc(E;Ei) 
from the right-hand side of this equation, we obtain 
the identity 

where Ci == (Eij - OCbii)Ej . If we restrict oc so that it 
satisfies one of the inequalities 

oc < min inf E;(X) or oc > max sup E;(X), 
x i x 

(25) we can define the stochastic tensor f3;j(x, oc) by 

Equation (25) together with (7) and the results ob
tained above show that the effective permittivity 
satisfies 

{/[B]}-1(D)2:::;; Eeff:::;; {(E)2}-lJ[A], (26) 

where A is any trial field satisfying (13) and (14), and 
B is any trial field satisfying (21) and (22). 

Let us now rewrite (26) in a form more convenient 
for our future work. For a fixed A;(x) satisfying 
(A;) = 0, curl A' = 0, we let Ai(X) = (Ei) + AA;(x) 
and find the value of A which makes 4>(A) = J[A] a 
minimum value. Using a similar procedure for I[B], 
we find that 

(D)2{I[(D)] - [I[B'W1[(Di )(O;jBj)n-1 

:::;; Eel! 
:::;; {(E)2}-1{J[(E)] - [J[A'Jr1[(Ei)«iA j)]2} (27) 

for arbitrary A' and B' satisfying (A') = (B') = 0, 
curl A' = 0, and div B' = ° CO;j is the fluctuating 
part ofO;i)' Since, by statistical isotropy, (Oij) = (O)b;j 
and (Eij) = (E)Oi) where «() and (E) are constants, 
(27), evaluated for A' = B' = 0, gives immediately 
the well-known bounds 

(D)2{I[ (D»}-l = (0) < Eeff < {(E)2}-lJ[ (E) 1 = (E). 

(28) 

For a poly crystal composed of randomly oriented 
crystals all having the same principle permittivities 
E1' E2, E3; (E) = HEI + E2 + E3) and 

(0) = iCEll + E;l + Ea
1
). 

(30) 

and since !3ijCj = E;, we see that the second term on 
the right-hand side of (29) is identically equal to 
(!3;jC;Cj) - (C;E;). The correlation (C;E;) can be 
expressed in terms of C; only. In fact, from the defi
nition of C; it follows that 

V·C=-ocV.E', 

and since curl E' vanishes, 

E'='il1p'. 

From (31) and (32) we find 

(31) 

(32) 

E;(x) = -oc-1f aG(x, ~) aCt (~) d~, (33) 
ax; a~i 

where G(x, ~) = -(47T Ix - W-1 and the integral is 
interpreted to mean that 

(E;(x)f'(y» = -oc-1I aG(x, ~) / f'(y) aC j (;) \ d; 
oXi \ O;j / 

for all sufficiently well-behaved stochastic fields 
f'(y). Multiplying (33) by C;(x) and averaging, we 
obtain 

(CiE~) = _oc-1 I aG~:: ~) (C;(X) ~~i (~» d~ 

I 
a2 

= _oc-1 G(x, n -- (Clx)C;(~» d~ 
a~ia~j 

== -oc-I .1lCi , C;l. (34) 
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We have now succeeded in expressing (E#E;Ei) as and, therefore, 
the functional 

(EiiEiEj) = arC] == IX(E)2 + (P;iCiCi) 
+ IX-I.'F [Ci , Cj ]. (35) 

Let us consider arC] as a functional defined for all 
DHS vector fields which are defined on the poly
crystalline medium and which satisfy the condition 

(Ci ) = (D i ) - IX(Ei ) = (Eetf - IX)(Ei)' (36) 

Thena[C] has anextremumforCi = (Eij - IX(j)Ej == 
Ci • This extremum is an absolute minimum for Pil' 
positive definite, and an absolute maximum for 
Pij + IX-I(jil' negative definite. To prove this, we let 
Ci = Ci + C; where C; has zero average. Then 

arC + C'] = arC] + 2(EiC~) + 2IX-I.'F[C;, CI] 

+ IX-I.'F[C;, C;] + (PiiC;C;), (37) 

where statistical homogeneity has been invoked to 
equate .'F[C;, CI] and .'F[Ci , C;]. Since div C = 
-IX div E and E = grad "P, 

IX-I.'F[C;, Ci ] = -.'F[C;Ej] 

= - fG(X 1:) ~ / C'(x) 8"P (t)\ 
,<;- 8$i8$ 1 \ i 8$ 1 <;- / 

= -f 8
2
G(x, $) / C;Cx) 8"P ($)\ 
a$ia~ i \ a~i / 

= -(C~E;). (38) 

Employing Bochner's theorem,l we write 

(39) 

Then, changing variables of integration in (34) from 
~ to r = ~ - x, we can write .'F[C;, C;] in the form 

.'F[C;, C;] = - f G(,rl)[f <I>(IKl)eiK'r dKJ dr 

= 47T ioo<I>(lKI) d IKI, (40) 

where <I>(IKi) == <I>ii(K)KiKI' and <I>(lKi) > ° for all 
K ;I: ° by well-known properties of the tensor <I>i;(K). 
Hence, .'F [C; , en is nonnegative, and 

arc + C'] = arC] + (piJC;C;) + IX-I.'F[C;, C;] 

~ arC] (41) 

for Pi} positive definite. To demonstrate the remainder 
of our assertion, we note that by (39) and (40) 

(C;CD - .'F[C;C;] 

= 47T i oo
[lK I2 <I>ii(K) - KiK/l>iiK)] d IKI ~ 0, (42) 

arC + C'] = arC] + «Pii + IX-I(jii)C;C;) 

- IX-I{(C;C;) - .'F[C;C;n 

~ arC] (43) 

for Pii + IX-I(jil' negative definite. For fixed C; with 
(e;) = 0, let us consider the function of the real 
variable A, defined by 

'F(A; IX) = a[(Eeft - IX)(Ei) + AC;] 

= {(PiiC;C;) + IX-1.'F[C:C;]}A2 

+ 2A{ (EeU - IX)(E;)(PijC;)} 

+ {IX(E)2 + (P)(Eefl - IX)2(E/}, (44) 

where (P)(ji} = (Pii)' It follows, from the above con
siderations that at the value .1.0, defined by 'F' (.1.0; IX) = 
0, 'F will have a minimum when Pii is positive definite 
and a maximum when Pii + IX-I(jij is negative definite. 
Computing .1.0 and using the fact that 

(t[(Eil - IX(j;I)EI ] = Eetf(E)2, 

we find 

where 

'Fo(C;; IX) 

= IX(E)2 + (Eell - IX)2{(P)(E)2 

- [(PiIC;C;) + IX-I.'F[C;C;n-I[(Ei)(PijC;)]2}, (46) 

and lXI' IX2 are any values of IX satisfying the inequalities 

IXI < min inf E;(x), max sup E;(X) < IX2' 
i=1,2,3 x i=1,2,3 x 

Letting e; == 0 and taking the limits IXI --+ 0, IX2 --+ 00, 

we recover the bounds given by (28). Also, for fixed 
IXI and IX2' it is clear that 'F o( e; ; IXI) ~ 'F 0(0; IXI) and 
'Y 0(0; IX2) ~ 'F o( e;; IX2) so that any nonzero C; will 
give better bounds than (28). 

3. BOUNDS ON THE EFFECTIVE 
PERMITTIVITY 

We shall use a procedure similar to that developed 
by Beran3 and Beran and Molyneux4 to obtain bounds 
on Eetf which depend on two- and three-point corre
lation functions of the permittivity tensor. We select 
trial functions A' and B' satisfying 

(47) 

and 
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Equations (47) and (48) will be recognized as the 
first-order perturbation approximations to the actual 
problem (8) and (9). The bounds derived from them 
should, therefore, be quite accurate in the limit of 
small fluctuations. Indeed, it is shown that they coincide 
to the second order in small quantities and give the 
perturbation result for eetf derived in Molyneux.s We 
solve (47) and (48) by reducing them both to Poisson's 
equation (since curl A' = 0, A' = grad </>, and since 
div B' = 0, B' = curl C', where div C' = 0). The 
solutions are found to be 

A~( ) = -( )-l(E .)I oG(x, ~) o€~;(~) d~ (49) 
, x e, ) ox; o~k 

and 

B;(x) = -(O)-l(Dk )O:k(X) 

+ ~ (O>-l(Dk>JG(X, ~)O~'k($) d~, (50) 
oxiox m 

where G(x,~) = - (47T Ix - ~\)-1 and the integrals 
must be interpreted in the sense discussed after (33). 
We shall now use (49) and (50) to find the various 
moments which appear in the expressions for the 
upper and lower bounds on €etf . 

To compute the upper bound, we first multiply 
(49) by (E)E[j(x) and average. This gives 

(Ei)(€;jA;) 

- ()-l(E )(E )J oG(x, ~) / , ( ) oe:nk($) \ d t 
- - e i k oX j \€ii x o~m / " 

= -(e)-\Ei)(Ek) G(lr!) -- Ciimir) dr, (51) I 
02 

orjor m 

where Ciimk(r) == «/x)e~k(x + r», and we have 
changed variables of integration from ~ to r = ~ - x. 
Since CWel is a fourth-order isotropic tensor and satis
fies the symmetry conditions COkl(r) = Cjikl(r) = 
Ciilk(r) = Cklii( -r), it must have the form6 

CijkZ(r) = R1rirjrkrZ + R2(rir/)kZ + rkr/)ij) 

+ R3(riri)jl + rir/5 jk + rjrk6a + rjrl6ik) 

+ R46ij6kZ + R5(6i!6 jk + 6ik6jl), (52) 

where the Rn, n = 1,2, ... , 5, are functions of Irl2 
only. Substituting (52) into (51), we find that 

(E;)(e;jAj) = -(e)-\E)2[t(€;je;j) + K], (53) 

where 

K = -i LX) P[P2Rl(P) + 2Rz(p) + 5R3(P)] dp. 

The principal step in obtaining (53) involves the 
following result: If Til'" i2n (r) is any suitably weII-

behaved isotropic tensor, then 

I
G(lr!) 02T;" .. j·'·k···i2n(r) dr 

orjork 

= !T;""k"-k-"i2n(O) 

+ (47T)-lJlrl-3 TI jk(r)T;1 ... j"'k"'i2n(r) dr, (54) 

where TIjir) = [6 jk - 3 Irl-2 rh]. Furthermore, the 
last triple integral on the right-hand side of (54) can 
always be reduced to a single integral of a suitable 
scalar function of p = Irl. The proof of this result is 
quite straightforward and is included in the Appendix. 
Equation (53) follows directly from (54) if we note 
that 

Cijjk(O) = 3-16ikCmiim(0) = 3-1(e:nie~m)6ik' 

(47TrlJlrl-3 TIim(r)Ciimir) dr 

and that 

= (127T)-16ikflrl-3 TIjm(r)Cqimk) dr, 

TIim(r)Cqimq = -21r12 [lrl2 R1 + 2R2 + 5R 3 ]. 

Next, we multiply (49) by itself and obtain 

(€>(A~A~> = (eF1(Ei>(Ek> If G(x, ~)C(x, 17) 

X /a2<l~) a2€~m(17)\ # d'fj. (55) 

\ O~ia~l o17017m / 

Changing variables of integration from ~, 17 to r = 
17 - ~, s = ~, we find after some manipulation that 

(e)(A;A;) = (€)-l(Ei)(Ek)fC(lrl) ~ Cjmkn(r) dr 
ormorn 

= -(Ei)(e;jAj). (56) 

To find the remaining quantity necessary for computa
tion of the upper bound, we multiply (49) by €.!j(x)A;(x) 
and average. This gives, after a change of variables of 
integration, 

«jA;A j) 

= (€)-Z(Ek)(Ez)ffc(/rI)G(/sl) 3
4 

Diikm1n(r, s) dr ds, 
orior mOSjosn 

(57) 
where 

Diikmln(r, s) == (e;;(x)€~m(x + r)€;n(x + s». 
We can rewrite (57) in a slightly more convenient form 
if we make use of (54). Indeed, if we let 

T.. (r) = fG(/SI) 0
2 

Dijkmln(r, s) ds 
'kml ::l ::l ' VSjVS n 
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then (54) applies directly. The term Tmkmt(O) can be 
evaluated by a second use of (54), while the integrated 
term can be simplified by applying an obvious 
generalization of (54) to TikmtCr). These manipulations 
give 

«jA~A;) = (E)-2(E)2[2\(E~jE~kE~m) + L], (58) 

where 

L = t LXl lrr1 [l5im - 3 Irr2 rir m]Dpiapam(O, r) d Irl 

+ ~ fIlrrslsrs [I5,m - 31rr
2 

rirm] 
487T 

X [l5 in - 3 Isl-2 SjSn] DiiqmQn(r, s) dr ds. 

The moments appearing in the lower bound are 
calculated in a similar fashion. If we let 

F~(x) = - [B;(x) + (O)-1(Dk)o:lx)] , 

then (50) shows that F: is given by an expression of 
exactly the same form as A; . Thus, from (53) we can 
read directly the value of (Di ) (O:iF;). Solving for 
(Di)(O:;B;>, we obtain 

(Di)(O;;B~) = (O)-1(D)2[ -t(O;/J~i) + P], (59) 

where 

P = t 1'''lrl-1 [15;m - 31rr2 r;rm]Miaam(r) d Irl, 

and the tensor Mijkl(r) == (O;j(x)()~tCx + r» has the 
same form as CiJkl(r) [see (34)]. From (56) we see that 

Finally, using (58), we can find the value of 

(O:iFW;) = (O:iB;B;) + 2«()-1(Dk)(O:iO:kB~) 
+ rl(O)-2( D)2(O;iO~/)~I)' 

Hence to obtain (O;iB;B;) it is only necessary to calcu
late the moment (O;iO;kB;). This is done by multiplying 
(50) by O;iO;k and averaging. The result is 

(O)-l( Dk)(OjiOikB;) 

= -(O)-2(Dk)(Dm)(O~iOik():m) + (O)-2(Dk)(Dm) 

x f aG~:: ~) <OilX)OiiX) ao;;~~» d~ 

= «()-2(Di [ -t(O:iO~k(}~i) 

+ t LOOlrrl [bin - 31rr2 rirn]NiiiPpn(O, r) d Irll 

(61) 
where 

From (61) together with (58), we find that 

(O;JB;Bj> = (O)-2(D?[247(O:JOikO~i) + Q], (62) 

where 

Q = -(t) Loolrr1 [bim - 31rr2 r,rm]N'iikkm(O, r) d Irl 

+ ~ JIlrrslsrs [bim - 31rr2 rirm] 
487T 

x [l5 jn - 3 Isr2 SjSn]Niiaman(r, s) dr ds. 

All moments appearing in (27) have now been 
calculated, and we have therefore determined a set 
of bounds on the effective permittivity. We find that, 
for the trial functions selected, 

{(O) - (0)-1[1 + (O)-l(t(O:jOJi) _ p)-1 

X U7 (e:l)jke~i) + Q)]-l(t(e:;eji) _ p)}-l 

:$; Eeff :$; (E) - (E)-I[l + (E)-I(t(E;jEJi) + K)-1 

x U7(E;iEjkE~i) + L)r\t(E:;EJi) + K). (63) 

For polycrystalline media composed of randomly 
oriented crystals all having the same principal 
permittivities (Ei; i = 1,2,3), 

«jE~i) = (EijEii) - (Eij)(Eii) = EijEii - (Eii)(Eij) 

= lI(E; - E;)2. 
i<j 

Here we use isotropy and the fact that EijEji is an 
invariant. Similar arguments give 

(E:jEjkE~i) = (E~ + E~ + E;) 

- (El + E2 + Ea)(Ei + E; + E~) 
+ t(El + E2 + Es)S 

and the corresponding moments for O;j may be found 
by the substitution Ei -+ Ei1 in these formulas. 

In the limit of weak inhomogeneiti.es, the bounds 
given by (63) coincide. In fact, from 0ikEk; = bij we 
find that 

(0) "'-' (E)-1[1 - t(E)-2(E:jEJi)]' O:j "'-' -(E)-2E;j' 

and neglecting terms of order three and higher in 
primed quantities we obtain 

EeU ~ (E) - (E)-l[!(E;jEJi) + K]. (64) 

We observe that the bounds on Eeff given by (63) 
contain one-, two-, and three-point correlation func
tions, while the bounds given by (28) involve only 
one-point moments. It is of interest to derive a set of 
bounds containing only one- and two-point moments, 
and we shall do this using (45). 
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First, let us use (54) to rewrite the functional 
.'f[C;C;J in the form 

.'f[C~C;] = t(C;C;) + F, (65) 
where 

F = i<X>lrl-
1 [15k! - 31rr2 rkr!](C~(x)C;(x + r» d Irl. 

(66) 
Substitution of (65) into (46) gives 

'fo(C;; ex) = ex(E)2 + (Eet! - ex)2{(8)(E? 

- [< (Pii + 3~ bii)C~C;) + ex-IF rl 

(67) 

We shall restrict our considerations to trial fields which 
«an be expressed in the form 

(68) 

where y;; is a statistically homogeneous and isotropic 
stochastic tensor with zero average and y;; may depend 
on ex. With C; given by (68), the expression for '1"0 
becomes 

'¥o(Y'; ex) = (E)2{ex + (Eeff - ex)2(I;(y'; ex))-1 

X «P)I;(y', ex) - toc(P;;y;;)2)}, (69) 

where 

I;(y', ex) = ex(y:;P;kY~i) + (ex(P) + t>(y;;y;;) + I[y'] 

(70) 
and 

Since (3ex)-I(E)2I;(y', ex) is the denominator of the 
last term in (67), we see (from the proof of the varia
tional principle) that I;(y', ex2) < 0 < I;(y', exl ), for 
any exl and ex2, satisfy exl < ~ < € < ex2' Further
more, the inequalities ~ ~ (fJ)-1 ~ Eeff ~ (E) ~ € 

imply that exl < Eeff < OC2 for any admissible values of 
otl and OC2' Using (45) and (69) and the inequalities 
just discussed, we obtain the bounds 

(72) 

where 

r(ex) = [(P)~(y, rx) - lex(P;;YJi)2r1 

x [(ex(P) + l)I;(y, rx) - lrx2(P;;YJi)2]. (73) 

These bounds are valid for arbitrary Y:;' We can be 
guided in our choice of y:; by recourse to perturbation 
theory. Recall that the functional arC) has its 

extremum for 

C, = (Ei; - rxr5,;)E; 

= «E) - ex)(Ei) + E;;(E;) + «E) - rx)Ei + E;; E;. 

If ex is chosen so that «E) - ex) is of order of the primed 
quantities, we see that to lowest order y;; should be 
taken equal to <i' With this choice of y:;, 

(Y:iPii) = (~ (E;(x) - (E»(Plx) - (P») 
= 3[(P)(ex - (E» + 1], 

(Y:iPikY~i) = (~(ElX) - (E»2(P;(X) - (P») 

= (ex - (E»(y;iPii) - (P)(E:;EJi), 

and r(ex) becomes 

r(ex) = {3ex[(P)«E) - ex) - 1] + (P)[t(E;;Eii ) + J[E']]}-l 

x {3rx(E)[(Pl(E) - ex) - 1] 

+ (ex(P) + IH1(E;jEJi) + I[E']]}, (74) 

with 

I[E'] = Lool r l-
1 I1i;(r)(E;k(O)E~;(r» d Irl = 3K. (75) 

It is also of interest to consider another choice of 
r:; which leads to a generalization of the bounds 
obtained by Hashin and Shtrikman.2 We let Y;i be the 
fluctuating part of Yti' where Yo is taken to satisfy 
y;;(3exPik + r5ik) .= r5 ik • In this case we find 

3 

(y) = (l) L «Elx) + 2ex)-I(E;{X) - ex», 
,=1 

and r(ex) becomes 

r(ex) = {ex-I [(y)(3ex(P) + 1) - 1](1 - (y» 

+ 3 (P)I[y']}-1 

x {[(y)(3oc(,B) + 1) - 1](1 + 2(y» 

+ 3(ex(P) + l)I[y']}. (76) 

Equations (74) and (76) may now be used to obtain 
bounds on Eeff after a suitable choice of values for exl 
and ex2 is made. In making this choice, we shall assume 
that one of the functions Ei(X) actually takes on the 
value ~ on a set of positive probability measure (or on 
a set of positive volume in one ensemble member 
since we assume space and ensemble averages are 
equal) and also that the value E is achieved on a set of 
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positive measure. Then since 
3 

(P) = 2 «e;(x) - ocrI
), 

;=1 

<p) will approach + 00 as oc -+ ! - 0 and - 00 as 
oc -+ E + 0. (These limits for oc are suggested by 
perturbation theory.) Passage to the limit in (74) gives 

r(oc) = {3oc«e) - oc) + [t(e;je~i) + I[e,]]}-I 

x {3oc(e)«e) - oc) + oc[l«je~i) + I[e']]}, 

oc = ~ or E. (77) 
A similar process in (76) yields 

r(oc) = oc{(y)(l + 2(y» + I[y'n 

x {(y)(l - (y» + I[i]t\ 
where oc = s or E, and (y) and f[y'] depend on oc. 

In summary, we note that the principal results of 
this section are contained in (63), (72), (77), and 
(78). These equations give three sets of upper and 
lower bounds on the effective permittivity. As we have 
already observed, (63) contains permittivity corre
lations up to and including the third order. Equation 
(77), on the other hand, gives a set of bounds which 
contains only one- and two-point permittivity corre
lations. Equation (78) also gives a set of bounds 
containing one- and two-point correlations, although 
these are not permittivity correlations. The bounds on 
eelf given in Ref. 2 are obtained from (78) by formally 
setting f[y'] = O. We have discussed these bounds 
elsewhere (see Molyneux5) and have shown that they 
are incorrect for arbitrary polycrystals. 

4. AN EXACT EXPRESSION FOR eelf 

In this section, we derive and discuss the perturba
tion series for the effective permittivity. We show that 
when certain integrals of the permittivity correlation 
tensors vanish, this perturbation series may be summed 
and an exact expression for eelf obtained. 

The effective permittivity may be obtained directly 
from the correlation tensor «jE;) by the formula 
eelf(Ei ) = (e)(Ei) + «jE;). Equations (8) and (9) 
give the formal integral equation for E; (x), 

I 
02 

Ej(x) = _<e)-I G(/x - m -
O;i);k 

x [e~!m(El) + e£M)E;(;)] d~, (79) 

and we shall find the perturbation series for «;E;) by 
iteration of this equation. We multiply (79) by 
</x) and average. Changing variables of integration 
from ~ to '1 = X - ~ and taking advantage of homo
geneity to write «/x)e~la» = «1(0)</'1» and 

(e~I(;)E;(;)e;;(x» = (e£z(0)E;(0)e;;(r1», 

we find 

(e;jE;) = -(e)-II GI Di1it 

x r(elit(0)eiI;(r1»(E1) 

+ (efil(O)E;(O)e;li('I))] drI , (80) 

where we use the notation GI = G(I'IJ), D i1it = 
02jO'li/J'l'jt' To evaluate the third-order correlation 
appearing in (80), we multiply (79) by e;il (x)e;ti(x + '1) 
and average. Changing variables of integration from 
~ to '2 = X - ;, using homogeneity, and adopting a 
notation similar to that used in (80), we obtain 

= -<e)-II G2Di2i2 

X [(efi.(O)ei.i1(r2)ei,;(ri + r2»(E/) 

+ (e;i2(0)E;ei.it(r2)eit i(ri + r2»] dr2. (81) 

Combining (80) and (81), we find that to the fourth 
order 

(e;iEj> = (Ez){ _(e)-I I GI Ditit<e:iJO)e~JrI» dri 

+ (e)-2 I GIG2Ditjt Di2i• 

X <e;i2(0)e~2il(r2)eiir2 + rI » dri dr2} 

+ (e)-2 f GIG2Dilit Di2l• 

X (E;(0)e;i.(0)e;2it(r2)eit;(r2 + rI» dri dr2 • 

(82) 

A simple induction proof now shows that to order n, 

«jEi) = <Ez){J/-(e»-m 

X fn GkDikik(efim(O)eimim-Jr m) ... 
k=l 

ei1;(r m + r m-l + ... + rI» dr1 dr2'" dr m} 

+ (_(e»-n f II GkDikik 

X (E;(O)e;i,,(O)eJnin_t(r n) ... 

eit;(r n + ... + rI» dri ... dr n' (83) 

We can partially integrate the first n terms in (83) by 
using (54). The result of applying (54) to the m = 1 
and m = 2 terms is 

f GI D;tiJ (efit(O)eit;(r1» drl 

= t(e;iteili) + f Pi1it(e{iJO)eit;(rI » drI , (84) 
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J G1 G2Di1il Di • 1.(€;i.(O)€;.iJr2)€;1;(r2 + r1» dr1 dr2 

= t(E;hEJ.hE;li) 

where 

+ t J Pili/€;i.(O)E;.i/O)EJl;(r1» dr1 

+ t J Pi.i.(E;i2(O)Ej.it(r2)E;I;(r2» dr2 

+ f PililPi2i2(E(i/O)EI2il(r2)Eljr2 + r1» dr1 dr2, 

(85) 

P/liI = (47T)-1 Ir1ra (t5/lir - 31r1r2 r/
1
rir ) 

and p/.i • is similarly defined. We cannot apply (54) 
directly to terms with m ~ 3. Consider, for example, 
the correlation function 

(E{/3(O)E;3i2(ra)E;Zil(ra + r2)EjJra + r2 + r1»· 
This approaches zero as Iral and Ir11 approach infinity, 
but as Ir21 approaches infinity, it approaches 

< E;i3 (O)EI 3i 2(r 3»( Ej zit (O)E;l i( r 1»' 

Hence, we cannot apply (54) to the r 2 integration. To 
remedy this situation, we replace the correlation 
function appearing in the m = 3 term with the 
function 

(E;'3(0)EJ3/i ra)EI2/1(ra + r2)El1/(ra + r2 + r1» 

- (E';/3(0)E'/3i2(r3»<E';2il (O)E/Jr1». 
Since the subtracted term is independent of r2, the 
value of the integral in question is unchanged, but 
(54) may now be applied to give 

f n GkDikik(E; .. (O) ... Elli(r1 + r2 + ra» drl dr2 drs 

3-a[( I , I ') <' , )<' '») = Eli3Eiai.Ei2hEiri - Eli3Ei312 €i2il€ili 

+ 3-2{f Pilh [ ) arl + f Pi • i .[ ] ar2 

+ f Pi • i3 [ ] dr3 } 

+ 3-1{f PilhPisis[ J dr1 dr2 

+ J PilitPiai3[ ] dr1 dra + J Pi.iaPiai3[ ] dr2 dr3 } 

+ f PililPi.i.Pisi3[ ] arl ar2 ar3 , (86) 

where, for example, the first square bracket in the 
above sequence of integrals is 

< €;ia(0)t:i3iiO)€1.il (0)€11;(r 1» - < €;i3€13i .)(€1.il (O)€IJr 1»' 
We have not written out the integrands in (86) in 

great detail since we are going to assume that the 
correlation functions of the permittivity tensor are 

such that they all vanish. Specifically, we assume that 
for all m = 1,2, ... the integrals which result from 
applying (54) to the term 

J iJ GkDikik 

X (€;/m(O)' , , E/1/(r m + r m-1 + ... + rI» dri ... arm 

all vanish (for m ~ 3 we must first modify the inte
grand as outlined above), This assumption places an 
infinite number of conditions on the correlation 
functions of the random function €;j(x), It is easy to 
show that these conditions are satisfied by the sequence 
of correlations 

(€:oiO(O)€;li,(rI)E;.i2(ri + r2) ... €;,dn(r1 + .. , + r n» 
8 

=.2 p(m)(lrII,"', IrnJ)T::;l"'ini,,' 
m=1 

where T.(m
1
) .. , • l' are constant isotropic tensors of the to 0 tn n 

order (2n + 2) and the sum goes over all possible such 
tensors. This sequence of correlations is fairly trivial, 
however, since each function depends only on the 
magnitudes of its arguments. On the other hand, 
there is some reason to believe all the integrals in 
question may be small in many cases. In fact, consider 
an integral like S Pi1il [ ] ari . The term in the square 
brackets will be a tensor function which is essentially 
zero for IrII, of order of a correlation length, I. If, for 
Ir11 < I, the term in the square brackets is weakly 
dependent on the angle variables, then the value of the 
integral should be small since the Cauchy principle 
value of S Pilil drl is zero. In summary, the assump
tions outlined above will yield an exact expression for 
<e;iE;) for any polycrystal whose permittivity corre
lation tensors satisfy a certain infinite set of integral 
relations, or will yield an approximate expression for 
(e;iE;), in case the correlation functions are weakly 
dependent on angle variables. 

To find (E;jE;), we must now compute all terms in 
the series (83). We have shown how this is done up to 
the fourth order. The calculation of higher-order terms 
proceeds in exactly the same manner but is fairly 
lengthy. We therefore give only the result 

(E;;Ej) = 3(E)(E1) 

x {i (_1)m-1(3(t'»-m[(€;h€Jli • ... €lm-l i ) 
m=2 

[imJ' 

+ ~ ( 1)k-1(' , ...' ) ""',.- €lh€iti. €i"I-li", k=2 
X (€' .. '€' ) ... 

inl in! +1 in! +1L2-1inl+n2 
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where rim] indicates the integral part of 1m and the 
prime on the second summation means that the sum is 
defined as zero for m = 2, 3 and for m ~ 4 goes over 
all distinct sequences of integers (nl' n2, ... , nk) such 
that ~}=l nj = m and nj ~ 2;j = 1,2,'" ,k. 

We can write (87) in a much more compact form if 
we introduce some new notation. Let & be the matrix 
with components eij(x) = (3(€»-Ie;/x) and denote 
the trace of a matrix A by Tr A. Then it is easy to see 
that (87) can be written in the form 

(€;jEj) = -(€)(Ei) Tr {i2( _1)m 

[ 

[im], J} x (&m) + ~2 (_l)k-l(&"I>(&"') ... (&"k) , 

(88) 

where (&P) is the matrix with components 

and (&P)(&q) denotes the matrix product of (&P) and 
(&q). To calculate the sum in (88) in closed form, 
we let t be real number, It I < I, and define 

t 00 

cfo( t) = -- = 2 ( -1 )"+1tk
• (89) 

1 + t k=1 

Suppose y is a real random variable, (y) = 0 and 
Iyl < t· Then, if s is a real number 0 ~ s ~ 1, it 
follows that Isy(l + sy)-11 < 1 and, by expanding 
[-sy(l + sy)-I] in a power series and averaging, it is 
possible to show that 

w 

= .2 (_I)kSk 2" (y"I)(y"') ... (ynk), (90) 
k=2m 

where .2" denotes summation over all sequences of 
integers (n1 , n2, ... , nk) which satisfy ni ~ 2 and 
2~=1 nj = m. Now let 'P(s) = cfo« -sy(l + sy)-I» and, 
using (89) and (90), write 'P(s) as a power series in s. 
This power series may be shown to be of the form 

00 

'P(s) = cfo«-sy(1 + sy)-I» =.2 Ams"', (91) 
m=2 

where 

{ 

[·!'nl' } 
Am = (_1)m (ym) + :~2 (_ll-1(yn 1)(yn,) ... (yn,) , 

(92) 

and the prime on the sum denotes the same restrictions 
given after (87). The principal values ei(x) of the ma
trix &(x) satisfy 

lei(x)1 = 1(3(€»-I(&;(x) - (€»I ~ (3 (€»-I(i - (€» 

< t, for i < t(€). (93) 

Hence, according to the theory of functions of mat
rices, the formal series in (88) converges for i < 
(t)(€) and represents the matrix cfo«-&(I + &)-1» 
where I is the identity matrix, and A-I denotes the 
inverse of matrix A. Thus, (88) can be written in the 
form 

(€;jEj) = (€) (Ei) Tr {(&(1 + &)-1) 

x [I - (&(1 + &r1)r1
}. (94) 

We note that since 

the inverse of 1+ & always exists. Also, 

I - (&(1 + &r1
) = {3-1 i~ ([1 + (3(€»-I€;(x)r1) }l, 

so the inverse of this matrix always exists. Thus (94) 
may be used to represent «jE;) even when the condi
tion i < (t)(e) is not satisfied. 

To evaluate €eff from (94), we recall that €eff(Ei ) = 
(Di) = (€)(E;) + «iE;). Using this relation and cal
culating the various correlations appearing in (94), we 
find 

€el! = (€){-2 + 9[~([1 + (3(€»-Ie;(x)]-I)r} (95) 

For a single phase polycrystal with principal permit
tivities €;, (95) becomes 

€ef! = (€){ 1 + [~1(€)(2(€) + €i)-1 r
1 

x i~ (€i - (€»-1(2(€) + €i)}' (96) 

Since the effective permittivity satisfies the equation 
(D i ) = €cff[(O)(D i ) + (O;jD;»), where O;j is the tensor 
defined in (19), we see that another expression for 
€etr may be found by deriving the perturbation series 
for the correlation (O;jD;). We will now derive this 
series, and by imposing certain requirements on the 
correlation functions of O;i (x) , we will be able to 
obtain a second exact expression for €eff' 

From (2) and (3) we find that D' satisfies 

aD; _ 0 
oX

i 
- , 

(97) 

bijk -!- [(O)D~ + O~m(Dm) + O~mD;"] = O. 
ox; 

(98) 

Equations (97) and (98) may be used to obtain a formal 
integral equation for the fluctuating part of the dis
placement field: 

D;(x) = (O)-lf G(x, ~)Aim(~) 

X [e;",,(~)(D,,) + e;"nWD~W] d~, (99) 
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where Aima) = [bilbjm - bimbi!]a2/a~;a~!. Since (99) 
is similar in form to (79), we see from (83) that to any 
order n, 

(O;jD;) = (DI)Lt(o)-m f IT GkAikik(rk) 

X (O;im(O)O;mim-,(r m) .. . 

O;,lr m + rm-1 + ... + 1'1» drl ... dr m} 

+ (O)- 71f 11 GkAikJ.(rk)(D;(O)O;i,,(O) .. . 

0;,;(1'71 + 1'71-1 + ... + r1»dr1 " ·drn · 

(100) 

Just as in the calculation of «;£;), we may use 
(54) to rewrite the integrals which appear in (100). 
We thereby obtain a series of terms involving one

point, mth-order O;J correlations plus a series of 
integrals containing contracted products of operators 
Pi} and O;J correlation tensors. For example, the m = I 
term in (100) gives 

f G1A:itit(rl)(O;i,(0)EJ1i(r1» dr1 

= -(i)(O{;,0J1i ) + f Pi1h(O;i,c0)OJ1i(r1» elr!. (101) 

We assume, as before, that the random function 
O;/x) is such that all integrals which arise from these 
manipulations vanish. Then, as with «j£;)' we can 
sum the remaining series. Since the details of these 
calculations are rather lengthy, we give only the final 
result 

(O;;D;) = WJ)(Di ) Tr {(0(1 + 0rl) 
x [I - (0(1 + 0)-I)r!}, (102) 

where 0 is the matrix with components (i)(O)-!O;J' 
For a single phase polycrystal, we find using (102) 
and the definition of Eeff that 

5. COMPARISON OF BOUNDS 

Tn this section, we will compare, for the case of a 
single-phase polycrystal, the three sets of bounds we 
have derived. If the principal permittivities are ex
pressed in the form 

E1 = E, E2 = E(l + s), E3 = E(l + t); 

o S sst, (104) 

then we can write each lower bound, L i , (where the 
subscript indicates the order in which the bounds were 

obtained) in the form 

Li(s, t) = E[Fi 2)(s, t) + 1j2)(S, t)]-I[F?)(s, t) + I?)(s, t)], 

i = 1,2,3, (105) 

and each upper bound Ui in the form 

U;(s, t) = E[G~2)(S, t) + Jj2)(S, t)]-1 

X [Gjl)(S, t) + Jj1)(S, t)]. (106) 

Tn (lOS) and (106), Fi(k) and Gjk) are rational functions 
of sand t and arise from the various one-point corre
lations which appear in the bounds, while I?) and 
J:k) involve integrals of correlation functions. 

For the bounds L1 and U1 derived from the classical 
variational principles, we find 

F~l)(s, t) = s2(1 + s)-3(1 + ts) + t2(1 + t)-3(1 + tt) 

- st(1 + s)-l(l + t)-1 

X [1 - is(l + sri - it(l + t)-I], (107) 

F~2)(S, t) = s2(1 + s)-4[1 + J{s + 247S2 ] 

+ t2(1 + t)-4[1 + -~-t + 2\t2] 

- st(l + s)-l(l + t)-1[1 - ts(l + S)-1 

-}t(1 + t)-1 - Hs2(1 + S)-2 

- Ht2(1 + t)-2 + %st(l + s)-\l + t)-I], 

(108) 

Gil)(s, t) = s2[1 + is + i'fS2] + t2[1 + it + 227 t2] 

- st[l + t(s + t) - ~~(S2 + t2
)], (109) 

Gi2)(s, t) = s2(1 + ts) + t2(1 + {-t) 

- st[l + t(s + t)], (110) 

[i1)(s, t) = -2i-i[ -(O)P + Q], (111) 

Ii2)(s, t) = _2i '-E
4 [P( _(0)2 + -;(O;jO;J) - P) + (O)Q], 

(112) 

A1)(s, t) = -V-E-4[KC<E? - ~(E;iE;) - K) + (E)L], 

(113) 

(114) 

As a special case of the above results, we consider a 
polycrystal whose principal permittivities are E1 = 
E2 = E and E3 = E(1 + t). When the permittivity 
correlation tensors of such a medium satisfy the re
strictions imposed in the previous section, the integrals 
K and L vanish and the upper bound becomes 

U1(0, t) = E(1 + tt)-l(l + it)(1 + i-t). (115) 

When the inverse of the permittivity tensor has corre
lations which satisfy the restrictions imposed in the 
previous section, the integrals P and Q vanish and the 



                                                                                                                                    

EFFECTIVE PERMITTIVITY OF POL YCR YST ALLINE DIELECTRIC 1183 

lower bound becomes 

L1(0, t) = E(1 + J-I-t + trt2)-1(l + t)(1 + *t). 

(116) 

For the bounds L2 and U2 , derived from the general
ized Hashin variational principle with trial function 
C; = E;;<£;), we find 

F~1)(S, t) = 5(1 + -is) + t(l + tt) + tSI, (117) 

F~2)(S, t) = s(1 + ~s) + t(l + it) - ist, (118) 

{~1)(s, t) = I~2)(s, t) = 3E-2K, (119) 

G~l)(s, I) = (1 + t)[2/(1 + ttl - s(1 + -is) + -ist), 

(120) 

we find 

Us(O, t) = E(l + it)-l(l + t)(l + tt) (131) 

and 
£S(O, t) = E(l + tt)-l(1 + ttl. (132) 

The exact expressions for Eelf' derived in the 
previous section, may be written in terms of E, 9, and 
t. If we denote the two formulas for effective permit
tivity by E~~, i = 1, 2, where superscript (1) denotes 
the first expression derived (for special permittivity
tensor correlations) and superscript (2) denotes the 
second expression derived (for special inverse per
mittivity-tensor correlations), then we can write 

(133) 
where 

G~2}(S, t) = 2t(1 + it) - s(1 + is) _ tsl, (121) tP1(s, t) = 4(s + t)(t2 + 5st + S2) 
+ 3(20/2 + 6lst + 2052) + 243(s + t) 

(1 + t)-1 J~l)(s, t) = J~2)(S, t) = -3E-2K. (122) + 243, (134) 

In the special cases considered in the previous para- lYl(s, t) = 3(8t2 + 191s + 8sz + 54(s + t) + 81), 
graph, these bounds reduce to (135) 

U2(0, t) = c:(1 + tt)-l(l + t)(l + tt) (123) 11>2(S, t) = 3(1 + s)(l + t)[5s2t2 + 32(t2s + s2t) 
and 

L2(0, t) = c:(1 + tt)(l + -it). (124) 

Finally, for the bounds La and Ua derived from the 
generalized Hashin principle with Yii satisfying 

Yii{3o:{Jik + bik) = ask' 
we obtain 

F~l)(S, t) = 9 + 5s + 5t + ist, 
F~2)(S, t) = 9 + 2s + 2t + ist, 

I~l)(S, t) = I~2}(s, t) 

= 3[s(3 + t) + t(3 + S)]'-l 

x [(3 + s)(3 + t)]2I[YH, 

(125) 

(126) 

(127) 

G~l)(s, t) = (1 + t)[(3 + 2t)(9 + 2t) + s(15 + 8t)], 

(128) 

G~2)(S, t) = (3 + 2t)(9 + 8t) + s(6 + 5t), (129) 

(1 + t)-l Ji1l(s, t) 

= J~2)(S, t) 

= -9[t(3 + 2t + s) + (t - s)(3 + 2t)]-1 

x [(3 + 2t)(3 + 2t + sWny~], (130) 

where y~ and y~ denote the fluctuating part of Yii 
evaluated for IX = E1 = E and ex = E3 = E(l + t), 
respectively. For the special cases considered above, 

+ 32(t2 + S2) + 130st + 108(s + t) + 81J, 

(136) 

'Y2(s, t) = t3s3 + 18(t3s2 + S3(2) + 48(t3s + s3t) 

+ 249t2s2 + 32(t3 + S3) + 504(t2s + s2/) 

+ 276(t2 + S2) + 9391s + 486(t + s) 

+ 243. (137) 

When s = O,these formulas reduce to 

E~~~(O, t) = E(l + to-l(1 + it + l7 t2
) (138) 

and 

c:~~kO, t) = E(l + ]90.., + 2'\-t~-\1 + t)(1 + tt). (139) 

It is easiest and most informative to compare these 
formulas for the two special media described in the 
previous section. Since all the bounds coincide when 
s = t = 0, we consider only the case when s + t > O. 
We can then show that 

(140) 

where the equality sign holds only for s = 0 or for 
s = t. We also have 

(141) 

where the equality sign holds only for s = 0 or for 
s = t. Furthermore, if we compare (138) and (139) 
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with (115) and (116), we find that 

U1(0, t) = ,,(1)(0, t); L1(0, t) = ,,(2)(0, t). (142) 

Thus, U1 and L1 are the best possible upper and lower 
bounds on the effective permittivity. That is, if U and 
L are any other upper and lower bounds on "elf which 
hold for all possible stochastic tensors <;Cx) , then 
U1 S U and L :$ L1 • 

APPENDIX 

The derivation of (54) is quite straightforward. We 
let SR = {r:lrl < R}, s. = {r:lrl > ,,}, and SR .• = 
SR - s., and we consider the integral 

[<R,') 
il" 'ik-lik+l" 'il-lil+l" 'i2n 

(A2) 

f ~[aG 71
1

" 'i2n] dr JsR,. ariz orik 

= t7T f ~ 711 ... i2nnikniZ da JaSR R 

- !7T f ~ 41" 'i •• nikniz da, (A3) Jas. " 
where nk denotes rkllrl. Letting R --+ 00 and" --+ 0, we 
see that (54) results, and we note that the integral 
involved in this equation is actually a Cauchy prin
ciple value. The fact that the triple integral 

== i7T f,:,3 II ikilr)41·· 'i2n(r) dr (A4) 

can always be written as an integral of a function of 
a single scalar variable also follows quite easily. 
Since Jil .. 'i2n is a constant isotropic tensor of order 
2n - 2, it can be written as a sum of terms each of 
which is of the form A II::11o. . ,where {PlO ... , 

iPVlqy 

Pn-l, ql' ... , qn-l} is a permutation of {I, 2, ... , 
k - 1, k + I, ... , / - 1, / + 1, ... , 2n} and A is a 
combination of completely contracted forms of 
Ji , .. 'i2»' It is obvious that each such contracted form 
of Jit .. 'i2n can be written as an integral of a scalar 
function. 
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It was noted by London in 1927 that a mathematical connection exists between the unified field theory 
of Weyl and the old quantum theory of Bohr. We wish to demonstrate that a Dirac electron in an electro
magnetic field described by the Weyl formalism appears to couple to the field via the usual minimal 
coupling recipe. It is generally acknowledged that the Weyl theory is unsatisfactory for describing macro
scopic electromagnetic phenomena. The objections, however, may not be entirely applicable on a 
quantum-mechanical scale. 

1. WEYVS UNIFIED FIELD THEORY 

Shortly after the successful introduction of general 
relativity theory to explain gravitational phenomena, 
Weyl attempted to imbed electromagnetic phenomena 
into a similar geometric framework by altering the 
notion of vector transplantation.1·2 In this section we 
wish to call attention to the basic physical assumptions 
introduced by Weyl. 

[n normal general relativity theory the notion of 
parallel displacement is generalized so as to be appli
cable to more general coordinates than simple Cartesian 
systems. Specifically, one assumes the existence of an 
affine relation for the change in the components of a 
parallel displaced vector ~~, 

(1.1) 

where the coefficients of affine connection are sym
metric in the lower indices2 

(1.2) 

The demand that the length squared of a parallel 
displaced vector ~a~a not change then leads to a unique 
identification of the coefficients of affine connection 
with the Christoffel symbols2 

From this result the familiar properties of conventional 
Riemann space follow in relatively straightforward 
fashion. 

To expand this structure, Weyl generalized the 
Riemann space by allowing ~2 = ~a~a to change under 
parallel displacement. The change in ~2 is assumed to 
be given by a simple affine relation 

(1.4) 

description of the electromagnetic field. The condi
tions (l.l) and (1.4) lead to a set of coefficients of 
affine connection given by 

fpy = -{;y} + gttt7(gyucPp + gpacPy - gpycPa) 

= -tg~U[(gyuIP - 2gyacPP) 

+ (gPaly - 2gPacPy) - (gpylu - 2gpycPu)]' (1.5) 

We shall refer to a space with the above coefficients of 
affine connection as an extended Riemann space or, 
more succinctly, as a Weyl space. 

The classical unified field theory which results from 
the above assumption is discussed in Refs. 1 and 2. 
1 t is not a particularly successful theory, although 
several rather elegant formal results do occur. We are 
not further concerned with the classical theory in the 
present paper but proceed directly to the possible 
relevance of Weyl space to quantum phenomena. 

2. WEYL SPACE AND BOHR'S QUANTUM 
THEORY 

It was pointed out by London in 19273 that Weyl's 
introduction of the affine displacement law (1.4) has a 
close mathematical connection with the idea of sta
tionary phase inherent in the preliminary quantum 
theory of Bohr. We will illustrate this connection 
for the very simple case of circular orbits.2 

Consider a single electron moving in the Coulomb 
field of a proton. We will assume that cPP in Eq. (1.4) 
is proportional to the vector potential Ap of the 
Coulomb field 

CPp = ACeJr, 0, 0, 0) = AAp , (2.1) 

where r is the electron-proton separation. Then the 
affine relation (1.4) reads 

The four quantities cPP thus introduced are intended to dl = ().eJr)lc dt, (2.2) 
correspond to the electromagnetic vector potential 
and thereby provide a geometric framework for a where I is the length squared of any parallel displaced 

1185 
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vector associated with the electron. Since r is a con
stant, Eq. (2.2) yields, for a single orbit, 

1= 10 exp (}.,eTc/r), (2.3) 

where T is the period of the orbit. Elementary me
chanics yields 

T = 21Tm!r~/e. (2.4) 

Thus, after one orbit, I has become 

1 = 10 exp [2}.,1Tc(mr)!]. (2.5) 

Certain orbits are clearly distinguished by this con
dition: those for which 1=10 or for which we have 
stationary phase and a kind of length stability: 

(2.6) 

This may be compared with Bohr's expression for the 
allowed radii in hydrogen: 

(2.7) 

The form of the expressions is the same, and they are 
identical if we choose 

}., = ±ie/nc, tPP = ±i(e/nc)Ap • (2.8) 

Thus, the Weyl geometry does lead in a relatively 
natural way to quantization conditions. Several inter
esting features of the above result should be noted. 
First, it is difficult to attach a simple physical meaning 
to the factor i in (2.8), since the 4-dimensionallength 
of most vectors in classical physics is certainly real. 
We are not, however, attempting a classical inter
pretation, and have indeed given no specific meaning 
to the quantity I in (2.2). Secondly, in the classical 
limit of h -+ 0, the change dl becomes infinite. If one 
may take the above result for tPP seriously, this means 
that the classical limit does not make direct sense and 
the Weyl theory should be applied only on an atomic 
scale. 

3. PROPERTIES OF SPINORS IN AFFINE 
SPACE 

In this section we wish to review and discuss briefly 
the salient features of spinors and spinor analysis in 
affine space. The 4-component spinors of ordinary 
Dirac electron theory will be used, since the Dirac 
description is undeniably successful in the limit of 
special relativity. Our discussion uses the notation of 
Ref. 2 and follows Refs. 2 and 4 on basic concepts. 

For a particle such as an electron, with an internal 
structure that is not amenable to a simple space-time 
interpretation, we introduce an internal or spin trans
formation S. This is a 4 x 4 matrix which is to operate 
on the 4-component spinors of the theory and, in 

general, may be a function Sex) of position in space
time. In addition, we allow general coordinate trans
formations as in general relativity. There is no a priori 
relation between the internal structure and space-time 
structure so that the transformations are independent 
of each other. 5 Later, in Sec. 4, the internal and 
space-time structure is, however, related via the 
demand of a universal Clifford algebra. 

Under a spin transformation a spin or is assumed to 
transform via 

1p' (x) = S(x)1p(x). (3.1) 

A dual space may also be introduced wherein the dual 
spinors transform via6 

1jJ'(x) = 1jJ(X)S-l(X). (3.2) 

Clearly, the inner product of a dual spinor and a 
spinor undergoes no change under a spin transforma
tion, and may be interpreted as a "spin scalar." 

In analogy with the vector transplantation law (1.1), 
we suppose that there exists a spinor transplantation 
law: Under a coordinate displacement dx" the com
ponents of the spinor are assumed to change by 

d1p = -ir",1p dx" 

and the dual spinor components by 

d1jJ = i1jJr" dx", 

(3.3) 

(3.3') 

where the r" are a set of 4 x 4 matrices. The choice of 
the transplantation law (3.3') for the dual spinor 
guarantees that 1jJ1p be unchanged under spinor trans
plantation, and allows its continued interpretation as a 
spin scalar. The coefficients r" of the affine spinor 
transplantation law are usually referred to as the 
Fock-Ivanenko coefficients.7 It should be noted that 
the r" need not be Hermitian; the use of Hermitian 
r" and the identification of the dual spinor 1jJ with the 
adjoint spinor 1pt would be consistent, but is not 
necessary and is not used here. 

The actual change in a spinor field 1p(x) over dx" is 
merely 

c51j1(x) = 1p(x)!" dx" + O(dX)2. (3.4) 

The change that would occur under spin or transplan
tation alone, the analog of parallel displacement, is 
given by (3.3). Thus, the difference of (3.4) and (3.3) 
may be viewed as the excess or "physical" change in 1p: 

c51p(x) - d1p(x) = (1p!" + irrz1p) dx" + O(dX)2. (3.5) 

As in ordinary vector analysis, the quantity in brackets 
is interpreted as a spin covariant derivative, which we 
denote by three slashes, i.e., 

(3.6) 
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Similarly, the dual spinor has a spin covariant deriv
ative defined as 

fiJllla = fiJI" - ifiJf ". (3.6') 

This generalized derivative plays exactly the same role 
here as the covariant derivative does in general rela
tivity theory. 

The Fock-Ivanenko coefficients introduced in (3.3), 
in general, change under a spin transformation S; to 
obtain their transformation properties, we demand 
that a transplanted spinor remain a spinor. That is, 
1jJ at x + dx should still obey Eq. (3.1), or 

Sex + dX)1jJ(x + dx) = 1jJ'(x + dx). (3.7) 

If all the above quantities in (3.7) are expanded to 
first order in dx, a simple result is obtained for f ~, the 
spin-transformed Fock-Ivanenko coefficient, namely, 

f~ = Sf"S-1 + iSI"S-1. (3.8) 

One should note that, for the special case of a constant 
spin transformation Sia = 0, Eq. (3.8) is merely a 
similarity transformation. In order that (3.3) be in
variant under a pure coordinate transformation, we 
assume that f" behaves like a 4-vector. Thus, 

f' = axp (Sf S-1 + is S-1). (3.8') 
" ax'" P IP 

So far, we have dealt with only spinors and the 
Fock-Ivanenko coefficients under the spin trans
formations. More general objects also occur, such as 
various 4 x 4 matrices, which mayor may not have 
a space-time index.8 One of the simplest is a 4 x 4 
object of the outer-product form 

M = 1p¢. (3.9) 

Under spinor transplantation, 

dM = -i[f", M] dx", (3.10) 

so that a spin covariant derivative may be defined, 
analogous to Eq. (3.6), as 

(3.11) 

For objects such as 4 x 4 matrices with space-time 
indices, we can apply both coordinate and spin 
transformations simultaneously. Such an object is 
taken to satisfy, for the 2-index example, the trans
formation law 

A' = ax
v 

axp SA S-1 (3.12) 
WI; ox'" ax'" vp , 

which is merely a combined coordinate and similarity 
transformation. This transformation law guarantees, 

for example, that bilinear forms such as Dirac's 

(3.13) 

transform as 4-vectors. We call objects such as All" 
"spin tensors." 

The spin covariant derivative of a covariant spin 
vector may be inferred from (3.1 I) to be, plausibly, 

(3.14) 

The use of the transformation laws (3.8') and (3.12) 
for f" and Aft allows one to verify that the spin 
covariant derivative in (3.14) is indeed a spin tensor, 
since it transforms as indicated in (3.12). The general
ization of the spin covariant derivative to a spin 
tensor of any rank is straightforward: 

Aft···rllla = A/i ••• TII " + i[f", Aw .. T]. (3.15) 

As in the tensor analysis of Riemann space, there 
occurs in the present spinor analysis a measure of the 
"distortion" of space. This analog of the Riemann 
tensor is called the spin curvature tensor. We will 
introduce it as a measure of the nonintegrability in the 
manner of Weyl. Consider a spinor transplanted along 
the vectors dx and dx of Fig. 1. After transplantation 
along path 1, dx followed by dx, it has become 

1jJ(f)1 = 1jJ - if,,1jJ dx" - if,,1jJ dx" 

- if"IP1p dxP dx" - f"fp1p dxP dx" (3.16) 

at f Alternatively, if it is transplanted along path 2, 
dx followed by dx, it has become at f 
1p(f)2 = 1jJ - if,,1p dx" - if,,1jJ dx" 

- ifalP1p dxP dxa - f"fp1p dxP dx"". (3.17) 

The difference of the transplanted spinors is, then, 

1p(f)1 - 1p(f)2 = d1p = - iRaP1p dxP dx", 

R"p = f"IP - fpl" + i(rp, fa] = -Rp". (3.18) 

This spin curvature tensor Rap is clearly a measure of 
the distortion or nonintegrability present in spin space; 
if it is zero, for example, a "constant" spin or field (one 
with zero-spin covariant derivative) can be established 
in the space by spin or transplantation. If it is not such, 
an attempt must meet with failure. RaP then plays 
much the same role as the Riemann curvature tensor 
in ordinary tensor analysis.4 

FIG. 1. Spin or trans
plantation along different 
paths. 

PATHI~ dx 

d/-,/' 
I dx ~TH2 
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In closing this section, we should note that our 
analysis has so far not depended on the number of 
components in the spinor fields considered, even 
though our motivation lies in the 4-component Dirac 
field. The detailed nature of the spinors only becomes 
relevant when some sort of coupling between the 
internal structure and the space-time structure of the 
fields is introduced in the next section. 

4. SPACE-TIME COUPLING 

So far, we have considered the internal or spin 
structure of the fields to be entirely independent of the 
space-time structure. In this section, we give a 
plausible coupling of the two structures. Our first 
basic postulate is that the Clifford algebra of ordinary 
Dirac theory in flat space remains true in the more 
general Weyl space: 

{Yu,Yv} == YIIYv + YvYII = 2g1lJ· (4.1) 

The curly brackets here signify the anticommutator 
generally associated with fermion fields. 

We have introduced the Clifford algebra in an ad 
hoc manner. It is well to remember its origins in Dirac 
theory.s The Dirac equation for a free electron in flat 
space is 

(4.2) 

If both sides are now multiplied by the 4 x 4 matrix 
yl'p II + m the result is 

(4.3) 

If one now demands that the above equation be a 
Klein-Gordon equation for each of the four components 
of 1j!, then 

U{yl" Yv}pl'pV - m2)1j! = (p2 - m2)1j! = 0, (4.4) 

so that 
(4.4') 

Thus, the demand that a free Dirac particle be on the 
mass shell p2 = m2 leads to the Clifford algebra. The 
obvious generalization of (4.1) is to allow any metric 
tensor on the right side instead of only the special case 
of the Lorentz metric. This generalization is, clearly, 
generally covariant and appears to be the simplest 
possible. 

It may indeed be possible to motivate the use of a 
Clifford algebra more deeply or to consider other 
possibilities, but, in the spirit of simplicity, we use 
(4.1) as it stands. 

Our next step is to check the consistency of the 
Clifford algebra when one takes the spin covariant 
derivative of both sides of (4.1). This is easily done if 

one first notes that the product rule for ordinary 
differentiation holds also for the spin covariant deriv
ative 

(AB)lIIa = (Allla)B + A(Bllla)' (4.5) 

In particular, 

{YI" Yvha = {Yullla' Yv} + {Y1t> YvlllaJ· (4.6) 

Applied to the Clifford algebra this yields 

{Yl'llla' Yv} + {YI" Yvilla} - 2gl'I'Ilia 

= ({I'll' Yv} - 2gll,)lla 

+ iUra,Y,,],yv} + i{YI',[rroYv]}' (4.7) 

The first term is identically zero by (4.1), while the 
other two terms cancel when expanded. We thus have 
the consistent relation 

{YI" Yvha = {Yl'lllx, Yv} + {YI" Yvllla} = 2gllvllla ' 

(4.8) 

so we may indeed postulate a Clifford algebra through
out the Weyl space. 

In showing that (4.8) holds, we made no use of any 
properties of the Fock-Ivanenko coefficients r 0:; clearly 
then, we cannot calculate them from a relation like 
(4J~). Theusual procedure for the more restrictive case 
of a Riemann space is to make a slightly stronger 
demand at this point. For a Riemann space, one has 
the Ricci theorem2 

(4.9) 

so the right-hand side of (4.8) is zero. It is then natural 
to ask that the spin covariant derivatives of the Y" be 
zero also, which is stronger than,and guarantees,(4.8) 
for a Riemann space 

YIlIII" = o. (4.10) 

This must be modified for a Weyl space. A short cal
culation shows that the Ricci theorem becomes 

(4.11) 

so that the spin covariant derivatives of the Dirac 
matrices cannot be zero. The simplest generalization 
of (4.10) that is consistent with (4.8) involves making 
Y 1l111" linear in rp", or 

(4.12) 

Using the definition of spin covariant derivative (3.14), 
we may write this as 

[YI" ral = - i (Y!'la - {:oc}yp) - i(g).o:rpl' - gl'a.rp).)y).. 
(4.13) 
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This equation is treated in the Appendix. If the right 
side is given, subject to consistency requirements, the 
r a can be determined up to a multiple of the identity 
matrix. 

Before discussing Eq. (4.13) further, we should note 
the simplest case. In the flat Riemann space associated 
with special relativity, the right-hand side of (4.13) 
can be set equal to zero. The r a are then simply 
multiples of the identity, as noted in Ref. 4, 

(4.14) 

where ;a is a set of four coefficients which may be 
identified with the electromagnetic field and minimal 
coupling. This is discussed further in Sec. 6. 

5. THE FOCK-IV ANENKO COEFFICIENTS IN 
FLAT WEYL SPACE 

In this section, we wish to consider a space-time 
manifold free of gravitational effects and in which 

(5.1) 

We call this a flat Weyl space. The only distortion 
remaining, then, is that due to a nonzero cPa field. 
The Fock-Ivanenko coefficients are easily determined 
in this special case. 

The basic equation for the ra is (4.13), which be
comes in the present case 

This meets the consistency conditions of the Appendix 
and corresponds to 

CIlIa)). = -i(g).acP" - g"acP,) = -C).(~)", 
T,,(a) = dta) = 0 (5.3) 

in Eq. (A2). The solution for r" is thus easily written 
down from (A 10) 

r" = ;al + Hg""cPA - g;.aCP,,)fJ")· 

= ;"l + 2fJ,,). cPl. , (5.4) 

where ;" is an arbitrary set of four numbers. This 
clearly includes (4.14) as a special case. 

6. DISPLACEMENT OPERATOR AND MINIMAL 
COUPLING 

In quantum mechanics the displacement operator 
or momentum operator Pa is normally written in a 
space-time representation and in Cartesian coordi
nates as 

.", a 
P = -lft-. 
" ax" 

(6.1) 

In the present context, however, the derivative oper
ator has no special significance, just as in ordinary 
tensor analysis it has no special significance. As in 
tensor analysis, we will replace it with an object that 
has well-defined transformation properties: in tensor 
analysis, the appropriate replacement is the covariant 
derivative and, in the present case, the replacement is 
the spin covariant derivative. Thus, instead of working 
with the operator relation (6.1) applied to spinors, we 
will use the covariant displacement operator 

D,,"P = -itz(1- + ira) "P 
ax" 

= (p" + Iir,,)"P = -ili"PIII,,' (6.2) 

For the special case of a flat Riemann space the 
Fock-Ivanenko coefficients are multiples of the 
identity, as we have demonstrated in Sec. 4, Eq. (4.14). 
If ;a in Eq. (4.14) is chosen to be proportional to the 
electromagnetic field, 

(6.3) 

we recover the well-known principle of minimal 
coupling as pointed out by Pagels4 : 

PIX --+ PIX - (efc)A". (6.4) 

For the case of a flat Weyl space we may instead use 
the result of Sec. 5, namely, 

PIX --+ Da = PIX + M"l + tlifJ"AA. (6.5) 

An important and basic change is that the last term in 
this expression is not Hermitian, so the eigenvalues 
are not, in general, real. Thus, the interpretation of the 
eigenvalues of Da as physically measurable momenta is 
not valid. Moreover, one cannot consider the Da as 
the generators of unitary transformations. In a Weyl 
space the simple connection between momentum and 
displacement operators familiar from elementary 
quantum mechanics must be abandoned. 

The above unfamiliar properties of D" should not be 
considered as overly unpleasant. If cPa can indeed be 
considered as proportional to all or part of an electro
magnetic field, then that field is intrinsically coupled 
to the spinor field, and a displacement operator that 
displaces the spinor field alone, and not the intimately 
associated electromagnetic field, should not be ex
pected to be Hermitian. 

Let us form the simplest generalization of the Dirac 
equation for a free electron, using D" instead of PIX: 

y" D,,'/{J = m'/{J = -iIiY"'PIII,,· (6.6) 

A short calculation using the Clifford algebra reveals 
that 
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In a flat Weyl space we therefore have 

lyll(J ).). - ;Iiy ).;. 
2 Il).'/" - 2 ).'/", 

so that (6.6) becomes 

(6.8) 

ya(Pa + M~ + iiJicPa)!P = m!p. (6.9) 

This is indeed identical to the Dirac equation with 
minimal coupling to the fields ~a and CPa. Indeed, if the 
proportionality indicated in Sec. 2 is assumed to hold, 
we obtain 

(6.10) 

Except for the factor of!, we therefore obtain a consis
tent coupling to the electromagnetic field, as identified 
in Sec. 2 with the Weyl field CPa. Moreover, if ~a is 
arbitrarily taken to be also proportional to CPa' which 
is, after alI, the only 4-indexed quantity available, i.e., 

(6.11) 

then we have precisely the Dirac equation with mini
mal coupling included 

(6.12) 

In conclusion, then, the replacement of Pa by Da 
leads to a coupling with the Weyl field that is at least 
qualitatively the same as the minimal coupling of 
elementary quantum mechanics. 

7. GRAVITATIONAL EFFECTS 

Instead of assuming that 

Yll!a - { P }yp = 0, 
W:!. 

(7.1) 

as in Sec. 5, we may include gravitational effects by 
assuming an expansion of the rather general form 

where cll(a»). and Jf~) are assumed to be small compared 
to the corresponding quantities associated with the 
electromagnetic field. The Fock-Ivanenko coefficients 
are then 

ra = ~al + !(JdV - tiO'I').cl'(a»). + tid).(<<)y).. (7.3) 

The cr~ will only modify the electromagnetic coupling 
slightly, and can probably be safely ignored. The role 

of d).(a) is somewhat more interesting. Proceeding as 
before, we obtain an extra term in the Dirac equation, 
namely, 

l'd- a). 
21 ).(<<)y Y • (7.4) 

If d).(a) is taken to be proportional to the most obvious 
2-indexed quantity, g).a' we obtain an extra term of the 

form 

(7.5) 

That is, an extra scalar term appears in the Dirac 
equation that may be interpreted as a (presumably 
small) mass shift associated with an intrinsic coupling 
to the gravitational field. This is qualitatively consist
ent with the results of Pagels.4 

8. CONCLUSION 

We have attempted to show, using very plausible 
assumptions about the Clifford algebra of Dirac 
matrices, that the Fock-Ivanenko coefficients can be 
calculated for a Weyl space free of gravitational 
effects. The resulting generalized momentum operator 
is not Hermitian, which leads to interesting questions 
about its interpretation. If the generalized momentum 
operator is used, instead of in times the simple deriv
ative operator, the Dirac spinor field automatically 
couples to the Weyl field minimally, i.e., we obtain the 
usual Dirac equation for an electron in an electro
magnetic field. The strength of the coupling is arbi
trary, owing to the arbitrariness in the Fock-Ivanenko 
coefficients, so the result is qualitative. 

APPENDIX 

We wish to find solutions to matrix equations of the 
form 

(Al) 

where A/I(<<) is given, Y/l is a set of matrices obeying the 
Clifford algebra, and B(a) is a set of 4 X 4 matrices to 
be determined. The parameter rx. may range over any 
number of indices, although we are concerned in this 
paper with the standard range 0 to 3. 

Let us first suppose that A.u(a) can be expanded in 
terms of the usual Dirac scalar, vector, and tensor 
matrices,S I, yl', and (JafJ = ti[ya, yill. as 

AI'(a) = 7'1l(<<)1 + c/l(~»).y). + dta)(J/I).' (A2) 

Then we expect a solution for B(a) that can be similarly 
expanded in terms of coefficients to be determined: 

(A3) 

If this trial solution is inserted in (AI), the result is 

[Yll' B(a)] = -2je(a»).0'~ + tif(~[YIl' [y)., Ylll]. (A4) 

We may use the Clifford algebra and the identity 

[x, yz] = {x, y}z - y{x, z} (A5) 
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to simplify the second term in (A4) to obtain 

[Y/p [YA' YfJ]] = 4(gPAYfJ - gpfJYA)' (A6) 

We thus have 

[yp, B(all = -2ie~)O'pA + 2i(f(a)pfJ - !(It)fJl')y{3. (A7) 

If we compare this with the expansion CA2), we obtain 
the unknown coefficients appearing in B(a), in terms 
of the known coefficients appearing in CA2). The 
result is 

e~) = !id~» !(a)j!A = -iicl'(a)A' ;(tt) arbitrary. 
(A8) 

In addition, we obtain consistency requirements on 
A j!(") , in order that a solution exists: 

Tj!(a) = 0, cj!(a)A = -cA(a)I" (A9) 

In summary, if AII(a) is given as in CA2) with the 
consistency conditions (A9) met, then B(a) is 

B(a) = ;( .. )1 + !idA(a)yA - !iclI(a)AO'j!A. (AlO) 

JOURNAL OF MATHEMATICAL PHYSICS 

Lastly, we wish to note that the so-called pseudo
quantities containing y5 == iyOy ly2y 3 are disjoint from 
the above discussion in that a y5 term in B(a) leads to 
a y5 term in AII(a)' Thus, if AII(a) contains no y5 terms, 
we do not need any in B(a)' The same approach as 
used above may be applied using y5, y5ylI , and y50'afJ, 

but this is unnecessary here and will not be carried out. 

1 H. Weyl, Space, Time, Matter (Dover Publications, New York, 
1922). 

I R. Adler, M. Bazin, and M. Schiffer, Introduction to General 
Relativity (McGraw-Hili Book Co., Inc., New York, 1965), Chaps. 
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, H. Pagels, Ann. Phys. (N.Y.) 31, 64 (1965). 
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Dirac spinors in a Lorentz 4-space. Thus the S(x) introduced here 
bears no simple relation to the spinor transformation used in Ref. 8. 

• We differ from Pagels, Ref. 4, in that S need not be unitary. 
7 V. Fock and D. Ivanenko, Compt. Rend. 188, 1470 (1929). 
8 For a discussion of the Dirac theory in ordinary Lorentz 4-space, 

see J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics 
(McGraw-Hill Book Co., Inc., New York, 1964). It should be noted, 
however, that we deal with a more general space and treat the spin 
transformations entirely differently. 
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Matrix elements for a radiative interaction between states of a Dirac electron in the presence of a 
Coulomb field are reduced to a closed analytic form in the limit of zero electron mass; corrections for 
finite electron mass are indicated. The application of these to inelastic electron scattering and radiation 
problems is discussed. 

I. INTRODUCTION 
We wish to consider matrix elements of the electro

magnetic interaction between states of a relativistic 
electron in the Coulomb field of a point charge. A 
closed form for these has been obtained previously! for 
an instantaneous Coulomb interaction. This form 
could be used also for a radiative interaction in the 
limit of the long-wavelength approximation for the 
photon with negligible energy loss for the electron. 
The integrals were employed in the analysis of electron 
scatteringH for the contribution of high-angular
momentum components in the electron wavefunctions, 
which, since they have no appreciable amplitude near 
the origin, can be considered to be moving in the field 
of a point charge, even though the scattering center 
has finite extent. Later, because of the restriction on 
the energy loss of the electrons, the use of these closed 

forms was abandoned for inelastic electron scattering,5 
and the corresponding matrix elements were evaluated 
by numerical integration. The use of numerical inte
gration has its limitations, however, because the 
integral over the electron radial coordinate has to be 
carried to infinity and approaches a limit only slowly 
and in an oscillatory fashion. In this paper we de
velop expressions for matrix elements between rela
tivistic Coulomb wavefunctions of differing energies, 
which admit also the finite wavelength of the photon 
(or, equivalently, which admit retardation in the 
interaction with the nucleus). It is necessary to assume 
that the mass of the electron is negligible in com
parison with its energy, in order to obtain a closed 
form; but this approximation is usual in high-energy 
electron scattering. 

The Coulomb wavefunctions for the Dirac electron 
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Coulomb field are reduced to a closed analytic form in the limit of zero electron mass; corrections for 
finite electron mass are indicated. The application of these to inelastic electron scattering and radiation 
problems is discussed. 

I. INTRODUCTION 
We wish to consider matrix elements of the electro

magnetic interaction between states of a relativistic 
electron in the Coulomb field of a point charge. A 
closed form for these has been obtained previously! for 
an instantaneous Coulomb interaction. This form 
could be used also for a radiative interaction in the 
limit of the long-wavelength approximation for the 
photon with negligible energy loss for the electron. 
The integrals were employed in the analysis of electron 
scatteringH for the contribution of high-angular
momentum components in the electron wavefunctions, 
which, since they have no appreciable amplitude near 
the origin, can be considered to be moving in the field 
of a point charge, even though the scattering center 
has finite extent. Later, because of the restriction on 
the energy loss of the electrons, the use of these closed 

forms was abandoned for inelastic electron scattering,5 
and the corresponding matrix elements were evaluated 
by numerical integration. The use of numerical inte
gration has its limitations, however, because the 
integral over the electron radial coordinate has to be 
carried to infinity and approaches a limit only slowly 
and in an oscillatory fashion. In this paper we de
velop expressions for matrix elements between rela
tivistic Coulomb wavefunctions of differing energies, 
which admit also the finite wavelength of the photon 
(or, equivalently, which admit retardation in the 
interaction with the nucleus). It is necessary to assume 
that the mass of the electron is negligible in com
parison with its energy, in order to obtain a closed 
form; but this approximation is usual in high-energy 
electron scattering. 

The Coulomb wavefunctions for the Dirac electron 
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involve confluent hypergeometric functions, and the 
matrix elements consequently involve integrals over 
the product of two of these functions. We have been 
unable to find, in standard works, a complete account 
of the required integral, and we have therefore devoted 
Sec. II to its evaluation for various cases. We are also 
able to reproduce the result for the long-wavelength 
limit, mentioned above, which is a valuable check on 
our analysis. In Sec. III, we show how the results may 
be applied to inelastic electron scattering. 

II. EVALUATION OF THE INTEGRAL 

The integral which we wish to evaluate is the fol
lowing: 

1= loodrra-1e-k\F1[a; b; k'r] IF1[a; h; kr]. (1) 

A value for this integral has been given by Slater 6 

and Magnus and Oberhettinger7 but appears to be in
correct unless one of the confluent hypergeometric 
series terminates. Also Reynolds, Onley, and Bieden
harn1 have considered the special case k = k' (both 
purely imaginary). In the following we have listed all 
the cases in which we have been able to evaluate the 
integral and have shown the relationship to the pre
vious results cited. Integral representations for the 
generalized hypergeometric functions and their ana
lytic continuations have been used (except in Case IV); 
specifically, B 

1Fl[a; b; z] = r[a, bb_ aJ lleztta-l(1 - t)b-a-l dt, 

Re (b) > Re (a) > 0, (2) 

2Fl[a, b; c; z] 

= 1'[ c J (\b-\l - ty-l>-l(l - tz)-a dt, 
b, c - b Jo 

Re (c) > Re (b) > 0, (3) 

x 2Fl[a2, a3; b2; zt] dt, Izl < 1, 

Re (b1) > Re (a1) > 0, (4) 

where we have adopted the notation 

r[a, b, .. 'J = r(a)r(b)' .. . 
q, r, . . . r(q)r(r) .. . 

Case (1): When Ikl > Ik'l, Re (k) < ° < Re (k'), 
Re (b) > Re (a) > 0, Re (IX) > 0, and Re (h) > 

Re (li) > 0, then 

1= k-a{r[OC'_h' a - OCJein 
a, b - oc 

[ - k'J X 3F2 '1., b - a, 1 + oc - b; b, 1 + oc - a; k 

+ (!{.)il-"r[b, h, oc - ii, b - a - oc + iiJei"ii 
k b - a, b - ii, b - oc + ii 

X 3F{ii' 1 + ii - b, b - a - oc + ii; 

t + ii - oc, b + ii - oc;fJ}. (5) 

By using Kummer's first theorem 

IF1[a; b; z] = eZ IFl[b - a; b; -z] 

and the integral representation (2), we can put I in the 
form 

1= 1'[ _ b, h _ -J Cduub-a-l(l - u)a-l 
a, a, b - a, b - a ~o 

X lldvvii-l(l - vi -Ii- 1ioo 
drrlZ-1e-[k'u-lcv]r. (6) 

The integral over r can be carried out to yield 

100 

drrlZ- 1e-[k'u-kv]r = r(oc)[k'u - kvrlZ. (7) 

With Ikl > WI we write the result (7) as 

r(oc)(k'u)-IZ[l - (kjk'u)vrlZ. (8) 

Substituting this into expression (6), we have 

I = 1'[ _ b, h, oc _ _J(kTIZ 
a, a, b - a, b - a 

X llduub- a- a- 1(1 - ut-1 

X fdVVIi-l(l - v)b-ii-1[1 - (kjk'u)vr". 

The integration over v is done, using formula (3), and 
yields 

I = 1'[ b, rx ](kT " t duub--a-a-\l _ u)a-l 
a, b - a Jo 

X 2F1[OC, a; h; kjk'u]. (9) 

This last expression is of the form of Eq. (4) except 
that the argument Ikjk'ul > 1. However, by using the 
analytic continuation formula9 

2F1[a, b; c; z] 

= r[C, b - aJ( -zra 

b, c - a 
X 2F1[a, 1 + a - c; 1 + a - b; Z-l] 

+ r[C, a - bJ( -zrb 

a, c - b 
X 2F1[b, 1 + b - c; 1 + b - a; Z-l], 

for larg (-z)1 < 7T, (10) 
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we can express Eq. (9) in terms of two integrals which 
satisfy the conditions of Eq. (4): 

I=r[ b,IX J(kT~ 
a, b - a 

X { tduub-a-"-I(1 - u)a-lr[~' ~ - IX] (_ ~)-" Jo a,b-IX k'u 

X 2F{ IX, 1 + IX - b; 1 + IX - ii; f u J 
+ tduub-a-"-\1 - ut -1r[b, ~ - ~J (- ~)-a 

Jo IX, b - a k'u 

X 2F{ ii, 1 + ii - b; 1 + ii - IX; ~' U ]}. (11) 

Now, by applying formula (4), we obtain the result 
claimed in Eq. (5). 

Case (2): When Ik'i > Ikl, Re (k) < ° < Re (k'), 
Re (b) > Re (a) > 0, Re (IX) > 0, and Re (b) > 
Re (li) > 0, then 

1= (kT"r[IX' b, b - a - IX] 
b - a, b - IX 

[ 
- - kJ X aF2 IX, a, 1 + IX - b; b, 1 + IX + a - b;-;;, 

(
k,)a-b + k-" -
k 

X ei17C,,+a-blr[b, b, IX - b _+ a, ii - IX + b - aJ 
ii, a, b - IX + b - a 

X aF {1 - a, b - a, ii - IX + b - a; 

1 + b - a - IX b + b - a - IX' - . - k] 
, , k' (12) 

The proof of Case (1) can be followed through Eq. 
(7). Now, since Ik'i > Ikl, the result of Eq. (7) is 
expressed in the form 

before integrating over u. The result is 

[ 
k' 1J X 2F1 IX, b - a; b; k ~ . (13) 

Using Eqs. (10) and (4), we obtain, in the same manner 
as before, the result (12). 

Case (3): When k = k', Re (k) = 0, Re (b) > 
Re (a) > 0, for all values of IX - b + I except zero or 

a negative integer, and Re (b - Ii + a - IX) > 0, 

J = (k')-"{ei17Ca+"-blr[IX, b, 1 + r:J. - b] 
a,1 + IX - a 

X aF2[IX, b - ii, 1 + IX - b; b, 1 + r:J. - a; 1] 

+ ei17~r[ IX, b, 1 + IX - b ] 
b - a, 1 + IX + a - b 

X aF2[IX, ii, 1 + r:J. - b; b, 1 + IX + a - b; lJ}. 
(14) 

In this case, owing to innumerable relations be
tween aF2 functions of unit argument, the result can be 
expressed in many different forms. In the form (14), 
the result has been established independently by the 
methods of Ref. 1. We show here that our results for 
both Cases (1) and (2) reduce to Eq. (14) in the 
appropriate limit. 

Consider the relation10 

2FI[a2, aa; 1 + a2 + aa - b2; 1 - z] 

_ r [1 + a2 + aa - b2, 1 - b2] F [ . b' ] 
- 2 la2,aa, 2'Z 

1 + a2 - b2 , 1 + aa - b2 

+ zl-b2r[1 + a2 + aa - b2 , b2 - 1J 
a2 , a3 

X 2Fl[1 + a2 - b2 , 1 + aa - b2 ; 2 - b2 ; z]. 

By inserting this into Eq. (4) we obtain a relationship 
between 3F2 functions of unit argument as follows: 

r [au 1 + a2 + aa - b2 , 1 - b2] 

bl , 1 + a2 - b2 , 1 + aa - b2 

X aF2[al, a2, aa; bI , b2; 1] 

= r[::}F2[b l - aI' a2, aa; b1, 1 + a2 + aa - b2; 1] 
_ r[l + al - b2 , 1 + a2 + aa - b2 , b2 - 1J 

1 + b1 - b2 , a2 , aa 

X aF2[1 + al - b2 , 1 + a2 - b2 , 1 + aa - b2 ; 

1 + b1 - b2 ,2 - b2 ; 1]. (15) 

Equation (4) can be extended to include Izi = I when 
the hypergeometric function can be expressed as a 
convergent series. Now setting k = k' in Case (1) [Eq. 
(5)] yields 

1= k-ar[IX,_b,_ ii - IXJei17" 
a, b - IX 

X aF2[IX, b - a, 1 + IX - b; b, 1 + IX - ii; 1] 

+ k-"ei17ar[b, b, IX -_ ii, b - a - IX + iiJ 
b - a, b - ii, b - IX + ii 

X aF2[ii, 1 + ii - b, b - a + ii - IX; 

1 + ii - IX, b + ii - IX; 1]. (16) 
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Choosing a1 = b - a, a2 = ot, aa = 1 + IX - b, hI = 
b, and b2 = 1 + ot - a, for identity (I5), gives 

r[b - :: ~ ~ : - J 
X aF2[a, 1 + Ii - b, b - a + Ii - IX; 

1 + ii - ct, b + ii - ct; 1] 

= r[ IX, 1 + ot - b .J 
b + ii - a - IX,ot + ii + 1 - b 

X aF2[a, ct, 1 + ot - b; b, 1 + ct + ii - h; 1] 

_ r[ ct, 1 + ct - h, ii - IX ] 
b + ii - a - ct, ii, 1 + ii - b 

X aF2[ct, b - a, 1 + ct - b; b, 1 + IX - ii; 1]. 

(17) 

The combination of Eqs. (16) and (17) yields the 
result (14) with the interchange of the sets of param
eters (a, b) and (ii, b). For k = k', the originalintegral 
(1) is obviously symmetric in these sets of parameters. 
The same method reduces Case (2) [Eq. (12)] to Eq. 
(14) exactly. In this case, setting k = k' gives us 

1 = k-«{r[ct, b, b - a - ct] 
b - a, b - ct 

X aF2[ct, ii, 1 + ot - b; b, 1 + ot + a - b; 1] 

+ eilt(<<+a-blr[b, b, ot - b.+ a, ii - ot + b - aJ 
ii, a, b - ct + b - a 

X aF2[1 - a, b - a, ii - ct + b - a; 

1 + b - a - IX, b + b - a - IX; I]}, (I8) 

and identity (15) must be used with the values a1 = ii, 
a2 = ot, aa = 1 + ot - b, bi = b, and b2 = I + ot + 
a-b. With these values, we have 

r[b, b, ct - b .+ a, ii - ct + b - a] 
ii, a, b - IX + b - a 

X aF2[1 - a, b - a, ii - ct + b - a; 

1 + b - a - ct, b + b - a - ct; 1] 

= r[b, ct, 1 + ct - bJ 
a, 1 + ct - a 

X aF2[IX, b - ii, 1 + IX - b; b, 1 + ct - a; 1] 

_ r[b, b - a - ct, ct, 1 + ct - bJ 
a, b - a, 1 - a 

X aF2[ct, ii, 1 + IX - b; b, 1 + IX + a - b; 1]. 

(19) 

Equations (18) and (19) combine to yield the result 
(14). 

Case (4): When Re (IX) > 0, Re (k') > 0, Re (b -
ii + a - ot) > 0, and either WI > Ikl with the param
eter a equal to a negative integer, or WI ~ lkl with 
a equal to a negative integer, then 

1 = (kT«r[ct, b, b - a - IX] 
b - a, b - IX 

X aF{ct, ii, 1 + ct - b; h, 1 + ct + a - b; :} 

(20) 

The proof here follows the method of Slater.6 The 
function IF1 [ii; h; kr] in Eq. (1) is expanded as a series, 
and the integration is done term by term using 

iOOdte-k'ttl>-\Fl[a; c; k't] 

= I'(b)(k'rb 2F1[a, b; c; 1], (21) 

which is valid when the right-hand side converges, to 
yield 

I (k ,)-ar(· ~ (ii)m(IX)m(k)m [ b ] = ct) ",. I -; 2Fl a, ct + m; ; 1 . 
m=o(b)mm. k 

(22) 

The hypergeometric functions of unit argument may 
be summed by Gauss' theorem if 

Re [b - a - (ot + m)] > O. 

This can only be satisfied for all m if the sum termi
nates, i.e., if a is a negative integer. In this case the 
condition Re (b - IX - a + ii) > 0 assures that all the 
hypergeometric functions in Eq. (21) can be summed. 
If, on the other hand, the parameter a is a negative 
integer, then the hypergeometric series themselves 
terminate and may be summed by Vandermonde's 
theorem. In either case the result is 

F [a ct m' b· 1] = r(b)I'(b - a - ct - m). (23) 
2 1 , + " reb _ a)I'(b - ct - m) 

Upon substituting this into Eq. (22) and performing 
minor rearrangements, we have the result (20). One 
might here note the somewhat curious result that the 
case of terminating series, Eq. (20), is just the first 
term of our answer in Case (2) [Eq. (12)]. 

III. APPLICATION TO INELASTIC ELECTRON 
SCATTERING 

The occurrence of integrals of the type evaluated in 
Sec. II in election scattering derives from the form of 
the solution of the Dirac equation for an electron in the 
field of a point nucleus of charge Ze. These solutions 
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are well known and have the formll 

1p~ = {.g,lr)x; }, 
ifir)x-" 

(24) 

where the representation called standard in Ref. 11 has 
been used for the Dirac matrices Y •. The spin-angle 
functions x~ and x~" are eigenfunctions of the operator 
K = (a. L + 1) with eigenvalues -K and K, respec
tively, and /-' is the eigenvalue of the third component 
of total angular momentum. We use the radial func
tions with the normalization of Ref. 2, 

{her)} = {-(E - me)jk} (kr)y-12Ye71Q
/
2 

W(Y + i?1)1 
g,,(r) 1 r(2y + 1) 

and 

x {~~}[y + i1]]ei4>e-ikr 

x IF1[y + 1 + i1]; 2y + 1; 2ikr] (25) 

y = [K2 _ (IXZ)2]!, 

1] = IXZEjk, (26) 

where IX is the fine-structure constant, E is the total 
energy, and k is the momentum. 

When a nucleus is excited by an incident electron 
via one photon exchange, one may represent the 
process as the interaction between two charge and 
current distributions. The electron 4-current is 

S.(r., t) = -ie1p~Y4Y'1pj, (27) 

where 1pi and 1pr are initial and final electron states. In 
the following we will only be interested in the transi
tions (K, /-') -- (K', /-"). With '¥i and '¥f the initial and 
final nuclear wavefunctions, the interaction matrix 
element becomes 

(Hint)f\ = J '¥~J~N)[ieA.(K'/-,'. K/-,. rN»)'¥j drN' (28) 

where A. is the 4-vector potential due to the electron 
and j~N) is the nuclear 4-vector current operator. The 
potential due to the electron 4-current, Eq. (27), is 
the retarded one which gives the result 

(H1nt)f\ = IX drN dr.'¥d~N) 1p~;Y4Y' 1p~'¥i' f f 
t eiwlrN-r.1 

Ir.v - r.1 
(29) 

where w is the excitation energy of the nucleus. The 
evaluation of this matrix element may be reduced to 
integrals over r. and rN, i.e., radial matrix elements. 
The procedure is simplified by recognizing that, for 
values of IKI greater than some minimum value 

IKlmin. the electron wavefunctions are sufficiently 
small in the neighborhood of the nucleus that they 
essentially do not penetrate the nuclear volume. How
ever, owing to the long-range nature of electromag
netic forces, there is still significant interaction. Here we 
adopt the no-overlap approximation and consider 
I KI > I Klmin' In this approximation several simpli
fications are possible. First, the integrations over 
nuclear and electron coordinates separate completely, 
because, as long as r. > r N, one has the expansion 

eiwlrN-r,l/lrN - r.1 
= 47Tiw L h(wrN)h2)(wr.)Yf*(iN )Yf(ie)· 

L,M 

Secondly, the scalar and longitudinal components of 
the interaction cancel,12 and one need consider only 
transverse electric and transverse magnetic inter
actions. The contribution to the matrix element from 
transverse electric interactions of multipole order 2L 
(projection M) is 

EutCK'K) = 47TilXw J drNjN' Nflc J dre1p~;a.~· NLM , 

(30) 

where jN is the nuclear 3-current, a. is the Dirac 
operator for the electron 3-current, and N LM is the 
transverse electric Hansen solution of the vector 
Helmholtz equation13 

NfM = iw-1[L(L + l)r!V x L[h(wrN)Yf(iN )], 

NLM = iW-l[L(L + l)r!V x L[h2)(wre)Yf(r.»). 

(31) 

The integral over nuclear coordinates in Eq. (30) 

will be denoted by BlM ; this is the only way in which 
the structure of the nucleus enters the calculation. The 
integration over the electron angular coordinates is 
straightforward, so that 

ELM = IXB~M( - )H!{47T(2j + 1)/[L(L + l)]}! 

x C(jj'L; -1. l)C(jLj'; /-,M/-,')R&(K'LK), 

(32) 

where j is the total angular momentum of the electron. 
and the radial matrix element is 

R&(K'LK) 

= L(L + 1)100 

r. dr.hl)(wr.)(f"g", - g"/,,,) 

- L(K - K') 100 

re dr.h2)(wr.)(j"g", + grc/",) 

+ W(K - K') 100 

r; drehl!-l(wre)(hg", + grc/,,'). 

(33) 



                                                                                                                                    

1196 W. W. GARGARO AND D. S. ONLEY 

The contribution from transverse magnetic interactions 
can be developed similarly to the above, with the 
result 

MLM = O(Btlli _l)i-I{41T(2j + 1)/[L(L + 1)]}1 

x CUrL; -t, t)C(jLj'; p,MfI/)R.A(,(K'LK), 

(34) 
and the nuclear part is 

B'tM = f drNjN' {[L(L + 1)rIL[h(wrN)Yf(rN)]}*. 

(35) 

Now the spherical Hankel function may be ex
panded as 

h~l)( wr e) = 1;1 r [ A. + n J 21-ni2+n-:eirore. (36) 
n=l n,2+A-n (wre) 

Hence, the above integrations reduce to the type 
evaluated in Sec. II if one can write w ~ k1 - k 2, 
where k 1(k2) is the initial (final) electron momentum. 
This amounts to ignoring second-order terms in the 
electron mass as compared to k1 and k 2, since 

eiror• = eiCkl-k2)re[1 - (im;/k1k2)re + .. ']. (37) 

The first-order correction in the ratio m./k comes only 
from the coefficient (E - m.)/k in the definition of 
(, Eq. (25), and can be included without difficulty. 
The lowest-order approximation (ignoring the electron 

mass altogether) results in 

R\K'LK) 

= Ifr[ L + n J(2w)-n in-L 
n=O n + 1, 2 + L - n 

X {2nL(L + 1) f" r1- n dreiCkl-k2)r(g,JK' - lr<gK') 

+ (K - K')[L(L + 1) + n(n - 1)] 

x L'>-n dreiCkl-h)r(jr<gK' + gJr<')}' (38) 

On substituting for II<, j~" gr<' and gr<' from Eq. (25) 
one has the above integrals cast into a common form, 
namely 

I(Y1Y2'f/1'f/2k1k21mn) 

= Loo drrCY1+Y2-n)-1e-2ik2r 

x 1F1[Y1 + 1 + i'f/1; 2Y1 + 1; 2ik1r] 

X 1F1[Y2 + m + i'f/2; 2Y2 + 1; 2ik2r], (39) 

where Y1 , 'f/1, k1 (Y2, 172, k 2) are the initial (final) values 
of the parameters of Eq. (25) and Kummer's first 
theorem has been used to yield 

{e-ik\F1[y + 1 + i'f/; 2y + 1; 2ikr]} * 
= e-ikr 1F1[Y + i'f/; 2y + 1; 2ikr]. (40) 

For brevity, integral (40) will be denoted by /(/, m, n), 
and its value has already been found in Eq. (5): 

1(1, m, n) = (2k1rYl-Y2+n{eilTI2CYl+Y2-n)r[Y1 + Y2 - n, 2~1 + 1, -Y2 + n + 1 + i'f/1] 
Y1 + 1 + ''f/1, Y1 - Y2 + 1 + n 

F [
Y1 + Y2 - n, Y2 + 1 - m - i'f/2, Y2 - Y1 - n k2] 

X 3 2 • 
2Y2 + 1, Y2 + 1 - n - 1 - i'f/1 ' k1 

+ (k2/ k1rY2+n+le-lT~1+i{!lTCYI-Y2+n+2!H~1IOg Ck2lkl)} 

X r[2Y1 + 1, 2Y2 + 1, Y2 - 1 - n - i'f/1' 1 + n + 1 - m + i('f/1 - 'f/2)J 
Y1 + 1 - I - i'f/1' Y2 + 1 - m - i'f/2, Y2 + 1 + I + n + i'f/1 

X F [Y1 + 1 + i'f/l> - Y1 + 1 + i'f/1, 1 + n + 1 - m + i( 'f/1 - 'f/2). k2]}. (41) 
3 2 -Y2 + 1 + 1 + n + i'f/1' Y2 + 1 + 1 + n + i'f/1 ' k1 

In terms of these functions we can now write 

R&(K'LK) 

= 1:1r [ L + n J2-n-1w-nin-~1A12 
n=O n + 1, 2 + L - n 
X {2nL(L + 1)[(Y1 + i'f/1)(Y2 - i'f/2)eiCtPl-tP2)I(1, 0, n) 

- (Y1 - i'f/1)(Y2 + i'f/2)eiCtP2-tPl)/(0, 1, n)] 

+ (K - K')[L(L + 1) + n(n - 1)] 

X [(Y1 - i'f/1)(Y2 - i'f/2)e-iCtPIH2)I(0, 0, n) 

- (Y1 + i'f/1)(Y2 + i1j2)eiCtPIH2)I(1, 1, n)]), (42) 

where 
A _ 2Yl+Y2ki'-lk~·-le! .. (ql+q.) W(Y1 + i'f/1)r(Y2 + i1j2)1 

12 - r(2Y1 + 1)r(2Y2 + 1) 

The radial matrix element for the transverse magnetic 
interaction may be developed similarly, with the result 

R.A(,(K'LK) 

= fr[ L + n + 1 ]2-n-1w-nin-LA12 
n=O n + 1, 1 + L - n 
X (K + K')[(Y1 + i'f/1)(Y2 + i'f/2)eiCtP1+<P2)I(1, 1, n) 

- (Y1 - i'f/1)(Y2 - i'f/2)e-iCtPIHa)/(0, 0, n)]. (43) 
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IV. REMARKS AND CONCLUSIONS 

The results given in Sees. II and III have been con
firmed, as far as possible, by numerical methods. This 
not only serves as a check on the formal analysis, but 
also ensures that the expressions, although formally 
convergent, can be rendered in numerical form by a 
reasonably compact procedure. 

The expressions given for the radials integrals (42) 
and (43) are for high-energy electron scattering with 
energy transferred to the nucleus. The real part of the 
same expressions would occur in the calculation of 
emission of radiation (Bremsstrahlung) by an electron 
moving in a Coulomb field. In either case, we are 
restricted to the "ultrarelativistic" limit, where k » me 
except insofar as correction terms, in powers of me/k, 
can be added. Where k ~ m, neither this analysis, nor 
the nonrelativistic analysis,1.12 can be applied. 
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Reduced matrix elements of a tensorial product of n tensor operators in the basis of N-particle angular
momentum eigenstates are expanded into a sum of products of n I-particle reduced matrix elements and 
a single (N + n)-particle recoupling coefficient. Application of the formula is illustrated by specific 
examples. The method leaves the coupling schemes of N-particle states undisturbed, which allows sum
mation over intermediate states in a product of matrix elements to be made for any number of factors. 
A formula is given for the sum of products of two matrix elements and the extension to a greater number 
of matrix elements is illustrated by an example which is reduced to a form suitable for numerical evalua
tion. Such summations over products of matrix elements occur in the perturbation theory of configura
tion interaction and have hitherto been discussed in terms of effective operators. The connection of the 
method used here with the effective-operator approach is demonstrated. 

1. INTRODUCTION 

The study of the properties of tensor operators in 
the basis of eigenstates of angular momentum was 
initiated by Racah,lwho gave an expression for the 
reduced matrix element of two coupled tensor opera
tor;s between 2-particle states in terms of the reduced 
matrix elements of single tensor operators between 
I-particle states. Subsequent extension to matrix 
elements of greater complexity proceeded by a 
sequence of recoupling transformations designed to 
bring the matrix element to the Racah form. The 
complicating features of such an approach are that 
each recoupling step introduces summations over 
intermediate quantum numbers and the procedure is 
generally different for each matrix element, being 
dependent upon the coupling schemes of the tensorial 
sets (operators or momentum eigenstates) involved. 
Here a formula is derived which is applicable to 
any matrix element of n coupled tensor operators 
between N-particle states. Furthermore, the for
mula permits any reduced matrix element to be 
immediately written as a sum of products of I-par
ticle reduced matrix elements with a single recoupling 
coefficient. 

The method of derivation is a generalization of the 
method of Fano, Prats, and Goldschmidt2 (hereafter 
referred to as FPG) who considered a product of two 
tensor operators acting between N-particle states. The 
method recognizes that both operators and momentum 
eigenstates are tensorial sets3 and introduces mock 
particles whose eigenstates are tensorial sets of rank 
equal to that of a tensor operator. Fan04 later used 
the same method to calculate matrix elements of the 
scalar product of Racah tensors between eigenstates 
of orbital angular momentum and called the mock 
particles "orbitons." In this general treatment the 
particles are called "momentons." 

The general formula is derived in Sec. 2 and its 
application is illustrated by several examples in 
Sec. 3. The "momenton" method expresses the 
recoupling of momenta involved in any matrix ele-

ment as a single recoupling coefficient. The recoupling 
coefficients occurring may be reduced to sums of 
products of 6-j and/or 9-j symbols for numerical 
evaluation. This reduction is readily achieved either 
by use of the diagrammatic techniques developed in 
the exhaustive treatment of Yutsis, Levinson, and 
Vanagas5 (referred to as YLV) or by explicit expansion 
of the coefficient (Ref. 3, Chap. 9). The latter method 
is found to be more direct in this case and is used in 
the examples. 

The momenton method has the further advantage 
that it does not disturb the coupling schemes of the 
N-particle states involved. This feature makes it 
eminently suitable for the evaluation of products of 
matrix elements where summation is made over the 
coupling schemes of intermediate states. Such prod
ucts occur, for example, in the perturbation theory of 
configuration interaction in atoms.6- 8 The summation 
is carried out using the group property of recoupling 
coefficients and in Sec. 4 a formula is given for the 
product of two matrix elements summed over the 
states of the intermediate configuration of particles. 
The extension of the result to any number of matrix 
elements is straightforward and a worked example is 
given as illustration. 

Previous treatments of configuration interaction6
- S 

have investigated the structure of perturbation terms 
and showed that the sum of products of matrix 
elements may be replaced by "effective" operators 
acting between initial and final states only. The 
formulas given in Secs. 2 and 4 enable these effective 
operators to be derived by an expansion of the 
recoupling coefficients given by the momenton 
method. This connection with previous work is 
demonstrated in Sec. 5. 

Shell-model calculations involve antisymmetrized 
matrix elements, which are expanded in terms of the 
corresponding unsymmetrized matrix elements.1.4 

The coefficients of the expansion are products of a 
phase factor, coefficients of fractional parentage and 
a numerical factor depending upon the occupation 

1198 
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numbers of the subshells. In the following, the unsym
metrized matrix elements are considered. 

2. THE GENERAL CASE 

The essential simplifying step in the treatment of 
FPG is to decouple the tensor operators so that they 

Here ot, ot', and P denote the coupling schemes and 
values of the intermediate quantum numbers of the 
two N-particle wavefunctions and the set of tensor 
operators, respectively. The subscripts r, s, t,'" 

denote the I-particle spaces in which the operators 
act; generally, any number of operators may act 
within each I-particle space. 

The coupled product of tensor operators in (2.1) 
is expanded as a linear combination of the direct 
products of tensor components, the expansion 
coefficients being generalized Clebsch-Gordan coeffi
cients 

[A[arJB[b,JC[CtJ ... R][KJ 
r s t P Q 

x,Y,z," . 

(arxbsYctz .. ·1 (arbsc t .. ·)P, KQ), (2.2) 

where, for example, the subscript x denotes one of the 
2ar + 1 components of the tensor NarJ. Momenton 
wavefunctions are now introduced and written in 
tensorial-set notation U~kJ. The orthogonality of the 
momenton wavefunctions 

U[kJ*U[kJ = !5 
q' q qq' 

enables (2.2) to be written 

[A[arJB[bslC[CtJ . .. R][KJ 
r s t P Q 

= ~ ~ (A[arJB[bsJC[cr] ... ) 
.£.., .£.., r,x StY t,z 

X,y,Z, ..• x' ,v' ,z' • .•. 

x (u;arJ* U~bsl'u~ctJ' ... )(u~~rJu;?sJu;,ctJ . .. ) 

x (arx'bsY'ctz' .. ·1 (arbsc t ' . ·)P, KQ). (2.3) 

may be applied separately and independently to single
particle wavefunctions without disturbing the coupling 
scheme of the many-particle wavefunction. The 
general type of matrix element to be evaluated is a 
coupled product of n tensor operators acting between 
N-particle wavefunctions, i.e., 

(2.1) 

Equation (2.3) is the generalization of Eq. (33) of 
FPG. The coupling scheme P has been transferred to 
the momenton wavefunctions, i.e., Eq. (2.3) may be 
written 

[A[arJB[b,JC[ctJ. .. R][KJ 
r s t ,P Q 

[ * * * = (ArarJu[a,J )(B~b,JU[bsJ )(C~CtJu[Ctl ) ... 

[u[arJu[b,Ju[Ct] ... ,P]bKJ• (2.4) 

The operators may now be applied independently to 
the I-particle wavefunctions in the N-particle wave
function 

([jlj2j3' .. jN]ot,jml 

= I «jlj2j3" .), otjm 1 j 1m1j2m2j3m3 ... ) 
ml,m2,mS 

X (jlm1Il)(j2m212)(j3m31 3) .. '. (2.5) 

It is important to recognize that the factors A~arJu[a,]· 
may be reordered to bring operators acting in the same 
I-particle space together. For each I-particle space 
the ordering of the operators must be the same as that 
in the original n-operator product. This is to be con
trasted with the conventional approach which works 
with the coupled n-operator product so that the re
ordering into groups of operators acting in the same 
I-particle space involves a recoupling transformation. 
Each group of operators acting within the same I-par
ticle space is now applied to the appropriate I-particle 
wavefunction in (2.5). One such group of n i operators 
A~ailB~b;] ••• Z~ziJ acting in the ith I-particle space will 
be considered. Operating to the left on the ith 1-
particle wavefunction gives 

x (i 1 j"m")(j"m,, 1 i) ... (jwmw 1 i)Z~:;,l(i 1 jW+lmW+l)(jW+lmW+l 1 i)u~a;J'u~~;J' ..• uJ~;J". (2.6) 

Application of the Wigner-Eckart theorem to each matrix element of the tensor operators gives 

(jimi / i)(A\aiJu[aiJ")(B\btJu[b;J*) ... (Z\ZiJU[Z;]") 

,I " .. L. I ([jilUp][j"l' .. [jw])-!(jill A\atl llip)(jpll mbi] Iii,,) ... (jwll Z~Zi] lliw+l) 
a,q ," ',q }p.1a ,·· ',1CO+l mp,m a ," ',mW+l 

X (jimi / jpmpaiq)(jpmp / j"m"biq') ... (jwmw / jW+lmW+lZiq")(jW+lmW+l/ i)u~ai]*u~~il' ... u~;,iJ* 
I [jX!(jJ Ala;] llip)[jpl-!(jpll mbiJ Iii,,) ... [jwl-! 

j p,ia •· .. ,iCO+l 

X (jwll Z~ZiJ IIjW+l)[[[[{jw+ll X u[ZiJ*l[iw] .. 'lU,,] X u[bi]*l[ip] X u[ail"l~:l, (2.7) 
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where the usual abbreviation [j) == (2j + 1) has been 
made. 

Equation (2.7) gives the result of operating to the 
left on the ith I-particle wavefunction with the ni 
operators which are coupled with n i momentons 
according to the transformation (2.4). This result is 
a product of ni I-particle reduced matrix elements, 
involving ni - 1 intermediate summations over com
plete sets of I-particle wavefunctions, together with a 
coupled product of particle i and n; momentons. When 
the overlap is taken with the N-particle wavefunction 
on the rhs of the matrix element (2.1), the orthogo
nality of I-particle wavefunctions gives j",+1 = K only. 
Therefore, the n; momentons are coupled sequentially 
onto the momentumj; of particle i in the right-hand 
N-particle wavefunction to give a momentumj; which 
is that of particle i in the left-hand N-particle wave
function. As may be seen from (2.7), the coupling 
scheme of this group of wavefunctions is obtained by 
reading from right to left the sequence of momenta 
and ranks appearing in the product of I-particle 
reduced matrix elements. 

The intermediate momenta jp, ja, etc., introduced 
by the summations over complete sets in (2.7) are 
local to the sequential coupling within each I-particle 
group and do not enter into the coupling schemes 
IX, IX', or fJ. For the sake of clarity they will be sup
pressed henceforth except by indication under the 
summation sign. For instance, the product of 1-
particle reduced matrix elements (J;II A~a;l Iljp) ... , 
together with the "normalization" factors [j]-t, will 
be indicated by the symbol (j;II A~ailBibil ••• Zfzil Iljw+l) 
inside the summation sign. Also, the sequentially 
coupled wavefunction {«[(j",+lZi)j", .. ·]jab;)jpai)jil of 
the particle and ni momentons on the rhs of (2.7) will 
be denoted by {[j"'+1' {ri} ]jil, where {rJ denotes the 
ordered group of momentons with rank Zi··· ai . 
In this abbreviated notation, Eq. (2.7) is written, for 

the set of wa vefunctions {j; I, as 
{jil (A~a'lu[a;]')(B\bilu[b;l') ... (Z~Zilu[Z;]') 

L (jJ A~ailBJbil . .. Zlz,l Ilj"'+1) 
ip,ju," "'3W+1 

X {U"'+1' {ri})j;l. (2.8) 
Each set of operators acting in the same I-particle 

space gives rise to a factor like the rhs of (2.8). The 
final momenta ji of each of the N groups, consisting 
of particle i and ni momentons, are then coupled 
according to the scheme IX of the left-hand N-particle 
wavefunction to give a coupled wavefunction of N 
particles and n momentons. 

Upon substitution of the transformation (2.4), the 
rhs of the matrix element (2.1) becomes the (un
coupled) product of the n-momenton wavefunction 

[u[ar]u[bslu[Ctl . •. , fJ)~K] == In, fJKQ) 
and the N-particle wavefunction 

IU{j~ ... jN)' IX'J'M') == IN, IX'J'M'). 
The product is expanded as 

IN, IX'J'M') In, (JKQ) 
= L [IN, IX'J'} x In, (JK})~](jm I J'M'KQ). (2.9) 

jm . 

The orthogonality of (N + n)-particle wavefunctions 
gives only the term j = J, m = M in the sum in (2.9) 
when the product is taken with the (N + n)-particle 
wavefunction arising from the n operators acting on 
the left-hand N-particle wavefunction. The scalar 
product of the two (N + n)-particle functions is a 
single recoupling coefficient. 

The Wigner-Eckart theorem applied to (2.1) gives 

(IXJMI O~K] I~'J'M') 
= [J)-~(JM I J'M'KQ)(IXJII O[K] IIIX'J'), (2.10) 

where O~] denotes the product of n tensor operators. 
Using the results (2.4), (2.8), (2.9), and (2.10), we 
can write the reduced matrix element of n tensor 
operators acting between N-particle momentum 
eigenstates as 

([jlj2· .. jN]' IXJII [A~arlB~bslC~Ctl . .. ,(J)[K] II [j{j' ... jN)' IX'J') 

L L L [J)t(jll1 A~al]BlbIl ••• Z~zIl IUD(j211 A~a2]B~b21 ••• Z~Z2] IIj~)· .. 
h,P.iI.tI,·· ',h,w i2.p,j2,a,·· ',i2,(O iN.p,iN,(J,'· ','N,W 

(jNII A~N]B~NJ. .. Z~¥N] IUN)([j{, {ri })jl, [j~, {r2}]j2 ... 

[jN' {rN}]jN, IX I[jU~· .. jN' IX']J', [arbsc t , •.• ,,B]K)(J). (2.11) 

The formula (2.11) allows any reduced matrix 
element to be written as a sum of products of 1-
particle reduced matrix elements and single recoupling 
coefficients. Aside from numerical factors of the type 
[j]!, the recoupling coefficients are 3(N + n - 1)-j 
symbols or reduce to a product of lower-j symbols. 

The recoupling. coefficient may be evaluated by the 
most direct method available. It is customary to 
expand the coefficient in products of 6-j and/or 9-j 
symbols. This reduction may be achieved either by 
the algebraic method used by Fano and Racah (Ref. 
3, Chap. 9) or by the equivalent diagrammatic 
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technique of YLV. The present method enables the 
reduction to be used which gives the minimum 
number of intermediate summations, which is not 
always the case for the Racah method. Examples 
and specific cases are treated in the following section. 

3. APPLICATIONS 
A. Simple Examples 

In the method of Racah,t the matrix elements of 
products of tensor operators are calculated by first 
expanding tensorial products (either operators or 
eigenstates) in terms of Clebsch-Gordan coefficients, 
extracting I-particle reduced matrix elements, and 
subsequently recoupling. Fano and Racah3 have 
circumvented the expansions in Clebsch-Gordan 
coefficients by direct recoupling of eigenstates. How
ever, for a general matrix element of the type (2.1), 
several recoupling steps may be necessary although 
intermediate quantum numbers introduced by the 
recouplings may subsequently be summed over to 
give a single recoupling coefficient. The present 
method yields this single coefficient directly. 

A simple example of the general type (2.1) is the 
matrix element of the product of two operators acting 
in different subspaces between 2-particle wavefunc
tions. In this case (N + n - 1) = 3 and the result is 
obtained from (2.11) in terms of a 9-j symbol, i.e., 

(jjj2' jll [A1kll x B~k21][kl IIjU~, j') 
= (jIll Alk llllj{)(j211 B~k211Ij~)[j]t[j1]-i[j2]-i 

X «(j{k1)j1' (j{k2)j21 (j{j~)j', (k1k2)k)(j) 

= (jIll A~kllllj{)(j211 B~k211IjD([j][k][j'])i 

(

j{ k1 j1) 
X j~ k2 j2 . 

j' k j 

(3.1) 

When derived by the Racah method, the expression 
differs from the rhs of (3.1) by a cyclic permutation 
of the columns of the 9-j symbol, which does not 
alter its value. Other well-known results involving 
6-j symbols may also be obtained immediately from the 
general formula, for example, the case N = 1, n = 2, 

(jIll [A~kd x B~k21][kl II jD 

= 2 (j111 A~kl1 11j~)(j~11 Blk21 11j{)[jn-! 
il" 

X «(j{k2)j~, kll j{, (k1k2)kYh) 

= 2 (jIll A~kll 11j~)(j~11 Blk21 11j{)[k]!( _1)h+h'+k 
it" 

X {~~ ~2 ~,} 
11 11 11 

(3.2) 

and the case N = 2, n = 1,9 

( .. '11 A[k111 .,., .,) h.12'] 1 ,1112,] 

= (jIll A~klllm[j]k[j1]-i«(j{k)jl,j21 (jU~)j', k)(j) 

= (jIll A~kl 11j{)([j][j'])~( -1 )k+h+hH' 

X D()' ).,){j1 j j2}. 
2 2 j' j{ k 

B. A Further Example 

(3.3) 

The general formula (2.11) is most useful in the 
case of more complicated matrix elements where it 
may avoid redundant intermediate summations. To 
illustrate the application of the present method, a 
specific example, treated in YLV (Sec. 34) by the 
conventional method, will be evaluated. According 
to Eq. (2.11), we have 

(j1j2' jll [[Tlkll x U~k21][k121 X [Vfk31 X WJk41][k341][kl IIjU~, j') 
= 2 [j]t(j111 11kll Vfk31 IIjD(h II V ik21 Wik41 II j~) 

i 1 " d 2 " 

X ([j~,{r1}]jl> [j~, {r2}]j21 (j~j~)j', [(k1k2)k12 , (k3k 4)k34]k)(i) 

= 2 [j]!(j111 T~kll 11j~)(j~11 V~k31 11j{)(j211 u~k2111j~)(j~11 W~k41 II j~) 
il",j2" 

X ([jd[j~][j2][jm-t([(j{k3)j~ktlj1' [(j~k4)j~k2]j21 (jUDj', [(k1k2)k12 , (k3k4)k34]k)(j). (3.4) 

The recoupling coefficient in (3.4) may be expanded in a way which involves a single intermediate summation 
to give an expression suitable for numerical evaluation 

([U;k3)j~kl]jl' [(j~k4)j~k2]j21 (jU~)j', [(k1k2)k12 , (k3k,)k34]k)(j) 

= 2 «(j~k1)j1' (j~k2)j21 (jU~)l, (k1k2)k12)(;) 
1 

X (U{k3)j~, (j~k4)j~ I (jU~)j', (k3k4)k34YO(U'k34)1, k121 j', (k34kdk)(j) X (_1t34+k12-k 

=2[1](-1);+i'+k([jtl[j2][k12][j~][jmj'][k34][k])!{t k34 ~}{;; :,' ;:){;~ ~: ;;). (3.5) 

I 12 j 1 k12 ) ) k34 1 
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In this example, N = 2, n = 4, and the recoupling 
coefficient is proportional to a 15-j symbol. Utilizing 
the diagrammatic representation of YL V, we can 
show that the recoupling coefficient is proportional 
to a 15-j symbol of the third kind, namely, 

{

jl j{ j j' j2 j~} 
j~ k R. 

kl k3 k12 k34 k2 k4 

This is the result obtained in YLV (Sec. 34) by a 
procedure which involves a redundant intermediate 
summation. There is a standard formula given in YLV 
for the reduction of a 15-j symbol of the third kind 
which is equivalent to the expansion (3.5). The diagram
matic techniques are extremely useful for handling 
higher 3n-j symbols, but in the present class of 
examples a direct expansion as in (3.5) may be 
preferable. 

4. PRODUCTS OF MATRIX ELEMENTS 

The examples of the previous section have dealt with 
situations where complex products of tensor operators 

act between states of simple structure (i.e., N < n). 
In shell-model calculations of many-particle systems, 
one usually encounters matrix elements between 
many-particle states of a complex structure. As 
noted in FPG, the momenton method then has the 
great advantage over conventional methods of leaving 
the coupling schemes of the many-particle states 
undisturbed. This property is even more useful in the 
case of products of matrix elements where summation 
is made over states of the intermediate configurations. 

For a product of N matrix elements, application of 
Eq. (2.11) to each factor results in a product of N 
recoupling coefficients. Using the group property of 
recoupling coefficients, we can then make a summation 
over the coupling schemes of intermediate many
particle states. This summation gives a single re
coupling coefficient which involves only the coupling 
schemes of the initial and final states in the original 
product of matrix elements. The case of a product of 
two matrix elements will be considered, since the 
extension to a product of many matrix elements is 
immediate. Consider the summation 

2, (jl ... jN' IXJII [A~arllB~b31l. .. ~I][Kll Ifj~'" /'V' IX'J') 
a' 

where the particles r, s, ... , u, v, ... belong to the 
group of N particles whose momenta are coupled to 
form the states (IXJI, (IX'J'I, and (IX"J"I. According to 
Eq. (2.11) each factor in (4.1) gives a sum over 
products of I-particle reduced matrix elements 
with a recoupling coefficient. The I-particle reduced 

matrix elements do not involve the coupling of angular 
momenta and will be omitted. The summation over 
IX' in the product of recoupling coefficients arising 
from (4.1) follows from the group property of re
coupling coefficients. The notation of (2.11) is used 
for the recoupling coefficients and the result is 

~ ([" {(1)}). [" {(1)})' I ( ., ., ')J' (b R )K )(J) £., 11, r1 11'" lN, rN lN'1X 11" 'IN'1X , ar1 81'" >/-.11 1 

a' 

x ([j~, {ri2)} ]j{ ... [jN, {rW} ljN, IX' I (j~ ... j:v, IX")]", (a u2bv2 ... , P2)K2YJ ') 

= ([(j~, {r~2)})j{, {r~l)}]jl ... [(jN, {r~)})jN' {rW}]jN' IX I [(j~ ... jN, IX")J", 

From Eq. (4.2) it may be seen that the result of the 
summation over IX' is simply to replace the momenta 
j; ... j',y on the Ihs of the first recoupling coefficient 
by the coupled groups [j;, {r12)}]j: ' etc., for the same 
particles on the Ihs of the second recoupling coefficient. 
The rhs of the second coefficient has a coupling 
scheme (J"K2)J' and replaces the N-particle state IIX'J') 
on the rhs of the first coefficient. The resulting 
recoupling coefficient involves only the coupling 
schemes and IX and IX" of the initial and final states. If 

(au2bv2' .. , P2)K2]J', (ar1bs! ... , Pl)K1)(J). (4.2) 

only the first or only the second matrix element 
contains operators acting in the space of particle i, 
then a factor bU;K) or bUd:) is included, respectively. 
If neither matrix element contains operators acting in 
the space of particle i, then both factors are included. 

By an extension of the procedure of (4.2), summa
tion can be made over the states of intermediate 
configurations for any number of factors. The case of 
three factors involving two summations is illustrated 
by an example, i.e., 
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I (jrj.jp otJ11 [A~kl] x B~ks]][k] Ilj;j;j;, ot'J')(j;j;j;, ot'J'11 C~k3]. D~k3] 111;1;1;, PT)(l;I;I;, P'!:II E~k4] Il/rlslt> PL) 
a',(J' 

= (j;11 C~k3] 111;)(jt II B~k2] IU;)(I;II E~k4] Illt)(j.11 A~ktl IU;)(j;11 D~k3] III;) 
X !:l. x ((lrk3)jr, ((lsk3)j~, k1)is, ((ltkJi;k2)jt, ot I ((lr1slt)f3L, k4)J', (k3k3)O' (k1k2)k/J ), (4.3) 

where !:l. is the factor 

To evaluate the recoupling coefficient, the coupling schemes ot and f3 must be given; we assume the schemes 
«jr, (j.it)})JI and I ((Ir l.)L, It)L), In this case the recoupling in (4,3) reduces to a product of two 6-j symbols 
and a 12-j symbol and is evaluated via the expansion 

((lrk3)jr, [«I.k3)j;, k1)j., ((lt k4)j;k2)itV I «((1rl.)L, It)L, k4)J', (k3k3)O' (k1k2)k)(J) 

= 2 «j;k1)j .. (j;k 2)it I (j;i;)x, (k1k2)k)(J)(jr' (xk)J I (jrx)J', k/ J
) 

'" 

= P( _l)<p{L l~ ~}{ir ~~ k3} I (-l)"'[x ]{ir J~ X}{~~ 
k4 J Jt 1. J. L '" k J J Jt 

(4.4) 

where 
P == ([k3]-I[j.][jt][k][J][J'][L][jr][j;][j;][Ln1 

and 

4> == (2(L + J' + i; + jr) + J + k3 + k4 + k + Ir + It + j;). 

5. EFFECTIVE OPERATORS 

The summations over intermediate states in a 
product of matrix elements which has been achieved 
in Sec. 4 by the momenton method, may also be 
performed by the introduction of unit tensor operators. 
This was the method introduced by Racah and Stein7 

in a study of the second-order perturbation of terms 
of the configuration IN. The introduction of unit 
tensors allows I-particle reduced matrix elements to 
be separated from the recoupling of momenta. When 
evaluated according to (2.11), the reduced matrix 
element of a product of unit tensor operators is 
simply a single recoupling coefficient, as illustrated 
by the following example: 

(jlj2,jll [A~a] x B~b]][kJ IU{j~,j') 

= (iII! A~a] II iD(j211 B~b] IU~) 
x (jli2,ill [a~a] x WJ][k] Ilj{j~,j') 

= [j]l([jl][j2J)-1(jlII A~a] IUDU211 B~b] Ilj~) 
x «j{a)jl, (j~b)i21 (j{j~)j', (ab)k)<il, (5.1) 

where 

(jIll a~a] \\j~) = b(jUD and (j211 W] \\i~) = b(j~jD. 
For each distinct I-particle reduced matrix element, 

a different unit tensor operator has to be introduced. 
In the case of products of matrix elements such as 
were treated in Sec. 4, the corresponding product of 

matrix elements of unit operators may be summed 
over the states of intermediate configurations.7 This 
gives a single matrix element of the product of all unit 
operators acting between the initial and final states. 
If this matrix element is evaluated by using Eq. (2.11), 
the result is the recoupling which would be obtained 
by performing the summation according to the 
procedure of Sec. 4. However, Racah and Stein 
recoupled the unit-operator product to bring together 
groups of operators acting in the same I-particle space. 
The operators in each such group were then multiplied 
tensoriaUy to form effective unit operators for each 
I-particle space. The momenton method isolates the 
sequence of interactions within each I-particle space 
on the lhs of the recoupling coefficient in Eq. (4.2). 
The effective unit operators can then be obtained by 
recoupling separately within each I-particle space. 
This recoupling does not disturb the coupling schemes 
of N-particle states, and so it is not necessary to specify 
particular coupling schemes. The derivation of effec
tive operators by the momenton method is illustrated 
by an example. In the perturbation of terms of the 
electronic configuration IN by the configuration 
tN - 2l't", the following product of unsymmetrized 
matrix elements of Racah tensors occurs6 ,7: 

2 (IN-2, 12\ C~k]. C~kJ \IN- 21'1", ot') 
a' 
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Summation over IX' may be made according to the 
method of Sec. 4 to give the result 

(III d k ] 111')(111 d k ] 111")(/'11 C[k'] III) 
x (/"11 d k

'] 11/)[Wl([l'][l"D-t 

x «(lk')/'k)/, «lk')/"k)/1 (ll)L, (k'k')O, (kk)O)(L). 

(5.3) 

For simplicity in this case a coupling scheme (/2)L 
has been specified, the configuration /N-2 being 
treated as "spectator" electrons. The recoupling 
coefficient is expanded 

«((Ik')/'k)l, «(lk')l"k)l/ (ll)L, (k'k')O, (kk)O)(L) 

= L «lk')/', k II, (k'k)t)w«(lk')l", k II, (k'k)t)(z) 
t 

x ((It)l, (It)/1 (ll)L, (tt)O)(L) 

= ~ [t]([1]2[l'][I"Dt {k k' t }{k k' t} 
7' I I I' I I" 

x ((I2)LI c~t]. c~t] 1(l2)L), (5.4) 

where (III crt] Ij) = r5(jl) and use has been made of the 

JOURNAL OF MATHEMATICAL PHYSICS 

result (2.11). Finally, using (5.4), we have 

L (lNI qk] • C~k] I/N- 2/'I", IX') 
a' 

X (IN-2l'l'', IX'I qk']. C~k'] liN) 

= (III C[kJIIl')(/11 crk] 11/")(/'11 C[k'] 11/)(/"11 C[k'] Ill) 

x ~ [t]{k k' t }{k k' t }(lNI dt]. c[.tJ lIN) 7' I [ [' [ [l" ' 3 , 

(5.5) 
as obtained by Racah and Stein. 
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particles bound by a massless particle have been obtained for all energies. By using Fock's stereographic 
projection, the Bethe-Salpeter equation is transformed on to the surface of a 5-dimensional Euclidean 
sphere and the solutions are then expressed as a series in 0(5) harmonics. The normalization condition 
has been imposed by requiring that the expectation value of appropriate components of the energy
momentum tensor with respect to the bound states is the total energy of the system; it is found that 
states corresponding to certain values of the quantum numbers do not satisfy the normalization 
requirement. These are the so-called abnormal asolutions. 

1. INTRODUCTION 

The study of the various properties of the covariant 
Bethe-Salpeter wave equation l has engaged the 
attention of many authors for a long time. Although 
the formulation of the BS equation has solved the 
problem of constructing a fully relativistic wave 
equation for a 2-body system in the framework of 

quantum mechanics, the appearance of many un
familiar features in the equation has raised doubts in 
the minds of several authors. The presence of singu
larities in the interaction kernel led one to wonder 
whether any eigenvalue solution to the equation 
existed at all. This difficulty was resolved by Wick,2 
who transformed the equation by rotating the path 



                                                                                                                                    

1204 JOHN S. BRIGGS 

Summation over IX' may be made according to the 
method of Sec. 4 to give the result 

(III d k ] 111')(111 d k ] 111")(/'11 C[k'] III) 
x (/"11 d k

'] 11/)[Wl([l'][l"D-t 

x «(lk')/'k)/, «lk')/"k)/1 (ll)L, (k'k')O, (kk)O)(L). 

(5.3) 

For simplicity in this case a coupling scheme (/2)L 
has been specified, the configuration /N-2 being 
treated as "spectator" electrons. The recoupling 
coefficient is expanded 

«((Ik')/'k)l, «(lk')l"k)l/ (ll)L, (k'k')O, (kk)O)(L) 

= L «lk')/', k II, (k'k)t)w«(lk')l", k II, (k'k)t)(z) 
t 

x ((It)l, (It)/1 (ll)L, (tt)O)(L) 

= ~ [t]([1]2[l'][I"Dt {k k' t }{k k' t} 
7' I I I' I I" 

x ((I2)LI c~t]. c~t] 1(l2)L), (5.4) 

where (III crt] Ij) = r5(jl) and use has been made of the 

JOURNAL OF MATHEMATICAL PHYSICS 

result (2.11). Finally, using (5.4), we have 

L (lNI qk] • C~k] I/N- 2/'I", IX') 
a' 

X (IN-2l'l'', IX'I qk']. C~k'] liN) 

= (III C[kJIIl')(/11 crk] 11/")(/'11 C[k'] 11/)(/"11 C[k'] Ill) 

x ~ [t]{k k' t }{k k' t }(lNI dt]. c[.tJ lIN) 7' I [ [' [ [l" ' 3 , 

(5.5) 
as obtained by Racah and Stein. 

ACKNOWLEDGMENT 

I would like to thank Professor U. Fano for helpful 
discussions. 

* Work performed under the auspices of the U.S. Atomic Energy 
Commission. 

1 G. Racah, Phys. Rev. 62, 438 (1942); 63, 367 (1943). 
2 U. Fano, F. Prats, and Z. Goldschmidt, Phys. Rev. 129, 2643 

(1963). 
3 U. Fano and G. Racah, Irreducible Tensorial Sets (Academic 

Press, Inc., New York, 1959). 
• U. Fano, Phys. Rev. 140, A64 (1965). 
5 A. P. Yutsis, I. B. Levinson, and V. V. Vanagas, Mathematical 

Apparatus of the Theory of Angular Momentum (Israel Program for 
Scientific Translations, Jerusalem, 1962). 

• K. Rajnak and B. G. Wybourne, Phys. Rev. 132,280 (1963). 
7 G. Racah and J. Stein, Phys. Rev. 156, 58 (1967). 
8 B. G. Wybourne, J. Chern. Phys. 48, 2596 (1968). 
9 For typographical convenience the notation /j(jj') is used for the 

Kronecker /j symbol. 

VOLUME 11, NUMBER 4 APRIL 1970 

O( 5) Harmonics and Abnormal Solutions in the Bethe-Salpeter Equation 

DEBABRATA BASU AND S. N. BISWAS· 
Centre for Advanced Study in Physics, Department of Physics and Astrophysics, University of Delhi 

Delhi, India 

(Received 23 May 1969) 

Exact solutions of the covariant Bethe-Salpeter equation in the ladder approximation for two scalar 
particles bound by a massless particle have been obtained for all energies. By using Fock's stereographic 
projection, the Bethe-Salpeter equation is transformed on to the surface of a 5-dimensional Euclidean 
sphere and the solutions are then expressed as a series in 0(5) harmonics. The normalization condition 
has been imposed by requiring that the expectation value of appropriate components of the energy
momentum tensor with respect to the bound states is the total energy of the system; it is found that 
states corresponding to certain values of the quantum numbers do not satisfy the normalization 
requirement. These are the so-called abnormal asolutions. 

1. INTRODUCTION 

The study of the various properties of the covariant 
Bethe-Salpeter wave equation l has engaged the 
attention of many authors for a long time. Although 
the formulation of the BS equation has solved the 
problem of constructing a fully relativistic wave 
equation for a 2-body system in the framework of 

quantum mechanics, the appearance of many un
familiar features in the equation has raised doubts in 
the minds of several authors. The presence of singu
larities in the interaction kernel led one to wonder 
whether any eigenvalue solution to the equation 
existed at all. This difficulty was resolved by Wick,2 
who transformed the equation by rotating the path 



                                                                                                                                    

ON BETHE-SALPETER EQUATION 1205 

of integration in the complex energy plane. The eigen
value problem, in terms of the transformed equation, 
can be solved and the existence of the solutions can be 
shown to follow under fairly general assumptions that 
the wavefunction "P(P) is finite at small p and p2"P(P) is 
finite at large p. It is also known that the BS equation 
may have too many solutions, a feature connected 
with the fact that the order of the equation is higher 
than that of the corresponding nonrelativistic equation. 
It has been suggested that the covariant bound-state 
equation must be supplemented by a normalization 
condition which, as for the nonrelativistic Schro
dinger equation, serves to distinguish the physical 
solutions by their normalizability. Moreover, a knowl
edge of normalization integrals is always essential to 
the quantum mechanical probabilistic interpretation 
of the 2-particle wavefunctions given by the theory. 

In the present paper, we investigate this particular 
aspect of the solutions of the BS equation and show 
the absence of the positive-definite norms for a class 
of wavefunctions satisfying the BS equation for two 
scalar particles bound by a massless scalar particle. 
These are the so-called "abnormal" solutions of the 
BS wave equation. The existence of such solutions in 
this particular case was also noted by Nakanishi,3 who 
considered the solutions when the total energy of the 
2-particle system is zero. The possibility that such 
solutions might exist for nonvanishing energy was also 
indicated by him. In particular, the presence of 
"abnormal" solution which do not possess a non
relativistic limit was first noted by Wick2 and Cut
kosky.4 

We first show that exact solutions of this particular 
BS equation can be obtained as a convergent series of 
0(5) harmonics for arbitrary nonvanishing energies. 
This possibility stems from the fact that the BS 
equation at zero energy admits an exact 0(5) sym
metry and thus has 0(5) polynomials as exact eigen
functions. The existence of such a symmetry was 
pointed out by Cutkosky4 and later by Salam et al.,5 
by applying the stereographic projection techniques of 
F ock. 6 The existence of this symmetry character in the 
BS equation has also been noted by one of us' to 
follow from the observation that the equation can be 
separated in a suitable system of coordinates. An 
extensive study of this dynamical symmetry in BS 
equation has recently been made by Kyriakopoulos.8 

In the present paper we adopt the method due to 
Fock6 and Levy.9 Our method of solution is a direct 
generalization of that used in our earlier paperlO in 
solving the pion-nucleon BS equation in the instantan
eous interaction approximation. 

Normalizability criteria for the BS wavefunctions 

have then been used to eliminate the abnormal solu
tions. For this, we follow Nishijima and Singhll and 
adopt for normalization the requirement that the 
expectation value of the energy-momentum tensor 
operator with respect to the bound states be the total 
energy of the system. The equivalence of this criteria 
with other methods of normalization12 of covariant 
wavefunctions has also been pointed out in Ref. II. 

In the next section, we briefly discuss the structure 
of our equation in Fock's 5-dimensional pseudosphere 
and obtain the solution in the form L a,j'JS~k.n where 
PXI~k.n are simply related to Gegenbauer polynomials 
and the ak satisfy a difference equation of the form 
Lak+2 + Mkak + Nkak- 2 = 0. We then solve this differ
ence equation exactly and obtain the energy eigenvalue 
solution. In Sec. 3 we impose the normalization condi
tion and point out the abnormal solutions of our 
equation. 

2. THE BS EQUATION AND ITS SOLUTION 
IN 0(5) HARMONICS 

We consider the following BS equation in the ladder 
approximation for two equal-mass scalar particles 
bound by a massless scalar meson: 

[(p2 + 1 _ i)2 + 4e2p!]"P(p) = ~ Jd4p' "P(p') . 
7T2 (p _ p')2 

(1) 

Here "P(p) is the Fourier transform of "P(x - y), the 
configuration-space wavefunction in relative coordi
nates. In obtaining Eq. (I) we have performed the 
Wick rotation in the relative time variable and further 
specialized to the rest frame iP = (0,0,0, ie) where 
P denotes the total 4-momentum of the system. It 
should be mentioned, however, that because the mass 
of the exchanged scalar particle is zero (fl = 0), the 
resulting BS equation admits of an extra symmetry. 
For example, when fl = ° and e = 0, the BS equation 
has exact 0(5) symmetry. The purpose of the present 
section is to show that, although for fl = ° and e ~ ° 
the BS equation does not possess exact 0(5) sym
metry, it still admits of an exact solution in terms of an 
infinite series in 0(5) harmonics. In this case, however, 
the equation has an exact 0(4) symmetry. 

We first rewrite Eq. (1) in terms of a new variable q 
defined by 

(2) 
and further use 

Pk = 2qkj(l + q2 + 2q4), 

P4 = (1 - q2)j(1 + q2 + 2q4), (3a) 

k=I,2,3, 



                                                                                                                                    

1206 D. BASU AND S. N. BISWAS 

so that 
p2 = (l + q2 - 2q4)/(l + q2 + 2q4)' 

From Eqs. (3) it easily follows that 

We transform Eq. (7) onto Fock's 5-dimensional 
(3b) hyperspace through the substitution 

qk = 2pJ(l + p2 + 2p4), 

q4 = (1 - p2)/(1 + p2 + 2p4), 

p = tan ix, p' = tan ix'. (8) 

(3c) 
Finally, we define 

and 

The resulting integral equation is 

I(x) = secs ixg(tan h). (9) 
(3d) 

Equation (7) can then be written as 

[(1 + l)2 - 4E2p2]q{p) = ~ I qJ(p') dV (4) 
7T2 (p _ p')2 ' 

where qJ is related to "I' by 

qJ = [2/(1 + p2 + 2p4»)31p. (5) where dO' is the 5-dimensional solid angle and 0 is the 
Equation (4) is manifestly 0(4) symmetric so that angle between two 5-dimensional unit vectors of polar 

any solution can be written in the form angles ex, 0, 0, 0) and (X', "1", ()', pi). We now attempt 

(6) 

where Yn1m is a 4·dimensional spherical harmonic and 
is given by 

Yn1m = (N n1)1: sinl1pC~~~(cos 1p)Y;"«(), p), 

Nnl being the normalization constant. 
Separating the angular variables, we easily find that 

g(p) satisfies the following I-dimensional equation13 : 

[(I + p2)2 _ 4E2p2]g(p) = '\ ("'dp' p'3Kn(P, p')g(p'), 
7T Jo 

(7) 
where 

K ( ') - 4 Jl P~~~(x)(l - x
2

)1: d 
n p, P - 7T x. 

-1 pZ + p'2 - 2pp'x 

a solution in the form14 

(11) 

Using the relation 

IdO' P~~n(cos x')p~:Mcos "1") = A p(3) ( ) 
(1 0) 

N N.n cos x, (12) 
- cos' 

where 
AN = 87T2/(N + I)(N + 2), (12') 

we obtain (ll) as a solution of (10), provided the 
coefficients ak satisfy 

Lk a k+2 + Mkak + Nka k_ 2 = 0, (13) 
where 

L = f.2 (N + k + 1)(N + k + 2)(N + k + n + 3)(N + k + n + 4) 
k (2N + 2k + 5)(2N + 2k + 7)(N + k + 3)(N + k + 4) , 

M = 1- A 
k (N + k + 1)(N + k + 2) 

+ Ez(N + k - n)(N + k + n + 2) + (N + k - n + l)(N + k + n + 3) _ 1), 
(2N + 2k + 1)(2N + 2k + 3) (2N + 2k + 3)(2N + 2k + 5) 

N 2 (N + k + l)(N + k + 2)(N + k - n - l)(N + k - n) 
k = E 2(N + 2k + 1)(2N + 2k - l)(N + k - l)(N + k) . 

It is seen that the difference equation determines 
separately the even and the odd coefficients ak . 
Using Perron's theorem,ls we easily find the solutions 
for our energy-eigenvalue problem (see Appendix A), 
through the equation 

(14) 

the odd indexed Lk,etc. Both the equations, however, 
lead to the same eigenvalue equation, which, in a 
simplified way, can be expressed as 

'" A(e) = 2 XmE2m. (15) 
m=O 

It is interesting to note that, if we put E" = 0 in Eq. (14) 
or (15), we immediately recover the well-known eigen
value condition16 

,1(0) = (N + l)(N + 2), (16) 
and a similar equation is obtained which involves only which was derived earlier in Refs. 4 and 7. 
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Before concluding this section, we add a few re
marks regarding the convergence of our series (11). 
Using Eq. (A6), we find that the convergence criteria 

1· I ak I 1 1m - < 
k-HIJ ak-l 

is rigorously satisfied whenever ° < E < 1. The case 
E = 1 needs a careful study. We must mention that, at 
this point, our series expansion fails, and a closer look 
at the original equation [see Eq. (7)] reveals that the 
integral equation for g(p) can be easily solved by 
transforming it into a differential equation with proper 
boundary condition, whose solution is easily obtained 
in terms of a hypergeometric function. The eigenvalue 
equation is solved and it agrees with that given by 
Wick2 and Cutkosky.4 A short discussion is given in 
Appendix B. For a complete solution of the equation, 
we should also find a relation between odd and even 
ak • This is achieved through the use of the normaliza
tion condition. 

3. NORMALIZATION OF THE WAVEFUNCTION 

The normalization condition is imposed by requiring 
that the total energy of the system be given by the 
expectation value of the energy-momentum tensor 
with respect to the given bound states. Thus, we have 

where T llv is the energy-momentum tensor operator 
and Pv is the energy-momentum 4-vector. IP, {3) 
denotes a bound state characterized by total energy
momentum P and another quantum number {3. 

Following Nishijima and Singh ,11 we note that the 
left-hand side of above can also be written as 

so that the normalization condition becomes 

fa4 a4 -( ) aD(p, q, P) () 2..!: P q"Pa P "Pp q = - IP4uap· 
ap4 

(17) 

In Eq. (17), "Pp is the bound-state wavefunction which 
satisfies the BS equation (1) and the conjugate wave
function if«(P) is related to "P«(P) as foIIows17 ; 

ifa(P, ip4) = -"P:(p, -iP4)· 

Further, the D function is defined through the equa
tion 

J d4kD(k, p, P)K(k, p', P) = t5(p - p'). 

The reciprocal of the kernel function D can be easily 
constructed, using the BS equation in the ladder 
approximation, and is given by 

D(k,p, P) = - [OP + k)2 + l][(tP - k)2 + 1] 

x b(p - k) - (iAf1T2)(p - k)-2. (18) 

To facilitate the evaluation of the normalization inte
gral in (17), we use the transformation variables given 
in Sec. 2 [Eqs. (3)], and through the use of our solu
tions of the BS equation on the 5-dimensional pseudo
sphere, the normalization integral now takes the 
following simple form: 

J: sin3 X axf*( 1T - X) sin2 xf(x) = 1. 

In the above equation, some kinematic factors have 
been absorbed in the wavefunctions I(x). 

We therefore conclude that only those solutions 
I(x) are admissible for which 

J: sin3 X axf*( 77 - X) sin2 xf(x) 

is positive definite. Explicit evaluation of this integral 
using Eqs. (11) and (AS) shows that this is ensured if 

laol2SN (1 - :::~:S;;l)(_1t (19) 

is positive definite. In (19), S N is a positive-definite 
quantity and K = N - n = 0, 1,2, .... 

It is evident that, for states characterized by certain 
quantum numbers Nand n, expression (19) cannot be 
made positive definite. Thus the wavefunctions I(x) 
for which expression (19) is not positive definite are 
not admissible, and they constitute abnormal solutions. 
The possibility of the existence of such solutions 
was previously pointed out by Nakanishi3 and also by 
Wick2 and Cutkosky4 from an approximate treatment 
of the BS equation at nonvanishing energies, but with 
zero mass for the exchanged particle. Our exact solu
tion of the BS equation confirms this conclusion. In 
the next section, we give a brief summary of the nature 
of various types of solutions of the BS equation 
obtained so far. 

4. CONCLUSION 

The various solutions of the BS equation considered 
here can be classified as follows. When the total energy 
E = ° and the exchanged particle mass ft = 0, the 
equation admits an exact 0(5) symmetry; further, 
imposition of the normalization requirement shows 
that there are abnormal solutions in addition to the 
admissible ones. In the case E = ° and ft ¥:- 0, the 
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equation is 0(4) symmetric. It is interesting to pOint 
out that when E = 0, the BS equation becomes in
variant under Lorentz transformations involving the 
relative 4-momentum PIl , and the 4-dimensional 
angular momentum L is then a good quantum 
number. For a fixed value of L the ordinary angular 
momentum I is given by the relation 1 = L - K, 

K = 0, 1, 2, ... ; when L as well as I are extended to 
Reggeized values, one obtains the so-called daughter 
trajectories. IS This particular case of the BS equation 
has been discussed by various authors in connection 
with the existence of Lorentz poles. 19 When E:;i: 0 
and p = 0, the BS equation is 0(4) symmetric; how
eyer, the solutions can be obtained as a series of 
0(5) polynomials. Imposition of the normalization 
condition again reveals that in the whole continuum 
of solutions there exist abnormal solutions in addition 
to the admissible ones. We have investigated this case 
here in detail. The point E = IE -- I deserves special 
mention; here our method of expansion of the wave
function in 0(5) polynomials fails. Nevertheless, an 
exact solution exists and the eigenvalue problem is 
determinate. The case of E:;i: 0 and f1:;i: 0 poses 
great difficulties. An attempt to solve the equation for 
this particular case was made by Okubo and Feld
man,20 by using an integral-representation method 
originally due to Wick. An exact analytical evaluation 
of the spectral function is extremely involved and no 
definite conclusions regarding the nature of the solu
tions can be made. 
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APPENDIX A: DERIVATION OF THE EIGEN
VALUE EQUATION 

The characteristic equation of the difference equa
tion [Eq. (13)] possesses only two roots of distinct 
moduli; thus, according to Perron's theorem,15 there is 
a fundamental system of solutions which falls into two 
classes. Denoting this fundamental system by a1i ), 

i = I, 2, we have 

(A1) 
where 

Pie = MIe/LIe , qle = NIe/LIe • 
Let us define 

(ks - kS+2)(kS+4 - kS+6) 
Zs = , 

(ks - kS+4)(ks+2 - kS+6) 

(kn+6 - ks)(ks+2 - kS -f-4) 
Vs = , 

(kn+6 - kS+2)(ks - kS+4) 
(A2) 

S = 1, 2 ... n, Vn+2 = 1. 

Then 

Vs = 1 - zs/VS+2' 
We choose now 

k (1) I (2) 
S = ak+S- 6 ak+S-6 ' 

It is then easy to show that 

(2) «2) I (}) ) (1) 
ak-l - a k+n ale+n ak-1 

a(2) _ (a(2) laW )a(l) 
k-3 k+n k+n 1c-3 

= _-_q,,-!k-~l ____ _ 

P 
;!,qk~+::.!.I __ _ 

k-l-

qk+3 
Pk+l-~~---

(A3) 

qk+n-2 
Pk+n-4 - ~-. 

Pk+n-2 

(A4) 

The right-hand member of this identity is obviously 
independent of the fundamental system chosen. Let 
us now choose, following Perron, the fundamental 
system in such a way that 

]. I (l) I k+n 1m sup ak+n = IX , 

1· I (2) I Rk+n 1m sup ak+n = f' . 

Here IX and p are the distinct moduli of the roots of the 
characteristic equation such that IX > p. Hence taking 
limit as n ->- 00 on both sides of Eq. (A4) and noting 
that 

] • «2) I (1» 0 1m a k+n a7c+n = , 
n .... oo 

we obtain a solution of the difference equation in 
terms of an infinite continued fraction 

ak+2 = _ ..!.q!'::J7c+~2 _____ _ 

ak ~qk~+~4 ____ _ 
Pk+2 -

(AS) 

Only this particular solution is acceptable, as it 
satisfies the convergence requirement of the solution of 
j(X) given in terms of an infinite series in 0(5) har
monics; this is obvious when we note that this solution 
corresponds to 

lim I a"+1 1 = p, 
Ie-+oo ale 

p < 1, IX > 1, 0 < E < 1. (A6) 

The eigenvalue Eq. (14) immediately follows as a 
compatibility requirement for the boundary condi
tions a_I = a_2 = ... = O. 
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APPENDIX B: THE SOLUTION OF EQ. (7) 
FOR E = 1 

Applying the operator 

1 d(3d) ;a dp p dp 

and setting € = 1, the integral Eq. (7) reduces to the 
following differential equation: 

l~( 3 dU) = n(n + 2)u(p) _ 4,1. u(p) (81) 
l dp P dp p2 (1 _ p2)2 ' 

where 
u(p) = (1 - p2)2g(p) 

and satisfies the boundary conditions that u(p) IS 

finite at small p and p2u(p) is finite at large p. 
A simple transformation 

x = (1 - p2)/(1 + p2), 

u(p) = (1 - x2r~(n+2)(1 + x)G(x) 

immediately transforms the equation into that ob
tained previously by Cutkosky, namely, 

(I - x 2)G"(x) + 2nxG'(x) - n(n + I)G(x) 

+ (A/x2)G(x) = O. (B2) 

The solution of this equation which satisfies the 
boundary conditions at x = ± I is given by 

G(x) = (1 - x2t+lxi+v 

X 2Fl{H2n + 5 + 2v), H2n + 3 + 2v); 

n + 2; (1 - x 2
)}, 

v = (! - A)t. 

Following Wick, we find that the eigenvalue of A for 
€ = 1 is given by 

A (€ = 1) = i. 

* Present address: International Centre for Theoretical Physics, 
Trieste, Italy. 
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The results of the application of previously developed techniques to the analysis of the Petrov type 
III solutions to the vacuum Einstein equations are presented. The procedure involves the computer 
aided analysis of the Einstein-Petrov equations to the extent that the functions uniquely and invariantly 
generating all local analytic solutions are determined. For the case of type III it is shown that, relative 
to a given fixed point in the manifold, all local analytiC solutions are uniquely and invariantly deter
mined by six arbitrary analytic functions of one variable and six others of two variables. These functions, 
called generating functions, thus provide a representation of all such solutions and may be used for the 
study of the structure of the family of Einstein empty space metrics. 

I. INTRODUCTION 

It is an often noted paradox that, while Einstein's 
general relativity is a theory of remarkable elegance 
and logical simplicity, its gravitational field equations, 

reasonable that physically significant solutions will 
be at least piecewise analytic. 

II. THE EINSTEIN-PETROV EQUATIONS 

even in empty space, are extremely complicated when Much of the modern mathematical work in the field 
explicitly spelled out. Consequently, only a compara- of differential geometry has been associated with a 
tively few exact solutions are known, all of them in- shift of emphasis from local coordinate patches to the 
volving the assumption of a fairly high degree of larger structure of the tangent vector bundle. This is 
symmetry. Of course, linear and higher-order ap- obviously quite natural since the content of the 
proximations have been thoroughly explored and geometry of the space may be expressed essentially in 
exploited, for example, to derive equations of motions. terms of a relationship between vectors at neighboring 
Further, the detailed, local questions concerning the points along curves (connection approach) or in terms 
existence and uniqueness of solutions have been in- of an inner product on the tangent vector space at 
vestigated thoroughly by Foures-Bruhat. l A little later each point (metric approach). In either case, the 
an invariant classification of solutions by means of the operations involve a linear vector space, with a global 
algebraic structure of the Ricci-null-Riemann tensor structure, rather than an open coordinate patch in a 
was worked out, with the name of Petrov associated manifold. Hence, it is possible at each point to choose 
with the three discrete types.2 a vector space basis adapted to the intrinsic geometry, 

This paper reports on another approach,3 some- without concern for an underlying coordinate system. 
what similar to that of Foures-Bruhat. Here, however, In particular, the vectors constituting the basis do not 
the tangent frame of forms and local canonical have to comprise an integrable system, that is, they 
coordinate system are completely determined, up to need not be vectors tangent to the coordinate lines of 
possible intrinsic symmetries, by the geometry, through a coordinate system.4 Thus, the tangent frame may be 
the Petrov frame and its higher-order generalizations chosen to be a "standard" one relative to the metric 
if needed. In addition, once the equations have been inner product. In the case of general relativity this 
fully reduced as far as differential consistency is con- means that the four base vectors will have inner 
cerned, it is pointed out that the local, analytic solutions products described by the standard Minkowski metric 
are completely and uniquely determined by the "gener- array 'Y/ab = diag (1, 1, 1, -1). This, of course, still 
atingjunctions" (GF) which may be arbitrarily assigned. leaves the freedom of a transformation of the homo
Hence it is proposed that the GF's may be thought of geneous Lorentz group. This freedom may possibly be 
as providing a unique and invariant representation of further reduced by means of the higher-order (in the 
all local, analytic solutions. In this manner, the family differential sense) structure of the geometry. In ap
of local, analytic vacuum Einstein metrics may be proaching this problem we use both the work of 
studied and structures imposed on it invariantly by Cartan and Petrov. The work of Petrov classifies 
studying and manipulating the family of analytic solutions to the vacuum Einstein equations in terms 
GF's. The question of relaxing the conditions of ana- of the algebraic structure of the Riemann tensor at 
lyticity will be discussed in a later paper, but it seems each point. In the event of degeneracy in the algebraic 

1210 
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structure of the Riemann tensor itself, the structure of 
its covariant derivatives may be used to determine a 
canonical frame of forms at each point as strongly as 
possible, up to the intrinsic symmetries of the geom
etry. 

In this formalism let of represent four Lorentz 
orthonormal forms, so that the line element is 

(1) 

The condition that the frame of forms represent a 
canonical Petrov frame, and thus that the metric 
satisfy the Einstein equations, is expressed in terms of 
the Cartan structure equations 

d a + a e _ (l)Ra e d 
W b W cAw b -"2 bCdW A W , 

(2) 

(3) 

where the array Rabcd represents one of the three 
Petrov arrays.5 The only case completely analyzed so 
far is that of Petrov type III, so in this paper we 
assume that R abed is of this type. In terms of the 
notational convention used here, this means that all 
R abcd are zero except for the following elements and 
those obtained from them by known Riemann tensor 
symmetries: 

R1424 = R2412 = R3431 = R3231 = 1. (4) 

In the other Petrov types the Riemann tensor itself 
does not always uniquely determine the frame wa

• If 
this is so, further equations of the form 

Rabcd:e = Rabedle - Rnbedynae - RanedY\e 

- Rabndynee - RabeY :en (5) 

must be added. In these, the array Rabed;e would 
represent one of the canonical forms discussed in the 
previous paper.3 However, for the present, we need 
only consider (2) and (3), which, when expressed in 
terms of the canonical connection components Y\e 

defined by w a b = Y\ewC, become 

(6) 

Y\Cld - Y\dle + Y\nynde - yabnyned 

+ ya ndynbe - ynneynbd = R\de' (7) 

Here the vertical slash represents form differentiation 
with respect to the wa : 

(8) 

The intrinsic invariance of the procedure now becomes 
evident. The functions Y\e refer to the canonical frame 
wa and are scalar fields which uniquely determine the 

geometry. These may not be arbitrarily assigned, how
ever, but must satisfy the differential equations (6). 

In Petrov types I and II, the canonical form for 
Rabed will also contain nonconstant scalar fields and 
these must also be included. In any event, the Einstein 
equations are reduced to set of algebraic partial differ
ential equations for a number of dependent scalar 
functions. The solutions to the equations then corre
spond in a unique and invariant way to the geometry 
satisfying the Einstein empty space equations. 

III. INVARIANT COORDINATES 

In order to describe the scalar fields effectively as 
functions on the space-time manifold, it is still neces
sary to introduce local coordinates. If these coordi
nates are chosen arbitrarily, the invariance gained by 
use of the canonical frames would be lost. Hence, it is 
necessary to define these coordinates in an invariant 
manner. 

The first thought might be to use the invariant 
scalar fields yabe to determine these coordinates. For 
example, these fields may be ordered in some standard 
way, the first nonconstant one chosen as xl, the next 
functionally independent one as X2, and so on until 
the intrinsic asymmetries of the geometry are ex
hausted. It turns out, however, that this procedure 
provides a very unwieldy condition on the equations 
and is probably completely impractical. 

Consequently, another method was chosen which is 
more closely adapted to the canonical directions 
provided by the wa and to the structure equations 
themselves. These coordinates may be thought of as 
following as closely as possible along the canonical 
Petrov directions in the neighborhood of a fixed point. 
More precisely, they may be defined by means of the 
following result. 

Theorem: Given four independent forms wa , defined 
over a neighborhood U of a point P, there exists a 
coordinate system Xi in a neighborhood V of P for 
which V c U, xi(P) = 0, and the following conditions 
hold: 

w a
4 = oa4 , 

w a
3 = oa3 , for X4 = 0, 

w a
2 = oa2 , for X4 = x3 = 0, (9) 

w\=oa1 , for X4 = x 3 = x 2 = 0. 

Proof' Let i be some coordinate system in a neigh
borhood W of P, with We U, in which the forms wa 

have components Waj(yi) such that 

(10) 
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Further let ei
a be components of a dual frame of tan

gent vectors so that 
(11) 

Consider the four sets of ordinary differential equations 
defined by 

dyi -i ( k) -.=e;y. 
dx' 

(12) 

It is known that there exists, for sufficiently small Xi, 

unique solutions to each set of equations with given 
initial data. Let the solution for i to jth equation 
which assumes the values ui at xi = 0 be denoted 
Fij(Xi, Uk). Thus, 

OFij = -i(Fk) 
ox; e, " (13) 

The required coordinate system i is related to the xi 
by 

yi = Fiix4
, Fia(xa, F i

2(X
2
, F\(x\ 0»». (14) 

In fact, by denoting the components of wa with respect 
to the Xi system by wa

i ' it is easy to see that 

a oyi -a -i -a J<a (15) w 4 = -4 W i = e 4W i = U 4 . aX 
In a similar manner, it is easy to see that the remaining 
conditions in (9) are also satisfied by wa

i • 

A more intuitive definition of the coordinate system 
Xi for which the conditions (9) are satisfied can be 
given. 6 It is most easily explained in terms of the 
vector frame {eb} dual to the frame {wa}. Each vector 
field of the frame {eb} has associated with it a family of 
curves to which it is tangent. Each curve has an 
intrinsically defined parameter such that the vector is 
differentiation with respect to this parameter. The 
point with canonical coordinates Xi is obtained by 
starting from P and going a parameter distance Xl along 
the curve with tangent el , then proceeding from this 
point a parameter distance x2 along the curve with 
tangent e2 , etc. It is easy to see that such a coordinate 
system has the properties listed in (9) and is unique. 

IV. ANALYSIS OF THE EQUATIONS 

The Einstein-Petrov equations in the form of (7) 
constitute a set of algebraic partial differential equa
tions, but with form differentiation rather than 
ordinary variable differentiation. Assume that some co
ordinate system has been chosen, for example, the 
canonically defined system presented in the preceding 
section. The form differentiation of the fields Y\c 
in (7) will be replaced by ordinary coordinate 

differentiation by means of the identity 

Ilawai = Ii' (16) 

This, of course, entails the introduction of the sixteen 
variables wa

i ' which must satisfy (6), and the set of 
equations now must be enlarged to include this set. 
However, as is well known, the integrability condi
tions for (6) are nothing but one set of the algebraic 
identities satisfied automatically by any of the three 
Petrov forms for the Riemann tensor. Hence, assum
ing the satisfaction of (7) with R abcd one of the Petro v 
arrays, integrability conditions need only be considered 
for (7) themselves, which may be retained in their 
form differentiation form. 

At first glance it might seem that the integrability 
conditions for (7) are merely the Bianchi identities 

Rabcd;e + Rabde;c + Rabec;d = 0 (17) 

for the covariant derivatives of the Riemann tensor. 
It is certainly true that this is the case if the Rabcd are 
assumed to be arbitrary functions subject only to the 
algebraic symmetries and cyclic identities. However, 
other conditions, such as the Einstein condition of 
vanishing Ricci tensor, and a fortiori the Petrov 
canonical form requirements, may impose new and 
independent conditions on the connection components 
which must then be checked against the differential 
conditions (7) on these fields, etc. Hence, in general it 
should not be expected that (17) are the full integra
bility conditions for (7), plus the requirement that 
R abcd be in one of the Petrov forms, and more general 
techniques must be used. 

The problem of adding all differential consistency 
relationships (generalized integrability conditions) to 
a set of partial differential equations has been fully 
explored. The approach used here is based on that 
given in the book by Ritt7 and a brief summary will 
be useful. 

First, an ordering is assigned to the dependent 
variables and their partial derivatives in such a way 
that any two derivatives are comparable and each has 
a finite number of predecessors. Note, however, that 
here we may be dealing with noncommutative differ
entiation. Hence, some standard order must be estab
lished for the taking of derivatives with the necessary 
commutations made by use of the identity 

Iialb = Ilbia + fc(ycab - yeba)' (18) 

Next, each equation is regarded as determining the 
value of the highest derivative in it in terms of the 
others. This determination of derivatives is used in 
the proof of the existence and uniqueness theorems for 
analytic solutions. The consistency, both algebraic 
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and differential, of these determinations may be 
checked by the following operations on the set of 
equations: 

(A) Algebraic consistency: The set of equations is 
checked to see if any pair of equations determine 
precisely the same derivative of the same variable. If 
so, this quantity is eliminated algebraically from one 
of the equations and the other equation remains 
unchanged. Checks are then resumed with the new set, 
until no further action of this type need be taken. 
Clearly this will occur after a finite number of steps. 
For example, when applied to a set oflinear equations 
this operation would produce an equivalent set in 
sequentially solvable triangular form. 

(B) Sequential derivative consistency: In this check 
the set is tested for the possibility that one equation 
El determines a derivative of a quantity determined by 
a second equation E2. If so, E2 is differentiated so as 
to provide the derivative occurring in E1 , and the result 
is it new equation E3. The common quantity in E3 is 
then algebraically eliminated between E3 and El and 
the result replaces E1 • The check is then resumed with 
the new set. Clearly, this iteration need be performed 
only a finite number of times. In fact, the result of one 
such cycle is to replace one equation in the set with 
another which determines a derivative lower than the 
original, and the ordering was required to be such that 
each derivative has only a finite number of lower 
derivatives. 

(C) Cross differentiation consistency: This is the 
phase similar to the adding of the ordinary integrabil
ity conditions. That is, if a pair of equations determine 
different derivatives of the same variable, each is 
differentiated an appropriate number of times to 
provide the determination of the same derivative of 
the same variable. This quantity is then algebraically 
eliminated between these equations and the result is 
added as a new equation to the set. The original pair 
of equations is retained unchanged, but some record 
is kept that the consistency condition for them has 
been added, so that it will not be duplicated in future 
cycles. Again, it can be shown that, as a consequence of 
the properties of the ordering of the derivatives, this 
procedure will be repeated only a finite number of 
times. 

These three checks (A)-(C) are applied in order 
stated and, if any change is made in the set, they are 
again repeated. It may happen that at some point an 
equation is produced which does not contain any of 
the dependent variables or the derivatives. If this 
equation is nontrivial, it cannot be satisfied for arbi
trary values of the independent variables, so that it 
must be concluded that the original set of equations is 

inconsistent. If this does not occur, then a finite 
number of repetitions of (A)-(C) will produce a set for 
which all algebraic and differential consistency checks 
have been made. The final set may then be regarded as 
a completely integrable set of partial differential 
equations to which a theorem such as a generalized 
Cauchy-Kowalewski theorem may be applied. 

V. COMPUTER TECHNIQUES 

The application of these procedures to the Einstein
Petro v equations (7) is obviously a very complicated 
task involving not only the production of many large 
equations but also the application of many very in
volved algebraic and differential operations to them. 
Clearly, this is the sort of task for which digital 
computers could be put to very good use. The possi
bility of using computers to perform formal, non
numerical, algebraic and differential operations on 
polynomials has been considered for some time.s In 
fact, most of the new computer languages contain 
internal capabilities for such operations. However, the 
techniques used in these approaches are most efficient 
for polynomials with a fixed, rather small number of 
variables and thus are not appropriate to the analysis 
of the Einstein-Petrov equations. 

Consequently, a straightforward approach was 
developed for performing such operations within the 
framework of any standard computer language, e.g., 
Fortran. An early stage of this program was reported 
in a computer journal,9 and a brief description will 
be given here. 

Variables are represented by integers in some con
venient coding. For example, the connection com
ponents with lower indices, Yabc' can be represented by 
some integer-valued function of the indices a, b, and 
c, which takes into account the symmetries of Yabc' In 
this particular case, the number of integers required 
is clearly less than 100 and hence requires only two 
decimal digit places. 

The next step is to represent derivatives. The most 
convenient way would be to have this coding such that 
numerical inequalities would correspond to an ordering 
consistent with the requirements discussed in Sec. IV 
above. One simple way to do this is the following. 
Assume that undifferentiated variables are represented 
by integers less than 100. Then, ifJis represented by n, 
fia will be represented by lOOa + n. Higher derivatives 
are described similarly so that, in effect, the individual 
decimal digits read from left to right give the successive 
derivatives in order of most recent occurrence, while 
the last two digits indicate the dependent variable. 
Clearly, this technique is consistent with the require· 
ments imposed on the ordering of variables described 
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in Sec. IV above. In fact, differentiation clearly in
creases the integer and since all of the representative 
integers are nonnegative, each number has only a 
finite number of predecessors. Also note that this 
takes into account the possible noncommutative 
property of form differentiation. Thus, if the function 
/ is represented by the integer n, then 

fia,la.+t 1000a2 + IOOa1 + n, (19) 

fia.la, +t 1000a1 + IOOa2 + n. (20) 

For convenience, the computer program was designed 
to produce all derivatives in standard order, with the 
digits corresponding to derivatives nonincreasing when 
read from right to left. To obtain such an arrangement, 
use is made of the identity (18), so that, if a2 < aI' 

fia,la. is replaced by the expression on the right-hand 
side of this equation. 

Once an appropriate code has been chosen for the 
variables, polynomials involving them can be repre
sented by arrays of integers describing the coefficients 
of each term and the variables occurring as factors in 
the term. Thus, a matrix of integers mij(P) , where 
i = I,'" , I, j = 1,'" ,f + 1, represents the poly
nomial P of I terms with at most / factors in each 
term. The numerical coefficient of the ith term is mil 
while mi2 , ••• , mi f+1 are nonnegative integers which 
give the numerical codes for the variables or deriva
tives which occur as factors in this term. If fewer than 
/ factors occur, the corresponding excess mij are 0, 
i.e., mij = 0 can be interpreted as implying that the 
jth factor in the ith term is merely the trivial constant 
1. For example, assume that the code for Y12i is 
lOi + I, then the polynomial 

P = 2Y12112 - 3Y1221314 + Yl2lY123 - 4 (21) 

will be represented by an array with I = 4,f = 2, and 

(-: 4:~; ~)'. 
I 11 31 

-4 0 0 

(22) 

With this translation of algebraic quantities in
volving variables and their derivatives into numerical 
arrays, it is possible to use any computer language to 
perform operations of algebra and calculus on the 
corresponding polynomials. In fact, in the following 
we will use the terms "polynomial" and "matrix" 
interchangeably. For the purpose of the analysis of the 
differential equations the polynomials are regarded as 
representing the left-hand side of differential equations. 
Since in this analysis the equations determine the 

highest variable in them, it is useful to order each 
such polynomial in some standard manner. One basic 
subroutine ADD does this and further simplifies the 
polynomial. First, the factors in each term are ordered 
in nonincreasing manner so that 

mij ~ mik , of k ~j > 1. (23) 

Next, terms having the same sequence of variable 
factors are combined by adding their coefficients and 
terms with zero coefficients eliminated. Finally, the 
set of terms is ordered lexicographically within itself 
so that, if i < k, then the first nonzero term in the 
sequence (mi ; - mkj), j = 2, ... , is positive. Such 
ordering thus eliminates all ambiguity associated with 
the representations of equivalent polynomials ex
pressed in formally different manners. 

Using this subroutine, we can easily perform 
algebraic and differential operations. For example, the 
addition of two polynomials PI and P2, of 11 and /2'/1 
and 12 terms and factors, respectively, is accomplished 
as follows. Assuming that 12 > 11' we find that the 
matrix corresponding to the sum PI + P2 is then the 
result of the reduction by ADD of the matrix mij 
defined by 

mij = mij (P1), 

mij = 0, 

mi; = mij (P2), 

i:::::;/1,j:::::;/1+ 1, 

i:::::;/1,j>/1+ 1, 

i> 11' 

(24) 

Similarly, for the product of two polynomials the 
result will be the reduction by ADD of mij , i = 1, ...• 
/ 112 , j = I, ... ,f1 + /2 + 1 : 

mil = mk1(P1)mn1(P2), i = (k - l)t1 + n, 

mi ; = mji (P1), 1 <j :::::;/1 + 1, (25) 

mji = mij-fl(P2), j > /1 + 1. 

Finally, operations of formal differentiation of poly
nomials can be performed according to obvious pro
cedures. Here, however, care must be taken to order 
the differentiation in a standard manner. If necessary, 
(18) must be used. This, of course, entails some further 
technical difficulties in the writing of the program. 

Given these subroutines, it is then clear how to 
proceed with the steps (A)-(C) described in Sec. IV. 
The highest variables in the equation P = 0, and 
thus the variable determined by this equation, is 
m I2(P). Thus, to perform the checks in (A), it is only 
necessary to determine whether mI2 (P1) = m12(P2), for 
PI and P2 any distinct equations in the set. If so, the 
elimination of this common highest variable is accom
plished by elementary algebraic manipulations in
volving multiplication and addition of polynomials, as 
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described above. The checks in(B)are made as follows. 
Ifm12(Pl) > m12(P2) and lOn > m12(P2) ~ lOn-I, n ~ 
2, then m12(P1) is a derivative of m12(P2) if and only if 

If this is so, the operations involving both differentia
tion and algebraic eliminations can be carried out as 
described in(B).Finally, the cross differentiation check 
of (C) is satisfied if and only if 

m12(P2) - m12(P1) = 0, mod (lOO). (27) 

Thus the complete analysis of a set of algebraic 
partial differential equations and its reduction can be 
accomplished by this computer program. In fact, for 
this particular application, the input set of equations, 
the Einstein-Petrov equations plus Bianchi identities, 
is also made by the computer by means of another 
program whose input is a particular Petrov form for 
the Riemann tensor. Further, to save time and space, 
the cross differentiation checks of (C) in the structure 
equations (7) are not performed unless one of these 
equations is changed in a later step, since this would 
merely duplicate the Bianchi identities already added. 

VI. REPRESENTATION OF SOLUTIONS 

Given a set of equations which are complete in the 
sense that the steps (A)-(C) have been iterated until 
no changes are made, what can be said about the 
solutions? The usual questions concern first the exist
ence and then the uniqueness of solutions. The first 
such theorem applicable to sets of analytic equations 
such as these, for which all differential consistency 
conditions are contained in the set, is the well-known 
Cauchy-Kowalewski theorem. This theorem essen
tially asserts the local existence of analytic solutions to 
such equations. The uniqueness part affirms that these 
solutions are completely determined by their "initial 
determinations," which consist of the evaluation at 
the origin of those derivatives of the solution which 
are not determined directly by the equations. The 
generating functions are then those analytic functions 
obtained by taking the Taylor series consisting of the 
sums of the products of these initial determination with 
appropriate powers of the independent variables. For 
example, if there are n independent variables and the 
variable u is such that only au/ox!, ... , au/ox' (and 
derivatives of these) are determined by the set of 
equations then the initial determination for u consists 
of the value at the origin of all derivatives of it formed 
by combinations of members of the set (%x'+!,'" , 
%xn). Hence, the generating function for u is any 
analytic function f of the variables xr+1 , ••• , x n , and 

the general analytic solution will have the form 

r 

U = f(xr+!, ... , xn) + L xiF;(x), (28) 
i=l 

in which F is analytic and uniquely determined by f 
Thus, there is a I-to-l correspondence between arbitrary 
analytic functions f and local solutions for u to the set 
equations. The GF's provide tools for investigation of 
the structure of the family of all local analytic solutions. 
For example, iff and g are the GF's of two solutions, 
then f + g will be the GF for a third. In this way, a 
linear structure is established for the family of solu
tions. Similarly, other structures, such as algebraic, 
harmonic, etc., can be imposed on this family. 

After the initial consideration of sets of partial 
differential equations under the assumptions of ana
lyticity, it is soon realized that there are significant 
classification schemes for such equations which dis
tinguish important characteristics of their solutions. 
Consider, for example, the set of equations 

au ov ov au 
-=-, -=E-. oy ax oy ax (29) 

Each of these sets (for E = ± 1) constitute a com
pletely integrable set of equations for the dependent 
variables u and v, their y derivative being determined in 
terms oflower derivatives. By the Cauchy-Kowalewski 
theorem, there exists a unique analytic solution to 
these equations for given initial values of the functions 
u and v on y = O. In terms of the GF notation used 
above, the solutions are 

u = f(x) + yF(x, y), v = g(x) + yG(x, y), (30) 

where f and g are arbitrary analytic functions and F 
and G are analytic in both x and y and uniquely deter
mined by f and g. 

Two important questions now arise concerning the 
classification of the solutions in terms of the GF's f 
and g. First, must all solutions to (29) be analytic? 
Secondly, is the use of GF's f and g truly appropriate 
for the representation of the solutions? Investigating 
the first problem soon makes it apparent that the 
choice of positive or negative values for E is crucial. 
If E is negative, the set of equations is elliptic and, in 
fact, if E = - I, this set is the set of Cauchy conditions 
that u and v represent the real and imaginary parts of 
an analytic function of a complex variable. Thus, all 
solutions of (29) with E = -1 must be analytic in x 
and y. This result may be extended to a wider class of 
partial differential equations, in more than two inde
pendent variables, and a criterion for a set of such 
equations to be elliptic can be defined. It turns out that, 
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as in the simple case of (29) with € = -1, the solu
tions to generalized totally elliptic equations must be 
analytic functions. On the other hand, if € = + 1, the 
set of equations is hyperbolic, and it is well known 
that solutions exist which are only Cl. Again, this 
notation can be generalized to sets of equations with 
more dependent and independent variables and it is 
possible to generalize the notion of hyperbolicity in 
such a way that hyperbolic equations have solutions 
whose order of differentiability is minimal to accom
modate the equations. lO At any rate, the solutions 
need not be analytic, although of course they may be. 
Finally, the notion of elliptic and hyperbolic classi
fication is not fully extensive and some sets of equations 
may not fall into either class. The study of the proper
ties of solutions of such equations, called mixed 
equations, has not yet been completed. However, the 
Cauchy-Kowalewski theorem is still applicable to 
mixed equations so that within the framework of 
analytic solutions, the above remarks concerning the 
representation of solutions by analytic GF's are valid. 
Thus, although the restriction to analyticity is 
probably stronger than needed, most physically sig
nificant information can be obtained by studying 
piecewise analytic solutions. 

There yet remains the question of the appropriate
ness of the GF approach to the representation of 
solutions. In the case of hyperbolic equations, the use 
of generating functions to specify the solutions is 
merely a generalization of the use of Cauchy initial 
data. There is no dispute that this Cauchy problem 
is "well posed" in this case since the solutions depend 
"continuously" on the initial data in any reasonable 
definition of continuity. On the other hand, when 
elliptic equations are considered there is a widely held 
view that the Cauchy problem, i.e., the giving of the 
GF's, is not a "well-posed" problem at all,u On the 
contrary, for elliptic equations it is generally asserted 
that the only appropriate boundary-value problem 
consists of Dirichlet or Neumann conditions on a 
closed surface. 

The argument that the Cauchy data are inappro
priate for elliptic equations is based on two facts: (1) 
The solution to an elliptic equation must be analytic. 
Therefore, nonanalytic initial data may not generate a 
solution, whereas they will for a hyperbolic equation. 
(2) The solution may not depend continuously on the 
initial data for elliptic equations whereas it does for 
hyperbolic equations. These objections do not appear 
to be entirely cogent, however, for the following 
reasons. 

In the first place, if the set is elliptic, so that solutions 
must be analytic, then clearly any Cauchy initial data 

must be also. The confusion arises from the fact that 
the Dirichlet or Neumann problems on analytically 
defined closed surfaces do have solutions for suitably 
restricted, but nonanalytic, boundary data in the 
interior region bounded by the given closed surface. 
However, if the boundary data are not analytic, 
obviously the solution may not be continued over an 
open region which includes the boundary since the 
restriction of an analytic function to an analytically 
defined surface must be analytic there. Thus, such 
boundary data do not correspond to solutions of the 
equations in a neighborhood of the boundary but 
rather indicate a solution for which the equations 
break down at the boundary. Thus, in order for the 
boundary-value problem to produce a solution to 
elliptic equations in a neighborhood of the boundary) 
it is both necessary and sufficient that the boundary 
data be analytic both in the Dirichlet and Neumann 
problems as well as in the Cauchy problems. 

The second objection, that for elliptic equations the 
solutions may not depend continuously on the Cauchy 
initial data, is valid only if the topology of the function 
space is made to be artificially weak. Thus, the stand
ard example is a Cauchy problem for (29) with 
€ = - I and with initial data of the form 

un(x,O) = cos (nx)jn, 

(31) 

The solution is 

un(x,y) = cos (nx) cosh (ny)/n, 

vn(x, y) = sin (nx) sinh (ny)/n. (32) 

If the function space is topologized by means of a 
norm such as 

N(f) = sup (1/(x, 0)1: Ixl ~ b), (33) 

where b is some finite positive number, then clearly 
the initial data converges to zero, whereas the solu
tions (32) diverge to infinity off of the initial line. How
ever, the function space that is appropriate for such 
problems is the space of analytic functions, as dis
cussed above. This space is not complete, relative to 
N. For example, the sequence of analytic functions 

n 

In(x) = I e-k cos k2x (34) 
k=l 

is convergent relative to N since 

(35) 

but In converges to a function which is nowhere 
analytic in any neighborhood of O. 

The difficulty with the norm N is, of course, due to the 
fact that it fails to take into account the behavior of 
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the derivatives. It is likely that other norms may be 
defined which include the behavior of all derivatives so 
as to provide a topology for the initial data sufficiently 
strong that the solution will depend continuously on 
them. 

F or these reasons, then, it is the author's opinion that 
the use of GF's does provide an appropriate repre
sentation of the solutions. 

VII. PETROV TYPE III RESULTS 

In this section, we discuss the results of an applica
tion of the techniques described above to the Einstein
Petro v type III equations. The first step is to apply 
the operations (A)-(C) described in Sec. IV above to 
Eq. (7). Since it is known, however, that the results of 
the first round will be merely the Bianchi identities, 
these were initially added by the program that pro
duced the input equations in the computer coding 
described in Sec. V. Since the type III Riemann tensor 
consists of constants only, its covariant derivatives are 
all homogeneous linear combinations of the ya be with 
constant coefficients. Since there are twelve inde
pendent conditions, they may be regarded as providing 
determinations of twelve of the Y\e in terms of the 
remaining twelve. In the coding used this means that 
yabp ' P = 3,4, are determined by yabu ' U = 1,2. Here 
and in the following, the indices u, v will only take on 
the values I, 2 while p, q will ass ume only the val ues 3, 
4. Procedures (A)-(C) must now be applied to this 
set of equations. For this case however the functions 
yabp are determined linearly in terms of yabu and it turns 
out to be more practical merely to substitute these 
forms for Y\p into the entire set of structure equations 
(7). This substitution then leaves those highest vari
ables in (7) which are of the form y\dlc' c> d, un
changed except for those with d = 3 so that c = 4. 
The results of the substitution then give six new 
equations for y\U13 which must be compared [process 
(A)] with the rest of (7). Somewhat surprisingly, it 
turns out that these new equations are merely linear 
combinations of equations already in (7), so that they 
can be eliminated and impose no independent con
ditions. What remains of (7) then are 30 equations 
which determine the derivatives yabu1e with c> u. 
Further, this set is completely integrable. 

The next step is to replace form differentiation by 
coordinate differentiation with respect to the canoni
cally defined coordinates described in Sec. III, using 
the fields wa

i subject to (6). As discussed in Sec. IV, 
these latter equations for the w~ are completely 
integrable if (7) is satisfied with a Petrov form Rie
mann tensor. Using the derivative coding and ordering 
scheme, we see that these equations determine the 

derivatives wa
, ',J' > i. Thus, WU4 is undetermined by 

<03 

(6), but the choice of canonical coordinates fixes them 
to satisfy 

(36) 

Similarly, only the derivatives wa
3,4 are determined by 

(6) so that the solution for wa
3 will involve only GF's 

of xl, X2, x3, at Xi = O. Again, however, the choice of 
canonical coordinates means that these functions are 
determined to be 

wa
3 =ba

3 , for X4=0. (37) 

Similar considerations with wa
2 and w\ show that the 

definition (9) of the canonical coordinates provides a 
full determination of the arbitrary functions associated 
with the solution of (6). In other words, (9) and the 
structure equations (6) and (7) fully determine the 
wa

i 
in terms of the yabe • 

The determination of the form derivatives ya bltl e from 
the remaining structure equations can then be trans
lated into the determination of the corresponding 
ordinary derivatives (since wa

i = ba
i at Xi = 0). Thus 

the completely integrable equations fully determine 
the wa

i and the derivatives y\u,c' c > u. From the 
Cauchy-Kowalewski theorem it then follows that the 
most general analytic solution in a neighborhood of 
Xi = 0 will be of the form 

4 

y\l(xi
) = oyab1(X1) + :2 XkPbk(X

i
), 

k~2 

4 

yab2(X i
) = oyab2(X\ X2

) + :2 XkG\k(X i
). 

k~3 

(38) 

Here the oya
bl 

are arbitrary analytic functions of xl, 
and the OY\2 are arbitrary analytic functions of Xl and 
x 2• The functions F and G will then likewise be analytic 
and uniquely determined by the oyabu which are thus the 
generating functions referred to in the introduction. 
Finally, the actual metric (1) is determined by the wa

i 

which are obtained from the completely integrable 
equation (6) with initial determinations fully fixed by 
the coordinate conditions (9) as discussed above. 

Thus, given the fixed point at which Xi = 0, that is, 
the origin of the canonical coordinates, there is a I-to-l 
correspondence between the local analytic type III 
solutions and the arbitrary analytic functions oyabu ' 

VIII. APPLICATIONS AND DISCUSSION 

This section discusses some of the applications and 
the problems to be considered in a subsequent paper. 
Before beginning any discussion of the use of the GF's 
to represent solutions, it should be pointed out that the 
necessity of keeping fixed the origin of the canonical 
coordinates gives rise to difficulty in the area of the 
uniqueness of these representations. In fact, it is clear 
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that the description of solutions by GF's depends on 
the choice of the fixed point so that two different 
GF's may not indeed give rise to essentially different 
solutions but rather to the same solution referred to 
different origins. 

Also, the GF description is not readily adaptable to 
the more usual studies of solutions based on sym
metries because the Killing vectors are not necessarily 
simply related to the Petrov directions. However, it is 
relatively easy to find GF's that produce solutions 
with no invariant varieties. 

The most natural initial applications of the GF's are 
to produce the actual analytic form of the metric. 
Thus, the GF's would be defined by power-series ex
pansions and successive terms in the wa

i obtained by 
algebraic operations. This approach would also be one 
in which a computer would be helpful. Thus the most 
general analytic type III metrics could be invariantly 
exhibited to as many power series terms as desired, in 
terms of the corresponding terms in the GF's oY\u' 

On a more theoretical plane, the correspondence 
between type III metrics and the arbitrary GF's can be 
used to investigate the space of local analytic type III 
metrics. Thus a linear and even algebraic structure can 
be imposed on the space of solutions simply by im
posing it on the space of the GF's, which, because the 
GF's are arbitrary analytic functions, is closed under 
linear and algebraic operations. For example, solu
tions corresponding to two sets of generating functions 
may be "added" to give a third solution represented 
by the GF's which are the sums of the original pair. 

Finally, another interesting problem is the possible 
relaxation of the condition of analyticity of the solu
tions. For mixed sets of equations which are neither 
totally elliptic nor hyperbolic, such as the completely 
reduced Einstein-Petrov equations appear to be, not 
all such questions have yet been settled. 
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We expand the direct product of two representations of the Poincare group into representations of the 
Poincare group in the general case that the factors of the direct product may have any mass, whether real, 
zero, or imaginary, and the total energy may be indefinite. The representations of the Poincare group, 
which appear in the expansion of the direct product, have masses which run through a continuous 
spectrum of real and imaginary values and are irreducible in terms of the mass and sign of energy (for 
real mass), but are reducible in terms of the infinitesimal generators of the little groups. To obtain the 
expansion in terms of irreducible representations, one need only reduce the infinitesimal generators of the 
little groups. This reduction is carried out for the real mass components and, in principal at least, can be 
carried out for the infinitesimal generators of the little groups for the imaginary mass components. The 
factors of the direct product and the representations which appear in the expansion are expressed in terms 
of a particular momentum representation called "the standard helicity representation" which enables us 
to use a uniform notation for all masses, whether real, zero, or imaginary. The earlier portion'of the 
present paper summarizes the properties of these representations. 

1. INTRODUCTION 

In Ref. 1, we obtained all the representations of the 
infinitesimal generators of the Poincare group such 
that the generators were integrable and, in addition, 
that the infinitesimal generators corresponding to the 
energy and momentum were Hermitian (but not identi
cally zero) and the generators corresponding to the 
angular momentum operators were Hermitian. These 
representations were in a form in which the helicity 
operator p. J played a particularly important role, 
and we used the term "standard helicity representa
tions or realizations" to describe the form of the 
representation. 

Each of these realizations acts on functions in a 
space which is the direct product of the space for 
realizations of the infinitesimal generators for scalar 
particles and of a space for the representation of the 
infinitesimal generators of the little group appropriate 
to the mass of the representation, that is, the rotation 
group, the Euclidean group in the plane, and the 
rotation group in pseudo-Euclidean space for positive, 
zero, and imaginary mass, respectively. Irreducible 
Hermitian representations of the infinitesimal gener
ators of the Poincare group are special cases of the 
above standard helicity representations. 

In addition to the advantage of depending upon the 
helicity explicitly, the standard helicity realizations of 
the Poincare group have a similar appearance as 
expressed in terms of the infinitesimal generators of 
the little group, for all masses, whether real, zero, or 
imaginary. It is not necessary, in many applications, to 
discuss separately the cases of real, zero, and imag
inary masses. 

It is the object of the present paper to exhibit the 
direct product of two such standard helicity repre
sentations and represent the direct product as a sum 
(actually an integral) of standard helicity representa
tions. Working with helicity representations enables us 
to use a notation for the factors of the direct product 
largely independent of the value of the square of the 
mass or sign of energy of the factors. The square of the 
masses, which occurs in the sum, runs through a 
continuous spectrum of positive and negative values. 
Zero-mass representations are of zero measure and 
thus contribute nothing. 

As part of the reduction, we give the little group 
associated with each representation in the sum. The 
little groups appear in unreduced form. In an appen
dix we reduce the little group, that is, the rotation 
group in a helicity representation, for the real mass 
representations. In principle, it is possible, though 
difficult, to reduce the little groups for imaginary mass 
representations, but we have not done so in the present 
paper. For some applications, however, such a 
reduction is not necessary. 

Thus, the material of the present paper is a general
ization over previous treatments of the reduction of 
the direct product of two representations of the Poin
care group (see, for example, Jacob and Wick,2 JOOS,3 

Kummer, 4 Lomont,5 Macfarlane,6 Moussa and Stora, 7 

Werle,S) as follows: (1) in the present paper, one or 
both of the representations in the direct product 
may have imaginary mass; (2) the total energy may be 
indefinite so that the reduction of the direct product 
contains imaginary mass representations; (3) the 
representations in the direct product need not be 

1219 
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irreducible; and (4) while the infinitesimal generators 
corresponding to space-time rotations must be integ
rable and those corresponding to energy, components 
of linear momentum, and components of angular 
momentum must be integrable and Hermitian, the 
infinitesimal generators corresponding to space-time 
rotations need not be Hermitian. 

To complete the reduction program, we also reduce 
the direct product of the representations of the Poin
care group, for which the energy and momentum 
operators are not identically zero, and a representation 
for which these operators are identically zero, that is, a 
representation of the homogeneous Lorentz group. 
The reduction contains representations of the Poincare 
group in standard helicity representations. 

Aside from the mathematical interest, our motiva
tion for studying direct products for representations 
for more general situations than heretofore is our 
interest in reducing currents and interactions which 
appear in nonlinear systems of coupled wave equa
tions, for example, the Dirac equation coupled to the 
electromagnetic vector potential. In Ref. 9 we showed 
how wavefunctions in configuration space constitute 
bases of representations of the Poincare group. We 
proceeded to reduce these wavefunctions into irre
ducible representations of the Poincare group for real 
nonzero mass in the Foldy-Shirokov realization. In 
Ref. 10 we extended the reduction process to include 
zero-mass representations. For the purpose of decom
posing currents and interactions, the most general 
situation is obtained by expanding the wavefunction 
in configuration space into all possible representations 
of the Poincare group. For the sake of simplicity we 
can use standard helicity representations for all 
masses, whether real, zero, or imaginary, for the case 
that the energy and momentum generators are not 
identically zero. These expansions can be carried out 
using the techniques discussed in Ref. 1. In the ex
pansion of the wavefunction, we include the possibility 
that representations of the homogeneous group are 
also present, for the sake of the greatest generality. 
Then, having expanded the wavefunction as described 
above, we take the products of wavefunction as 
they appear in interactions and currents. We find 
that to reduce such products we are led immediately 
to the reduction problem considered in the present 
paper. 

We shall give only the results for the sake of brevity. 
The derivation of the results, while lengthy, is a direct 
application of the reduction techniques discussed in 
Ref. 1. Furthermore, since we wish to use the results 
for calculations to be discussed in later papers, the 
reduction is given in very explicit form. 

2. STANDARD HELICITY REPRESENTATIONS 
OF THE POINCARE GROUP 

In the present section we shall give the standard 
helicity representations of the Poincare group under 
the conditions that the infinitesimal generators are 
integrable, that the infinitesimal generators corre
sponding to energy, components of the linear momen
tum, and components of the angular momentum are 
Hermitian and that the infinitesimal generators 
corresponding to the energy and components of the 
linear momentum are not identically equal to zero. 

Specifically, let pa, (J. = 0, 1, 2, 3, be the infinitesi
mal generators corresponding to the energy and 
components of linear momentum. We use the metric 
gaP = gap = ° if (J. =;t:. p, gOO = goo = _gil = -gil = 
-1. Hence, po = -Po and pi = Pi' We denote the 
components of the angular-momentum tensor by 
JaP = -Jpa . Then we require the following com
mutation rules to be satisfied: 

[pa, pP] = 0, [Jap , Py] = i(gayPp - gpyPa), 

[Jap , J y6 ] = i(g"/P6 - gpyJa6 + ga6J yp - gP6J ya)' 

(1) 
We shall write 

H = po = -Po, J = (J23 , J31> J12) , 

(t = (J01' J02 ' J03)' (2) 

The components of J are, of course, the components 
of the angular momentum, whereas those of (t 
correspond to infinitesimal space-time rotations. 

Our integrability requirements can then be stated as 
follows: The operators exp [iaaPa], exp [iO. J], and 
exp [i~ • (t] exist for all real numbers aa, (ji' and Pi' 

where (ji and Pi are the components of 6 and ~, 
respectively. The Hermiticity conditions are that the 
operators pa and Ji are Hermitian. 

We shall now introduce a notation for the repre
sentations of the little group. The three infinitesimal 
generators of the little group which we denote by T1 , 

Ta, and M satisfy the commutation relations 

[TI , M] = -iT2' [T2' M] = iTl' 

[r1 , Til] = iA(e)M, (3a) 

where e is a variable (which we shall later identify with 
the square of the mass) whose values include the entire 
real axis. The function A(e) is given by 

A(O) = 0, A(e) = e/JeJ, for e =;t:. 0. (3b) 

Thus, for positive values of e, the operators satisfy the 
commutation rules of the infinitesimal generators of 
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the rotation group, while, for c = ° an~ c ~ 0,. the 
commutation rules are those for the Infimteslmal 
generators of the Euclidean group in the plane and the 
rotation group in pseudo-Euclidean space, respec
tively. 

The integrability and Hermiticity requ~rem~nt~ on 
J. and 6· lead to the requirement on the Infimteslmal 
g~nerato'rs of the little group th~t M be Her~itian and 
have only integers or half-odd Integers as eIgenvalues 
and that exp [ia . T] exists for all real a1 and a2 , where 
a· T = a1T1 + a2T2' 

A realization or representation of the operators Ti 
and M, which we shall call a realization of the ~rst 
kind, is given in the following way. Each such realIza
tion has associated with it a Hilbert space {I(A)} of 
complex functions of a set o~ variables whi~h we 
collectively denote by A. The Inner product In the 
Hilbert space is defined with the aid of a measure 
function meA) such that the inner product of two 
functions is S pO * (A)f(A) dm(A). The operato~s T~, 
T2 , and M are represented by linear operators In thIS 
space. We shall write the function resulting from 
applying the operators Ti and M.onf(A) as T/'f(A) and 
M'i(A), respectively, to emphaSIze that the operators 
act on the A variables in the function. Any other 
operator A in this space will like~ise be written AA to 
emphasize that it acts on the vanable A. . 

Realizations of the first kind are those customanly 
used for representing operators. However, we shall 
find it useful to introduce a slight generalization which 
we shall call realizations or representations of the 
second kind. Let W be any positive-definite Hermitian 
operator. For realizations of the second kind we replace 
the earlier inner product by S PI) *(A) WAf(A) dm(A). 
For use in the representations of the Poincare group, 
realizations of the generators of the little group of the 
second kind prove more useful than those of the first 
kind. We shall call W the weight operator associated 
with the representation. 

Let us consider a second representation ofthe second 
kind of the operators Ti and M. The Hilbert space for 
this representation will be the space of complex 
functions {gC,u)} of a set of variables It. The measure 
function is M(It) and weight operator is V. We shall 
find the following definition useful: 

Definition: The two realizations are unitarity equiv
alent if there is a one-to-one linear correspondence 
between the functions of the set {j(A)} and the set 
{g(It)} and if the inner product is pr;served in the 
correspondence, that is, S f(1l *(A) W j(A) dm(A) = 
S g(l) * (It) Vllg(lt) dM(It) where f(A) and Pll(A) corre
spond to g(lt) and g(1}(It), respectively. 

The following theorem is then easily proved: 

Theorem: Every realization is equivalent to one in 
which the weight operator is the identity. 

We are now in a position to give the standard 
he Ii city representations for the infinitesimal generato~s 
of the Poincare group under the very general condI
tions described in the Introduction. To give the Hilbert 
space of functions, we shall characterize the variables 
which appear in these functions. 

Let c be a real variable which can take on all real 
values. This variable will later be identified as the 
square of the mass. Let the components of the vector 
P = (PI, P2 ,P3) take on all values in the 3-dimen
sional space for the case that c ~ 0 and take on values 
outside the sphere Ipi > -c for c < O. The vector p 
will later be seen to be the momentum variable. Let 
€ take on the two values ± 1. The quantity E will be the 
sign of energy. 

For each value of c ~ 0 and each value of E we 
assign a representation of the little group whose 
infinitesimal generators satisfy the commutation rules 
(3). Such an assignment provides a set of variables A 
and a set of operators TiA and MA for each value of c 
and E. For c < 0 we also assign representations of the 
little group for each value of c which, however, are 
independent of E. Thus, we have variables A and 
operators TiA and MA which depend on ~ but not on E. 

(In Appendix A we extend the calculatIOns of Ref. 1 
to prove that A, T;, and MA can always be chosen 
to be independent of E for c < 0.) 

The representations of the little groups which we 
require are of the second kind. We prescribe the 
weight operator WA(C, E,p) with P = Ipl as any 
function of the arguments. To complete the assignment 
of the little group and to enable us to define an inner 
product in the Hilbert space of functions upon which 
the infinitesimal generators of the Poincare group act, 
we introduce three measure functions which are essen
tially measure functions in the product space of the c 
and A variables. We denote these measure functions by 
M+(c, E, A), MO(E, A), and M-(c, E, A) where M+ == 0 
for c < 0 and M- == 0 for c > O. We require that 

M-(c, -1, A) = M-(c, +1, A). 

Except for being consistent with the assignment with 
the little groups, M± are arbitrary as functions of c, 
and MO and M+ are also arbitrary functions of E. 

Our Hilbert space for the representation of the 
infinitesimal generators of the Poincare group is a 
space of complex functions {f(c, E,p, A)} with the 
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following inner product: 

(fw,J) = f IIf(l)*(e, €, p, A)WA(e, €, p) 

dp +( 1 X fee, €, p, A) -- dM e, €, /I.) 
wee, p) 

+f II fW*(O, €, p, A)WA(O, €, p) 

• dp dMO( 0) X f(O, €, p, A) -- €, A 
wee, p) 

+ f II f(I)*(e, €, p, A)WA(e, €, p) 

X fee, €, p, A) ~ dM-(e, €, A), (4) 
wee, p) 

where w(e,p) = (e + p2)t. 
We shall now give the infinitesimal generators of 

the Poincare group explicitly. First we note that, from 
the assignment of the little groups for all e and €, we 
know the operators TiA and MA, that is, we know 
the meaning of T;f(e,€,p,A) and M'i(e,€,p,A). 
Secondly, we define 

p = Ipl, wee, p) = (e + p2)t (5) 

as before. Also 

p. T). = PITt + P2TL B(e) = [lent, for e ~ 0, 

B(O) = 1, (6a) 
and 

Then, 

PJ(e, €, p, A) = pJ(e, E, p, A), 

Hf(e, €, p, A) = pOf(e, €, p, A) 

= €w(e, p)f(e, €, p, A), 

(6b) 

Jaf(e, €, p, A) = [-i(p x Vh + MAlf(e, €, p, A), 

JJ(e, €, p, A) 

= {-i(p X V)i + [Pi!(P + P3)]MA}f(e, €, p, A), 

i = 1,2, 

6af( e, €, p, A) 
= €{iw(c, P)'il3 + [8(C)(p2](p. TA)}j(C, €, p, A), 

(7) 
6t!( e, €, p, A) 

= €{iw(e, P)'ill + [P2!P(P + Pa)]w(e, p)MA 

B(e) A ). + -2 [PIP' T /(p + Pa) - pT1]}f(e, €, p, A), 
p 

'Jd(c, €, p, A) 

= €{iw(c, P)'il2 - [PI!P(P + Pa)]w(e, p)M). 

B(e) A ). + -2 [P2P' T /(p + Pa) - pT 2]}f(c, €, p, A). 
P 

We note that p. Jf(e, €, p, A) = pM'f(e, €, p,).); 
hence, the name "standard helicity representation." 

We now give the integrated forms of the representa
tion. Let us define pO by 

pO = €w(e,p). (8) 
Then, 

In Eq. (9a) we use the summation convention where 
the a~ are four numbers which we take to be real for 
purposes of representation theory. 

Let 6 = (01 , O2 , Oa) be an arbitrary real vector and 
let 

0=161. (9b) 
Then 

exp [i6 . J]f(c, E, p, A) 

= exp [2i<l>(6, p)M).]f(e, E, p', A), 

(9c) 

where <I> is defined as being the principal branch of 

tan <1>(6, p) = (6. p + OaP) tan (to) (9d) 
(p + Pa) + (6 X P)a tan (iO) 

and 
1 - cos 0 sin 0 

p' = pcos 0 + 02 (6. p)6 + -e-C6 x p). 

(ge) 

We note that <I> depends on the direction of the vector 
p but is independent of the magnitude of this vector. 

To obtain exp [i~ • 6] for all real vectors ~ = 
(/31' /32' /3a), we use the identity 

exp [i~ • 'it] = exp [-i;' J] exp [i/36a] exp [i; • J], 

(9f) 

where the vector ; = (~l' ~2' ~a) is related to ~ 
through 

f3 = I~I, ~ = 1;1, 

cos ~ = b sin ~ ~2 = PI sin ~ ~ = _ P2 . 
/3' ~ p' ~ /3 

(9g) 

We shall now give exp [if3'Ja]. We define the func-
tions gee, x) by 

g(O, x) = x, 

gee, x) = arc tan [(e)tx], for e > 0, (9h) 

gee, x) = !log [II + (-e)txl/ll - (-e)hl]' 

for c < 0. 

Also for every vector p and sign of energy € we 
introduce the vector p' and sign of energy E' through 
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the following Lorentz transformation: 

P~ = PI' P~ = P2. 

P~ = Pa cosh P - €w(e, p) sinh p, (9i) 

€'w(e, p') = €w(e, p) cosh P - Pa sinh p, P' = Ip'l· 

We note that €' = ± 1. Furthermore, when e ~ 0, we 
have €' = €. Then, 

exp [iP6aJf(e, €, p, A) 

= exp {i p. TA l[g(e, P3
1 

) 
(p2 _ P:) (p2 _ P:) wee, p) 

- g(e, Pi )]}f(C, €', p', A). (9j) 
(p2 _ P:) wee, p') 

For c ~ 0, the above expressions can be simplified 
by noting that 

(p2 - p;rl[g(o, 2 Pa 2! ) - g(o, (2 p~ 2! ,)J 
(p - Pa) P P - Pa) P 

€ tanh P 
l- €PPa tanh P 

(9k) 

and 

( 
Pa ) ( p~ ) g C, 1 - g e, 1 

(p2 _ p:)~w(e, p) (l- p:)~w(e, p') 

= € arc tan ( [e(p2 - pi)]! tanh P ), e > O. (91) 
p2 _ €Paw(c, p) tanh P 

We wish now to introduce the definition of equiv
alence of two helicity representations of the Poincare 
group. 

Let us assume that we have a second helicity 
realization defined in a space offunctions {l(c, €, p, fl)}, 
where fl is a variable analogous to A of the previous 
representation and is used to describe the realization 
of the generators of the little group which in this 
second realization we designate by Tf, Mil. Further
more, for this realization we have measures M±(c, €, 

fl), MO(€, fl) and weight operators WIl(C, €,p) for use 
in an inner product analogous to Eq. (4). 

Definition: The two realizations are unitarily equiv
alent if there is a one-to-one linear correspondence 
between the functions of the two spaces such that the 
inner product is preserved. 

The definition of unitary equivalence of two helicity 
representations leads to the following theorem: 

Theorem: Two helicity representations are unitarily 
equivalent if and only if they contain the same values 
of c and € and if the set of realizations of the corre
sponding little groups are unitarily equivalent. 

We now wish to characterize irreducible helicity 
representations. 

Definition: The set of infinitesimal generators of the 
little group (for all c and €) are irreducible if there is 
no proper invariant subspace in the space of functions 
{f(c, €, p, A)}. 

Theorem: The set of infinitesimal generators of the 
Poincare group is irreducible if and only if all of the 
following conditions are satisfied: 

(1) c takes on only one value, 
(2) if c ~ 0, all of the functions f(c, €, p, A) are 

identically zero for one value of €, and 
(3) the realization of the little group T; and MA is 

irreducible. 

We note that, if the set of Poincare infinitesimal 
generators is irreducible, then there is no integration 
over c and we can drop the argument c in places. For 
C ~ ° we can similarly drop explicit dependence on €. 

Then for c ~ 0 we write f(p, A) for the function 
f(c, €, p, A) and Wl.(p) for the weight operator 
WA(C, €, p). For c < 0 we write f(€, p, A) for f(c, €, 

p, A) and WA(€,p) for WA(C, €,p). For any value of c 
we replace the measure functions by the measure 
function M(A). 

The inner product (4) is now written 

(f(O,!) 

=JJ.f(O*(P, A)WA(p).f(p, A) ~ dM(A), 
w(c, p) 

for c ~ 0, 

= IJJlI)*(€, p, A)WA(€, p)f(€, p, A)--.£!L dM(A), 
< w(e,p) 

for e < 0. (10) 

Up to now we have not required 6i to be Hermitian. 
We wish now to examine the consequences of adding 
this requirement. We shall, however, not require 
that the representations be irreducible. The Hermiticity 
and irreducibility requirements can be combined in an 
obvious fashion to characterize irreducible Hermitian 
sets of infinitesimal generators, which are the realiza
tions desired when discussing properties of particles. 

Let us define the operators C;, i = 1, 2, 3, as they 
act on our realizations by 

(11) 

The operators C; are the "orbital" parts of the 
operators it; [see Eq. (7)]. The following theorems 
hold: 
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Theorem: The operators Ci are Hermitian if and 
only if the weight operators W).(c, E, p) are independ
ent of p for c ~ 0 and are independent of p and E for 
c < O. 

Theorem: The operators Ci are Hermitian if and 
only if the realization of the infinitesimal generators 
of the Poincare group is equivalent to one in which the 
weight operators are the identity. 

Theorem: The operators 6i are Hermitian if and 
only if the operators [/ and realizations of the little 
groups T; and M). are Hermitian. 

Theorem: The operators 6i are Hermitian if and 
only if the realization is unitarily equivalent to a 
realization in which the weight operators W).(c, E,p) 
are the identity operator and in which the operators of 
realizations of the little group T; and M). are Hermit
ian. 

From the last theorem we see that, within unitary 
equivalence, all Hermitian realizations of the Poincare 
group can be constructed in the following way. One 
picks the values of c which one wishes to appear in the 
representation. The values of c can be in a continuous 
set, be a discrete set, or be a combination. Those 
values which appear can be incorporated into a 
measure function to be given shortly. For each value 
of c > 0 and for each value of E one picks, a Hermitian 
realization of the rotation group T; and M). such that 
the corresponding weight operator W' is the identity. 
The values of A which appear and the values of c > 0 
which enter into the representation are characterized 
by the measure function M+(c, E, A). The representa
tions for c = 0 and c < 0 are treated in an analogous 
way except that for c < 0 the realizations of the little 
group are chosen to be independent of E. 

3. DIRECT PRODUCT OF HELl CITY 
REPRESENTATIONS 

We give the direct product of two helicity representa
tions. In the next section we expand this direct product 
into standard helicity representations. 

The infinitesimal generators of the factors of the 
direct product will be distinguished by a superscript 
(1) or (2). Thus, we have two sets of infinitesimal 
generators P(ll«, J(1), 6(1), and p(2)a, J(2), 6~1l. The 
square of the mass: sign ~f energy, and r~alizations of 
the little group analogous to c, E, Tt, and M\respec
tively,of the previous section are denoted by b, P. T:. 
and MIl,respectively, where we now use the variable fl 
instead of A for representations associated with the 
superscript (1). Moreover. the variable p which gives 

the spectrum of the linear-momentum operators in Sec. 
2 is replaced by y for the superscript-(1) representa
tions. Likewise for the superscript-(2) representations, 
the quantities analogous to c, E, T;. M\ and A are 
denoted by d, y, T!, MV, and Y, respectively. The 
variable p is replaced by z. 

For simplicity we consider the direct product of two 
single-mass. representations, that is, representations in 
which band d take on only one value each. this value 
being any real number. In much of our notation we 
may thus suppress the appearance of band d. The 
generalization to the case where band d may run 
through a set of values will be obvious. 

We also require that the realizations of the little 
groups are independent of the sign of the energy of the 
respective representations which appear in the product, 
not only for imaginary mass representations, as before, 
but also even when the mass is real. This requirement 
is automatically satisfied for representations obtained 
by expanding wavefunctions in configuration space 
in terms of the standard helicity representations. as 
will be shown in later papers. However, more gener
ally, this requirement is not really restricting because 
for nonimaginary masses the realizations are reducible 
in terms of the signs of the energy, that is, for each 
realization the space of functions is a sum of orthog
onal subspaces in each of which the energy has only 
one sign, that is, in each subspace the wavefunctions 
are identically zero when the sign of the energy is 
plus or minus, respectively. Then in each subspace the 
realization of the little group may be considered as 
being independent of the sign of the energy. This 
device enables us to use a uniform notation for 
reducing the direct product of representations of all 
masses, whether real or imaginary. 

The space of functions upon which the infinitesimal 
generators involved in the inner product act is denoted 
by {j(P, y, fl; y, z, y)}, where the variable y ranges 
over the entire space if b ~ 0 and over the space 
y > -b if b < O. (We use the notation y = Iyl.) 
Similarly, the range of z is the entire vector space if 
d > 0 and the space z = Izl > -d if d < O. 

To define the inner product, we introduce a measure 
function m(fl, Y) and a weight operator WIlV(P, y; y, z), 
where the superscripts fl and y indicate that the weight 
operators act on these variables in the functions f 
Then the inner product is given by 

(g,j) = 1; fff g*({3, y, fl; y, Z, v)W1""({3, y; y, z) 

dy dz 
x f({3, y, fl; y, z, v) ---- dm(fl, v)· 

web, y) wed, z) 
(12) 
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The way that the infinitesimal generators act on the 
functions t«(J, y, ft; y, Z, v) is now given. We define 
B(e) as in Eq. (6). Furthermore, 

y = Iyl, z = Izl, web, y) = (b + y2)t, 

wed, z) = (d + Z2)!, (13) 

as above. Also, 

Vv = (V!I1, Vya , Vl/a), V. = (V.u V.a, V.a), (14a) 

with 
() 

V.=-. 
•• OZj 

(14b) 

Finally, 

y. TIL = YITf + YaT;, z· r = zLT~ + z2T~. (15) 

In accordance with our assumption that the realiza
tions of the little groups are independent of the sign 
of the energy, we take Tf, MIL, T;, and MV to be 
independent of (J and y. We have 

P~Of({3, y, /-l; y, z, v) = yJ({3, y, ft; Y, z, v), 

H(I)f({3, y, /-l; y, z, v) 

=: pUJCY({3, y, /-l; Y, z, v) 

= (3w(b, y)f«(J, y, /-l; Y, z, v), 

J~llf«(J, y, /-l; Y, z, v) 

= [-iCy x VJa + MIL)J«(J, y,ft; y, z, v), 

Jjllf«(J, y, ft; y, z, v) 

= {-iCy X VY)i + [Yi!(Y + Ya»)M~} 
x f({3, y, /-l; y, z, v), i = 1,2, 

6~])f«(J, Y,ft; Y, z, v) 

= (J{iw(b, y)VlIa + [H(b)Jy2J(y. TIL)} 

x f({3, y, ft; y, Z, v), 

6~l)f({3, y,/-l; Y, Z, v) 

= (3{iw(b, y)VYl + [Ya/Y(Y + Ya)]w(b, y)MIL 

+ [B(b)!l)[YIY' T"/(y + Ya) - yTm 

x f({J, y,ft; y, z, v), 

6~llf({J, y,ft; Y, z, v) 

= (J{iw(b, y)VY2 - [YdY(Y + Ya)]w(b, y)MIL 

+ [B(b)!/][YaY' T"!(y + Ya) - yT~]} 
x f({J, y,ft; y, Z, v), 

p!2j({3, y,P,; y, z, v) = zJ({3, y,p,; y, z, v), 

H(2)f({J, y, ft; y, z, v) 

== p(Z)Of({3, Y,/-l; Y, z, v) 

= yw(d, z)f({J, y,p,; y, z, v), 

J~2>.t({J, Y,/-l; y, z, v) 

= [- i(z X V.)3 + MV]f({J, y, ft; y, Z, v), 

J?1({J, y,ll; Y, z, v) 

= {-i(z xV.); + [Zi!(Z + za)]MV} 

xf({J, Y,Il; Y,Z, v), i=1,2, 
a~2)f({J, Y, /-l; y, z, v) 

= y{iw(d, z)V.a + [B(d)/Z2](Z • r)} 
x f({J, y, ft; Y, z, v), 

a~21({J, y, ft; y, z, v) 

= y{iw(d, z)Vzt + [Z2!Z(Z + zs)]w(d, z)MV 

+ [8(d)JZ2][ZlZ • r!(z + za) - zTrJ} 

x f({J, y,p,; y, Z, 11), 

'J~21({J, Y,Il; y, z, 11) 

= y{iw(d, z)'V.2 - [zLlz(z + za)]w(d, z)MV 

+ [8(d)jz2][Z2Z • r!cz + za) - zTm 

x fC{J, Y, It; y, Z, v). (16) 

One can define unitary equivalence of two direct 
products of helicity representations in a manner 
analogous to the definition of unitary equivalence of 
two helicity representations as in Sec. 2. The following 
theorem is analogous to one in Sec. 2. 

Theorem: a:1 ) and a:2) are both Hermitian if and 
only if the realizations of the little groups Tr MIL and 
Tt and MV are Hermitian and there is an unitarily 
equivalent direct product such that the weight operator 
corresponding to W/lv is the identity. 

Let us define the operators prt, J i , and 6; by 

prt = p(llrt + p(2)a, IX = 0, 1,2,3, 

Ji = J~l) + J~2), 
a; = a?) + al21, 

i = 1,2,3, 

i = 1,2,3. 

(17) 

In the next section we give a set of functions which 
are obtained through a one-to-one linear transforma
tion on the functions {fC(J, y, ft; y, z, v)} such that in 
terms of the new functions the operators act in a 
helicity representation as in Eq. (7). 

4. FORMULAS FOR THE REDUCTION OF 
THE DIRECT PRODUCT 

In the present section we give the explicit formulas 
for the reduction of the direct product. Specifically, 
we give a one-to-one linear transformation between 
the functions of the space {f(P, y, It; y, Z, v)} and 
functions of a Hilbert space {F(e, E. p, A)} such that, if 
A is any of the operators p~, Ji , or a i as it operates on 
the functions/(p, y, Il; y, z, v) as in Sec. 3, then there 
is a corresponding operator A which operates in the 
standard helicity representation on the functions 
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F(c, €, p, A) as in Eq. (7) in such a way that, if 

f(P, y, fl; Y, Z, 'V) ~ F(c, €, p, A), 
then 

Af(P, y, fl; Y, Z, 'V) ~ AF(c, €, p, A). (18) 

We have to give the range of the variable c, identify 
the variable A, and give the little group generators 
ti and M as they act on A in F. (By ti and M, we 
designate the generators of the little groups which 
appear in the standard helicity representations of the 

operators Ji and oji') 
Without any loss in generality we take 

b ~d. (19) 

Then in the correspondence (18) we have the following 
results: 

(i) The range of c is the entire negative real axis and 
the following portions of the positive real axis: 

o < c < 00, if d ~ 0, 

0< c < (bi - d!)2, (bi + d!)2 < c < 00, 

if d ~ O. 

(ii) The contribution of c = 0 (that is, zero mass) 
is of zero measure and, hence, is not important in the 
reduction. 

(iii) The nature of A and the representations of the 
generators little groups Ti and M depend on the sign 
of c but are otherwise independent of the value of c. 

It is convenient to divide the discussion of the 
character of A and the relation of F(c, €, p, A) to 
f(P, y, fl; Y, z, 'V) into two parts corresponding to the 
sign of c. 

A. c > 0 

The variable A consists of a set of variables which 
we denote bye, cp, fl' and 'V. The variables fl and 'I'are 
identical in range and character to the variables which 
appear in the functions f(P, y, fl; Y, z, 'V). The vari
ables () and tp are each real variables whose ranges are 
o < e < 7T and 0 < cp < 27T, respectively, and are in 
the nature of the angular variables used in polar 
coordinates. For c > 0 we define F+(c, €, p, e, cp, fl, 'V) 
by 

F+(c, €, p, e, tp, fl, 'V) == F(c, €, p, A). (20) 

We define the operators Ri by 

RIF +(c, €, p, e, tp, /-t, 'V) 

= [i (Sin cp.E..- + cot e cos cp 1-.-) ao acp 
+ cos cp(tan le . Mil - cot le . MV)] 
X F+(c, €, p, e, CP,fl, 'V), 

R2F +(c, €, p, 0, cp, /-t, 'V) 

= [- i (cos cp .E.. - cot e sin cp ~) 
00 otp 

+ sin cp(tan to' Mil - cot to' MV)] 
x F +(c, €, p, e, cp, p, 'V), 

R3F +(c, €, p, fJ, cp, /-t, 'V) 

= ( - i aOcp + Mil + MV) 
x F +(c, €, p, e, cp, /-t, 'V). (21) 

In Eq. (21) and later the operators Tf, Mil, T;, and 
MV are the same infinitesimal generators of the little 
groups associated with the direct product and used in 
Eq. (16). They act on the p and 'V variables as is 
indicated by the superscripts. 

It is easily seen that the operators Ri satisfy the 
commutation rules for the infinitesimal generators of 
the rotation group. Then the infinitesimal generators 
of the little group ti and M are given by 

Tl = -R2' T2 = RI , M = R3 • (22) 

The reduction of the direct product can be carried 
on still further by introducing a transformation in the 
A variable such that Ti and M or, equivalently, the set 
of operators R; are completely reduced. This reduction 
procedure is closely related to the procedure for 
reducing the set of angular-momentum operators in 
Eq. (7), which we shall call "a helicity representation" 
of the angular momentum. Both the reduction of the 
helicity representation of the angular momentum 
operators and the reduction of the operators Ri are 
discussed in Appendix B. 

It will now be useful to introduce a "covariant" 
notation for some of the arguments appearing in the 
functions f(P, y, /-t; Y, z, 'V). Let i = Yi' i = 1,2,3, 
be components of the vector y. Similarly, we denote 
the components of Z by Zi = Zi' We define yO = -yo 
and ZO = -Zu by 

yO = -Yo = (Jw(b,y), ZO = -Zu = yw(d, z). (23) 

Furthermore, we define the 4-vectors w~ and v~ by 

w~ = y'" + z~, v~ = y~ - z~, r:t. = 0, 1, 2, 3. (24a) 

We define the vectors wand v as the space parts of the 
4-vectors w~ and v~ respectively; that is, 

w = y + z, v = y - z, w = Iwl, v = Ivl. (24b) 

We can introduce a space for the set of independent 
variables y, Z, p, Y which occur in the function 
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/(P, y, /-t; y, z, v). We call this space S. That portion of 
the space 8 for which w"w" < ° is called 8R where the 
subscript R stands for "real," since the function 
/(P, y, /-t; y, z, v) determines F for real mass. Simi
larly, the part of 8 for which w"w" > ° is denoted by 
81 , where I stands for "imaginary," since for these 
values of the arguments,f(p, y, /-t; y, z, v) determines 
F for imaginary mass. 

For brevity, we denote the variables y, z, p, and y 
collectively by Y. Thus, if w"w" < 0, then Y is in 8R • 

If w"w" > 0, then Y is in 81 , 

We wish now to introduce a new set of variable 
which are functions of Y for the case Y is in 8R . We 
define the variables c, E, p, r, (), and cp by 

c = -w"w", E = sgn wo, p = w, 

ri = Vi - WiV ' w/w(w + wa) - WiVa!(W + wa), 

i = 1,2, (25) 
ra = (sgn wo)( -w"w,,)-!w-1[wO(d - b) - vow"w,,], 

() = arc cos (ra/r), cp = arc tan (r2/rl)' r = Irl. 

In Eq. (25) we take the ranges of () and cp to be ° < () < 7T and 0< cp < 27T, respectively. The vari
able c is, of course, positive, and, in fact, has the same 
range as the argument c in F+(c, E, p, (), cp, /-t, v). Each 
of the components of p covers the entire real axis. 

We regard the set of variables c, E, p, (), and cp, 
which we collectively denote by Q, as being the image 
of the point Y. As Y ranges through the space 8R , Q 
will go through the space 8.it . 

Having given Q as a function of Y, we can give the 
inverse transformation, namely Yas a function of Q. 

We first define the vector 't" = (7"1,7"2' Ta), the vector 
k = (k1' k2' k a), and the functions S1 and S2 in terms 
ofQ by 

't" = {[(e - b - d)2 - 4bdJje}! 

x (sin () cos cp, sin () sin cp, cos (), 

7" = l't"l = a(e - b - d)2 - 4bd]je}t, 

ki = [Ti - plpl7"l + P27"2) + l!iTaW(e, p) + Pi b - d], 
pep + Pa) P e! e 

i = 1,2, (26) 

ka = _ (PIT! + P27"2) + !!2 TaW(e, p) + Pa b - d, 
P P e! e 

Sl = (e + b - d)w(e, p) + Taetp, 

S2 = (e - b + d)w(d, p) - Tae!p. 

The variable Y in terms of the variable Q is then as 
follows: 

We note that, if the value Q in 't" is replaced by its 
expression in terms of Y (Eq. 25) or if Y in the expres
sions for r in Eq. (25) is replaced by its expressions 
in terms of Q as in Eqs. (27), we have 

't" = r. (28) 

Similar replacements lead to 

v = k. (29) 

From the Jacobians of the transformation (25) or its 
inverse (27) we can show 

dy dz 1 T dp. ---- = - - de -- sm () d() dcp. (30) 
web, y) wed, z) 4 e! wee, p) 

We now introduce certain operators which act on 
the /-t and 11 variables in /(P, y, /-t; y, Z, 11) and 
F+(e, E, p, (), cp, /-t, v). 

First, let us define for any two vectors a and b the 
scalar function/(a, b): 

lea, b) = (a + aa)(b + ba) + (a1 - ia2)(b1 + ib2), 

(31) 
where 

a = lal, b = Ibl. (31') 
We note 

I/(a, b)1 = [2(a + aa)(b + ba)(ab + a, b)]!. (32) 

Then we define 

Riy, w) = [fey, w)/lf(y, w)l]2MIl, 

Rv(z, w) = [fez, w)/lf(z, w)l]2MV. (33) 

Also, for simplicity, 

M = (-w"w,,)!. (34) 

For w"w" < 0, we define 

JV;.(y, z) = exp {i(_r '_T_Il_W_[g(b, ---::y_'_W_) 
2 Iy x zl Il[y x z]1 

- g( b, I[M2 + ;~r;][y x ZJI)])}' 
W2(y, z) = exp {_i(_r '_T_V_W_[g(d, _Z_'_W_) 

2 Iy x zl /ZO[y x z]1 

- g( d, - I[M2 + ~r;](y X ZJI) J)}, 
where 

(35) 

y = !(p + k), Z = !(p - k), 

fJ = E sgn S1' Y = E sgn S2' 

r, Til = r1T~ + r2T~, r' r = r1T; + r2n, (35') 

(27) and the functions gee, x) are given in Eq. (9h). 
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Let us also define 

S k _ [f(P + k, p) ]2MIl 
l(P, ) - If(p + k, p)1 ' 

The inverse of the relation [Eq. (39)] is 

f(P, y, f-l; Y, Z, v) 

= Riy, w)Jt;(y, z)Rv(z, w)W2(y, z) 

[ 
f(p - k, p) J2MV 

S2(P, k) = If(p _ k, p)1 ' (36) x F + (M2, sgn wo, w, arc cos ~ , arc tan ~ ,f-l, v). 
r r1 

V2(p, k) 

= exp {-i(-r ° TV _P_[g(d,2 _C-"(p'-2_---'O...p_o k-:.») 
Ip x kl IS2[p x k]1 

( d 2PC
t
'T3) J)} (37) 

- g ,- I[c - b + d][p x k]1 ' 
where 

't ° Til = 'T1T~ + 'T2T~, -r ° r = 'T1T1v + 'T2T;. (37') 

We note that in the above operators if the variables Q 
are replaced by the variables Yor Y by Q in accord
ance with the transformations (25) and (27), then 

Sl(P, k) = R/y, w), S2(P, k) = Rv(z, w), 

Vi(p, k) = Wi(y, z). (38) 

We can now give F+(c, E, p, 0, cp, f-l, v) in terms of 
f(P, y, ft; y, Z, v) for Yin SR: 

F +(c, E, p, 0, cp, f-l, v) 

= VI1(p, k)SI1(p, k)V;l(p, k)S;l(p, k) 

X feE sgn Sl' t(p + k), f-l; E sgn S2, i(p - k), v). 

(39) 

R1F _(c, E, p, q, <1, f-l, v) 

B. c < 0 
(40) 

For c < 0 the variable J. in F(c, E, p, J.) consists of 
two continuous variables q1 and q2' whose range we 
give below; a discrete variable <1 which takes on the 
values + 1 or -1 ; and f-l and v whose range and charac
acter are the same as for the variables f-l and v in the 
function/(p, y, f-l; Y, z, v). We shall useq to denote the 
2-dimensional vector q = (ql' q2)' We shall now define 
F_(c, E, p, q, <1, f-l, v) by 

F_(c, E, p, q, <1, f-l, v) == F(c, E, p, J.), for c < O. 

(41) 

We shall now give the range of q. We define K by 

K = 4bd - (c - b - d)2 . (42) 
c 

Then, for values of c such that K > 0, the components 
of q cover the entire (ql' q2) plane. For values of c such 
that K < 0, the components of q cover the entire 
(Q1' Q2) plane such that q > - K where 

q = Iql = (q~ + q~)t. (43) 

We shall now give Ti and M. Let us define 

K+ = -(c + b - d)2jc, K_ = -(c + d - b)2jC. 
(44) 

Also 
K = (-c)!. (45) 

We then define the operators R;, i = 1,2, 3, by 

= <1[iW(K, q) ~ + Kq2W(K, q) Mil + Kq2W(K, q) M V 

Oq1 w(K+, q)[Kw(K+, q) - c - b + d] w(K_, q)[Kw(K_, q) - c - d + b] 

+ 2 B(b) ( Kq1 q ° TIl - w(K+, q)T~) 
[w(K+, q)]2 [Kw(K+, q) - c - b + d] 

-2 B(d) ( Kql Qor-W(K_,q)n)]F_(C,E,P,Q,<1,f-l,V), 
[w(K_, q)]2 Kw(K_, q) - c - d + b 

R2F(c, E, p, q, <1, f-l, v) 

= <1[iW(K, q) ~ _ Kq1W(K, q) Mil _ KQ1W(K, Q) M V 

OQ2 w(K+, q)[Kw(K+, Q) - c - b + d] w(K_, q)[Kw(K_, q) - c - d + b] 

+2 B(b) ( Kq2 qoTIl-W(K+,q)T~) 
[w(K+, q)]2 Kw(K+, q) - c - b + d 

-2 B(d) ( Kq2 qor-W(K_,q)T~)JF_(C'E'P,q'<1'f-l'v), 
[w(K_, q)]2 Kw(K_, q) - c - d + b 

R3F_(C, E, p, q, <1,f-l, v) = [ -i( q1 0:
2 

- q2 o:J + Mil + MV]L(C, E, p, q, <1,f-l, v), (46) 
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where 

Then 

q. Til = qlT~ + q2T~, 
q • r = ql T~ + q2T'2. (46') 

1'1 = -ER1, 1'2 = -ER2, M = Ra. (47) 

In Eq. (47) it is seen that 1'i depends on E, whereas 
in Sec. 2 it was stated that these operators could be 
chosen to be independent of the sign of the energy. In 
Appendix A it is shown that by changing the phase of 
F_, the operators are indeed independent of E in the 
new representation. 

For reasons similar to those used for the introduc
tion of the variables Q when Y is in SR' we shall 
introduce a set of variables, which we shall also call 
Q, when Y is in Sr. As Y ranges through the space 
Sr, Q will range through an image space S,-. Specif
ically, the variables summarized by the symbol Q, 
for Yin Sr, are c, E, p, q, CI, where 

C = -w"w", p = W, E = sgn wo, qi = ri , 
i = 1,2, 

CI = sgn S, (48) 

where the functions r i are given in Eq. (25) ario S is 
closely related to r a of Eq. (25): 

S = [VOw"w" - wO(d - b)]. (48') 

The ranges of the variables c, p, E, q = (ql' q2)' (J are 
identical to the variables of the same name in F_(c, E, 

p, q, (J, ft, v). 
We can also find Y from Q. Let us define 

d1 = pw(K, q) - ECI[(C + b - d)/( -e)!]w(e, p), 

d2 = pw(K, q) + ECI[(C + d - b)/( -c)t]w(c, p), 
(49) 

and the vector k = (k1 , k2' ka) by 

p.q d-b 
k i = qi - Pi - Pi--

pep + Pa) c 

+ Pi w(K, q)w(e, p) . 1 2 
E(] !' I = , , 

P (-c) 

p. q d - b P3 w(K, q)w(e, p) 
k3 = - - - P3 -- + E(J 

pcp (-c)! 

Using the Jacobian of the transformations, we obtain 

---.!!L ~ = 1 dqI dq2 dp de 
web, y) wed, z) 4 Kw(K, q)w(c, p) 

(53) 

We now introduce operators in the variable ft, v 
which enables us to relate F_(e, E, p, q, CI, ft, v) to 
f({J,Y,ft; y,z,'II) when YisinSr . 

First we,define R/y, w), Rv(z, w), and Si(P, k) for 
i = 1,2, as in Eq, (33) and Eq. (36), using, however, 
Eq. (50) for k instead of Eq. (26). We also define Wi 
and Vi' i = I, 2, by 

{ (
" TIL W [( y • w ) 

WI(y, z) = exp 1 -2- Iy x zl g b, Il[y x z]1 

_ g(b _ w2

[c + b - d])])} 
, 2 IS[y x z]1 ' 

W2(y, z) = exp {_I (" TV _W_[g(d, z· w ) 
2 Iy x zl IzO[y x z]1 

_ g(d _ w
2

[c + d - b))])} 
, 2 IS[y x z]1 ' 

VI(p, k) (54) 

= exp {i (q. Til -P-[g(b, 2K[p2 + p. k]) 
Ip x kl IdI[p x k]1 

-g(b - 2p[c+b-d] )])} 
, IKW(K, q)[p x k]1 ' 

V2(p, k) 

{ '( 'r" P [(d 2K[l-p.k]) =exp -I q. -- g , 
Ip x kl Id2[p x k]1 

_ g(d - 2p[c + d - b] )])} 
, IKW(K, q)[p x k]1 ' 

where,' Til, r· r, q. Til, and q. r are defined in 
Eq. (35') and Eq, (46'). 

We note that when Q is expressed in terms of Yor 
Y in terms of Q, then 

SI(P, k) = R/y, w), S2(P, k) = Rv(z, w), 

Vi(p, k) = Wi(y, z). (55) 

(50) Then the formulas analogous to Eq. (39) and Eq. 
where 

P • q = P1ql + P2q2' 
(40) which give the relations between Land f when 

(50') Y is in SI and Q is in Si are 

Then the expression for Y in terms of Q is 

Y = Hp + k), Z = Hp - k), 

{J = CI sgn d1 , Y = -CI sgn d2 • (51) 

We note that, when Q is expressed in terms of Yor 
Y in terms of Q, 

v = k, lSI = (-c)!pw(K, q), qi = r i , 

i = 1,2. (52) 

F _(c, E, p, q, CI, fl, v) 

= Vll(p, k)SI1(p, k)V2\P, k)S21(p, k) 

x f(CI sgn dl , t(p + k), fl; -a sgn d2, t(p - k), v), 

(56) 
f({3, y,fl; y, z, v) 

= RiY, w)Wb, z)Rv(z, w)W2(y, z) 

x F _( -w"w", sgn wO, w, i, sgn S, fl, v), (57) 
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where i is the 2-component vector 

r = ('1' '2), 

'1 and '2 being given by Eq. (25). 

C. The Inner Product 

The inner product is given by 

(fW,f) = trfff f(l)*({J, y, p,; y, z, v) 

x W~V({J, y; y, z)f({J, y, p,; y, z, v) 

dy dz x ---- dm(p" v) 
web, y) w(e, z) 

(57') 

= -:l de- -- sin 0 dO drp 1 i T f dp itt i2

.-

4 < R+ c! w(e, p) 0 0 

x f dm(p" v)F~)*(e, 10, p, 0, rp, p" v) 

x Vi(p, k)S11(p, k)V~(p, k)Si1(p, k) 

X W!lV(€ sgn S1' Hlp + kl); 

10 sgn S2, Hip - kI))S1(P, k)V1(p, k) 

x S2(P, k)V2(P, k)F +(e, 10, p, 0, rp, p" v) 

1 :l (0 def dp f dq 
+ 4<,<7 )-00-;; w(e, p) w(K, q) 

x f dm(p" v)F~)*(e, 10, p, q, a, p" v) 

X Vi(p, k)S11(p, k)V~(p, k) 

X S2\P, k)W!,V(a sgn d1 , Hlp + kJ); 

-(1 sgn d2 , t(lp - kl)Sl(P, k)Vl(P, k) 

X S2(P, k)2V(P, k)L(e, 10, p, q, a,p" v), 

(58) 

where the symbol t means Hermitian adjoint, the 
range R+ refers to the range of e on the positive real 
axis given earlier, and dq = dq1 dq2' where the ranges 
of q1 and qz were given earlier. Also the operators Vi 
are given by Eq. (37) for e > 0 and by Eq. (54) for 
e < o. 

D. A Special Case 

All of the cases treated in detail in the earlier papers 
on the reduction of the direct product of the represen
tations of the Poincare group consider only the direct 
products of representations of nonimaginary mass and 
positive energy. This important special case is, of 
course, contained in our more general reduction 
algorithm. It corresponds to the case b ;;:: d ;;:: 0 such 
thatf(p, y, p,; y, z, v) is identically zero for P and/or 
y = -1. 

In this case it is readily seen that F_ is identically 
zero. Other important special cases can also be dis
cussed. We refrain for the sake of brevity. 

5. DIRECT PRODUCT OF A HELICITY 
REPRESENTATION OF THE POINCARE 
GROUP AND A REPRESENTATION OF 

THE HOMOGENEOUS LORENTZ GROUP 

In the present section we shall reduce the direct 
product of two representations of the Poincare group, 
one of which has operators pIT. which are not identically 
zero and is in the standard helicity representations of 
Sec. 2 and the second of which has operators pIT. which 
are identically zero and hence is a representation of 
the proper, orthochronous, homogeneous Lorentz 
group. 

Let us first discuss the representations of the homo
geneous Lorentz group. These infinitesimal generators 
satisfy the commutation relations [Eq. (1)]. However, 

pIT. == 0, oc = 0, 1, 2, 3. (59) 

We require the operators J i to be Hermitian and 
integrable. However, the operators 'Ji need be only 
integrable. The finite-dimensional irreducible repre
sentations of these operators are discussed, for 
example, by Lomont,u The operators 'Ji are not 
Hermitian for such representations. The irreducible 
Hermitian representations of the set of operators J. 
and 'Ji are infinite dimensional and are discussed by 
Naimark.12 

Let us set up a notation which includes representa
tions of the homogeneous group for all cases of 
interest. We introduce a Hilbert space of complex 
functions {fey)}. The inner product is defined with the 
aid of a positive-definite weight operator WV and a 
measure function m(v) in analogy to the inner product 
for the standard helicity representations 

(f(l),f) = f/U*(v)WVf(v) dm(v). (60) 

The superscript on WY is used to emphasize that 
this operator acts on the argument of the function 
fey). We shall also write 

Jd(v) = J;J(v), 'Jd(v) = 6~f(v) (61) 

to indicate that J i and 6i operate with respect to the 
variable v in this representation. 

We shall now introduce the function space of the 
direct product which we shall denote by {f(P, y, p,; v)} 
in analogy to the function space introduced in Sec. 3. 
The square of the mass of the standard helicity repre
sentation is b which can have any real value. The 
ranges ofthe variables p, y, and p, are the same as those 
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for the variables in the functions of Sec. 3. Further
more, we shall assume, as in Sec. 3, that the representa
tion of the generators of the little group Tt and Mil 
are independent of p. The operators p~, Ji , and 'd'i 
acting on the functionj(p, y, f-t; 11) are defined by 

H = H(l) + H(2), Pi = p11 ) + p?>, 

We now give the little group generators ti and M 
which act on the fJ and 11 variables in F(P, y, f-t; 11) 
which constitute the variable A of the standard 
helicity representation. 

Let us define the following operators acting on the 
variable 11 in F: 

Ji = J11 ) + J!2), 

'd'i = (W) + 'd'!2), 
(62) M V = J;, for all values of b, 

where H(ll, PP), and 'd'?) are defined as operators with 
respect to p, y, and f-t as in Eq. (16) and where 

H(2) == 0, p~2) == 0, 

J~2,!(P, y, f-t; 11) == J~f(P, y, fJ; 11), (63) 

'd'!2,!(P, y, f-t; 11) == iJ:/(P, y, fJ; 11), 

where Jiv and 'd'; are operators corresponding to a 
representation of the homogeneous Lorentz group as 
described earlier in the present section. 

The inner product is described with the aid of a 
weight operator WIlV(P, y) and a measure function 
m(fJ,1I): 

(j(1),!) = II/(o*«(3, y, f-t; 1I)WIlV«(3, y) 

dy 
X /«(3, y,fJ; 11) -- dm(f-t, 11). (64) 

web, y) 

We express j(P, y, fJ; 11) in terms of a function 
F(P, y, f-t, 11) such that, if A is any of the operators H, 
Pi' Ji> 'd'i acting onj(p, y, f-t, 11), then Aj(P,y,f-t, 11) 
becomes AF(P, y, fJ, 11) where A is in the standard 
helicity representation of Sec. 2 with the square of the 
mass given by b, the sign of energy by p, the momen
tum variable by y, and the little-group variable ;. 
given by the pair of variables (f-t, 11). 

Explicitly, 

/(P, y,f-t; v) = {exp [is. JV] exp [ip'd'mF(p, y,fJ, 11) 

(65a) 
and, conversely, 

F(P, y, f-t, 11) = {exp [- ip'd'~] exp [-is. JV]} 

X f(P, y, f-t, 11), (65b) 

where p and the vector S are given in terms of y by 

Y = (b)t sinh Ipl, (J = sgn p, for b > 0, 

Y = e/JP, for b = 0, 

y = C - b)* cosh p, (J = sgn p, for b < 0, 
(65c) 

Y1 = - y(0 2/0) sin e, Y2 = y(e 1/e) sin e, 
Ya = Y cos e, with 9 = (01 , e2 , 0), 

0=191· 

T; = -JL T~ = Jr, for b > 0, 

Tr = nr - J~, T~ = -P'd'; + J;, for b = 0, 

Tr=-{J'J~, for b<O. (66) 

Then, 

M = Mil + MV
, ti = Tf + T~. (67) 

The inner product is givenby 

II f(l)*(P, y, f-t; 1I)WIlV(P, y) 

dy 
X /(P, y,fJ; 11) -- dm(fJ, v) 

web, y) 

= II F(l)*(P, y, f-t, 1I){exp [-iP'd';t] 

X exp [- is· JV]WIlV(P, y) exp [i9 • JV] exp [ip'd';]} 

dy 
X F(P, y, f-t, 11) -- dm(f-t, 11). (68) 

web, y) 

If b > 0, the direct-product representation can be 
completely reduced by reducing the little group, which 
is the rotation group. We refrain from details which are 
almost obvious. 

APPENDIX A: THE INDEPENDENCE OF THE 
REPRESENTATIONS OF THE INFINITESIMAL 
GENERATORS OF THE LITTLE GROUP ON 
THE SIGN OF ENERGY FOR IMAGINARY 

MASS REPRESENTATIONS OF THE 
POINCARE GROUP 

In Ref. 1 it is shown that for c < 0 one can choose 
the standard helicity representations such that the 
operators T/" and M). of Eq. (7) are of the form 

(Al) 

where the operators R;, i = 1, 2, and MA act on the 
A variable, are independent of €, and satisfy the com
mutation rules for the little group generators (Eq. 3). 

Let us now choose a new standard helicity repre
sentation which consists of a space of functions 
{JCe, €, p, A)} related to the space of functions {fCc, €, 

p, A)} of the original representation for which Eq. 
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(Al) holds, as follows: 

l(c, +1, p, A) = f(c, +1, p, A), 

fCc, -1, p, A) = exp (i17MAJfCc, -1, p, A). (A2) 

Then, it is clear that the infinitesimal generators 
riA and M\ which are the operators acting on j, are 
given by 

r; = -R;, MA = MA, (A3) 

and are thus independent of E. 

APPENDIX B: REDUCTION OF THE HELICITY 
REPRESENTATIONS OF THE ROTATION 
GROUP AND ITS APPLICATION TO THE 

REDUCTION OF THE LITTLE GROUP 
FOR REAL MASS REPRESENTATIONS 
APPEARING IN THE DIRECT PRODUCT 

The main purpose of the present appendix is to 
show how one may reduce the operators R; of Eq. (21) 
and, hence, how one may reduce the representation 
of the generators of the little group Ti and M as they 
act on F+. Such a reduction would thus enable one 
to reduce the real mass components of the direct 
product completely. But in order to carry out this 
reduction, it is convenient to give the reduction of the 
helicity representations of the rotation group. 

Let (J. be any integer or half-odd integer of either 
sign. Let us introduce the helicity representation of the 
infinitesimal generators of the rotation group belong
ing to IX in the following way: We first introduce a 
Hilbert space of complex functions {f(O, 91)} of the 
continuous variables ° and 91 whose ranges are 
o < ° < 17 and 0 < 91 < 217, respectively, such that 
the inner product in the Hilbert space is given by 

(f(l),f) = l2 .. ff(l)*(O, 91)f(O, 91) sin 0 dO d91' (Bl) 

Then the infinitesimal generators of the helicity 
representation Jt are given by 

JU(O,91) = [i(sin 91 1.. + cot ° cos 91 1..) ao ao 

+ cos 91 tan to 'IX ]f(O, 91), 

J;f(O, 91) = [-i(COS 91~ - cot 0 sin 911-) (B2) 
00 091 

+ sin 91 tan to 'IX ]f(O, 91), 

J~f«(), 91) = [ -i ;91 + lX]f«(), 91)' 

It is clear that the operators Jt are Hermitian [with 
the inner product (B1)] and satisfy the proper com
mutation relations for the infinitesimal generators of 
the rotation group for any real IX. The requirement 
that (J. be an integer or half-odd integer is a necessary 
and sufficient condition that the integrated infinitesi
mal generators exp [ill • J~], where 1L = (fll' fl2' fla) 
is a vector with real components, constitute a ray 
representation of the rotation group when parameter
ized in terms of the axis and angle of rotation. 

We note that the angular-momentum operators Ji 

of the standard helicity representation (7) take the 
form (B2) if we use polar coordinates for p and choose 
a variable A such that M). is diagonal. Since M). is 
Hermitian, such a choice can always be made. 

Let us define the unit vector 1) as the vector given 
by the polar coordinates 0 and 91, that is, 

1) = (sin () cos 91, sin () sin 91, cos 0). (B3) 

Let us denote by R(lL) a rotation matrix in terms of a 
parameterization such that the axis of rotation is given 
by the direction of the vector 1L and that the angle of 
rotation is given by fl = 11L1: 

(B4) 

where 

sin Il + L Eiikflk __ r'. (B4') 
" I" 

In Eq. (B4'), Eiik is the usual anti symmetric 3-index 
symbol. 

Let us define the unit vector 1)' by 

1)' = R(-lL)1) = 1) cos fl + [(1 - cos fl)/fl2](1L' 1) 

+ [(sin fl)!fl](lL x 1). (B5) 

Furthermore, the angles 0' and 91' are the polar angles 
of 1)'; 

1)' = (sin 0' cos 91', sin 0' sin rp', cos 0'). (B6) 

We can now give the integrated form of the helicity 
representation of the rotation group as 

exp [ill' J"']f«(), rp) = exp [2i<l>(1L, 1)IX]f(O', q/), 

(B7) 

where <I> is given by Eq. (9d). [Equation (B7) is, of 
course, essentially the same as Eq. (9c).] 

It is now our intent to expand the functions/CO, 91) 
into modes which transform under the irreducible 
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representations of the rotation group when the 
functions feB, rp) transforms as in Eq. (B7). This 
reduction has already been carried out by Moses,13 
[See Eq. (4.2) of that reference.] We reformulate these 
results for the purposes of the present paper. 

Let us introduce the usual form for the irreducible 
representations of the infinitesimal generators of the 
rotation group. We denote the matrices corresponding 
to the irreducible representation characterized by the 
quantum number), by (j, ml Ji I), m'). Then, 

(j, ml J3 1j, m') = mbm•m·, 

(j,.ml J 1 1j, m') ± i(j, ml J 2 1j, m') 

= [(j T m')(j ± m' + 1)] ibm. m'±l . (88) 

In Ref. 13 we introduced certain functions Y;nn(o, rp) 
which are generalizations of the usual surface har
monics. We called these functions generalized surface 
hai:monics. We refer to Ref. 13 for their properties. 
Let us define the coefficients CCoc;), m) by 

{b (IT 
C(oc;j, m) = Jo Jo Yj"*(O, rp)f(O, q;) sin ° dO drp. 

(B9) 

Then from the properties of the generalized surface 
harmonics we can expandf(O, rp) as follows: 

00 1 

f(O, rp) =! ! Yj"(O, rp)C(oc;j, m). (810) 
1=1"1 m=-1 

Expansion (81) is such that 

00 1 

J~f(O, rp) =! ! Yj"(O, rp) 
1=1"1 m=-; 

The modes C(oc;), m) thus transform under the 
irreducible representations of the rotation group. 

For the sake of completeness we note 

00 1 
u(l),!) =! ! C(l)*(oc;j, m)C(oc;j, m). (812) 

;=1"1 m=-; 

We shall now apply these results for the purpose of 
reducing the little group operators Ti and M of Eqs. 
(22) and (21). We shall proceed by reducing the 
operators R i • Accordingly, we introduce a Hilbert 
space of complex functions {f(O, rp, fl, v)} where the 
ranges and character of the variables 0, rp, fl' and v 
are the same as those for the same variables in the 
functions F+ of Eq. (21). We introduce the inner 

product 

u(o,!) = f fIT f:f(l)*(O, rp, fl, v) 

x f(O, rp, fl, v) sin ° dO drp dm(fl' v), (813) 

where the measure function m(fl, v) is the same one 
used in the inner products (12) and (48). 

We define the operators Ri acting on the functions 
of this Hilbert space as having the same form as the 
operators Ri acting on the variables 0, rp, fl, v of F+ 
in Eq. (21). It is readily seen that the operators Ri 
constitute a Hermitian representation of the infinitesi
mal generators of the rotation group. 

For simplicity, it is convenient to suppress the 
variables fl and v in the function [(0, rp, fl, v). 
Accordingly, we write 

f(O, rp) =f(O, rp, fl, v). (B14) 

We can integrate the infinitesimal generators Ri • 

We obtain 

exp [ilL· R]f(O, rp} 

= exp [2i<l>(IL, y)MIl + 2i<l>(IL, -y)MV]f(O', rp'), 

(815) 

where Y) is defined by Eq. (B3) and y)', 0', rp' are 
defined by Eqs. (B5) and (B6) and IL = (fl1' fl2' fl3) is 
an arbitrary vector with real components. 

Let us now introduce a new Hilbert space of func
tions {gee, rp)} by means of a unitary transformation 
on the previous one: 

g(O, rp) = exp [2iM vrp]f(O, rp}. (816) 

The operators Ri map into operators, which we 
denote by Ri , and are thus defined by 

exp [ilL· R]g(O, rp) = exp [2iMvrp] exp [ilL· R]f(O, rp). 

(B17) 
On using Eq. (B15) and 

rp - rp' = - [<I>(IL, Y) + <I>(IL, -Y)}]' (BI8) 

which can be proved in a straightforward manner, 
we find 

exp [ilL· R]g(O, rp) 

= exp [2i<l>(IL, Y)(MIl - MV)]g(O', q/). (BI9) 

Since Mil and M V are Hermitian, they can be diag
onalized. We assume that a transformation in the 
fl and v variables has been made so that the diagonal
ization has been accomplished. Then, since the values 
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of MfJ and MY must be an integer or half-odd integer, 
we see that IX defined by 

IX = MfJ - MY (B20) 

is an integer or half-odd integer. Furthermore, from 
Eqs. (BI9) and (B7) it is seen that Ri is identical to 
J: of Eq. (B2). Hence, the reduction process for 
J: can now be used to complete the reduction of R;. 
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Closed-Form Solution of the Differential Equation 

( 
02 0 0 0) -- + ax- + by - + cxy + - P = 0 oxoy oX oy ot 

by Normal-Ordering Exponential Operators* 

RALPH WILCOX 

Department of Electrical Engineering, University of Southern California, Los Angeles, California 90024 

(Received 23 June 1969) 

A closed-form solution to Lambropoulos' partial differential equation 

( 
iJ2 iJ iJ iJ) 

oxoy + ax ox + by oy + cxy + at P(x,y, t) = 0, 

subject to the initial condition P(x, y, 0) = cD(x, y), is presented. The applicability of the normal
ordering method to a class of partial differential equations is briefly discussed. 

1. INTRODUCTION 

The partial differential equation 

(L + ax.! + by.! + cxy + ~)P(X' y, t) = 0, 
oxoy ox oy ot 

(1) 
subject to the initial condition 

P(x, y, 0) = <I>(x, y), (I ') 

was introduced and solved by Lambropoulos.1 Here a, 
b, and c are constants, while <I>(x, y) is a prescribed 
function. In a recent paper,2 Neuringer pointed out 
that Lambropoulos' solution is quite cumbersome, 
and has instead obtained a closed-form solution in 
terms of the 2-dimensional Fourier transform of the 
function e-a"'Y<I>(x, y), where r:J.. is a suitably chosen 
constant. 

In the present paper, we obtain a different closed
form solution of (I) under the assumption that 

R(x, y, t) == [exp ( - (J a:;y) ]<I>(X, y) (2) 

exists, where (J, as defined by Eqs. (20) and (16)-(18), 
is a certain function of a, b, c, and t. The solution of 
(I) is then given by 

P(x, y, t) = e-6-WXYR(x/rp, yip, t), (3) 

where 15, ro, rp, and p are also certain functions of a, 
b, c, and t defined by Eqs. (16)-(18), (20), and (23). 
The reader can most easily verify this for the case 
where the initial condition is 

where the solution to (1) is given by 

Pkq(x,y, t) = exp [(Jkq - 15 - roxy 

(4) 

+ i(kx/rp) + i(qy/p)]. (5) 

In more general cases, the initial condition may be 
expressed as a linear superposition of exponentials of 
the form (4) with coefficients depending upon k and q. 
Consequently, the solution is given by the same linear 
superposition. This includes the cases of Fourier and 
Laplace series and transforms. For example, if the 
initial condition <I> (x , y) is represented as a Fourier 
transform (FT) 

<I>(x, y) = L:dk L:dq'¥(k, q)<I>kix, y), (6) 

then 

P(x, y, t) = L: dk L: dq'¥(k, q)Pkq(x, y, t) (7) 

is the corresponding solution. 
Neuringer's solution has the same formal structure 

as (5) and (7), but with different expressions for the 
quantities (J, <5, ro, rp, and p, since the 'Y(k, q) there 
denotes the FT of e-axy<l>(x, y) rather than the FT of 
<I>(x, y) itself. The advantage of our solution is appar
ent, since the FT of <I>(x, y) is often simpler than the 
FT of raxY<l>(x,y), so that the integrations in (7) are 
easier to perform than in Neuringer's case. Indeed, it 
is not difficult to conceive of cases where [although 
<I>(x,y) has an FT] the FT of e-a"'Y<I>(x,y) does not 
exist since the function e-a"'y diverges at large distances 
in two quadrants of the (x, y) plane. 

It is also noted that, if <I>(x, y) is a polynomial in 
x or y, the R(x, y, t) defined by (2) is also such a poly
nomial, so that a solution is simply given. This and 
other examples are discussed in Sec. 3. In Sec. 2, the 
solution is derived by the method of normal ordering 
an exponential operator,3 while in Sec. 4 some other 
possible applications of the method are discussed. 

1235 
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2. DERIVATION 

We rewrite (I) in the form 

(H + :Jp(X, y, t) = 0, (8) 

where H denotes the operator 

H== XY+ axX+ byY+ exy. (8') 

Here X and Y denote the operators a/ax and %y, 
respectively. Since H is independent of t, a formal 
solution to Eq. (8) [and hence of Eq. (I)] is given by 

P(x, y, t) = e-Ht<l>(x, y). (9) 

Clearly, the operators X, Y, x, and y satisfy the 
commutation relations 

[X,x]=[= [Y,y], 

[X, Y] = [x,y] = [X,y] = [x, y] = 0, (10) 

where [ is the identity operator. Thus, H is a linear 
combination of the five operators XY, xX, y Y, xy, 
and [ which comprise a S-dimensional Lie algebra 
with the commutation relations 

[XY, xX] = XY = [XY, Y Y], 

[XY, xy] = xX + yY + [, 
[xX, xy] = xy = [yY, xy]. 

(11) 

All other commutators vanish. 
Thus e-Ht can be expressed in normal-ordered form 

as 

e-Ht = N exp (-PXY - flxX - vyY - wxy - b), 

(12) 

where N is the normal-ordering super operator which 
orders the derivative operators X and Y to the right of 
the coordinate operators x and y, as if they com
muted,S while p, fl, v, w, and b are scalar functions of 
a, b, e, and t which vanish at t = O. To find the differ
ential equations which they must satisfy, we differ
entiate (12) with respect to t, substitute the left-hand 
side of (12) into the result, and operate from the right 
by eHt • We thus find that 

H = ,8X(t)Y(t) + ,uxX(t) + vyY(t) + wxy + b, 
(13) 

The Lie-algebraic similarity transformations (14) 
satisfying the commutation relations (II) are easily 
obtained by a standard method.4 One finds that 

X(t) = flJX + yy, 

yet) = pY + (jX, 

(ISa) 

(ISb) 

where the functions fIJ, y, p, and (j are defined in terms 
of the constants a, b, e, and 

g == [(a + b)2 - 4e]t (16) 
as follows: 

e-t(a-bHfIJ = et(a-b)t p 

= cosh (tgt) + (a + b)g-l sinh (lgt), (17) 

e-t(a-bHy = e!(a-b)t(j 

= 2eg-1 sinh (tgt). (18) 

Substituting (IS) and (8') into (13) and equating 
coefficients of XY, xX, Y Y, xy, and [, respectively, 
one obtains the following equations: 

1 = ,8f1JP, 

a = ,8f1J(j + ,up, 

b = ,8yp + vp, 

e = ,By(j + ,uy + va + w, 
o = ,BflJa + J. 

(19) 

The solution to these equations which vanishes when 
t = 0 is found to be 

W = e~ = YfIJ-l, (20) 

fl = 1 - fIJ-l, (21) 

l' = 1 _ p-1 , (22) 

b = In (fIJ) - at. (23) 

Now, because of the way the normal-ordering 
superoperator N is defined, (12) may also be written as 

Operating upon <I> (x , y) as in (10), we find that the 
rightmost exponential gives the definition (2) for 
R(x, y, t), while the middle factor is then easily shown 
to give 

R(x - xl-', Y - yv, t). (25) 

Using (21) and (22), one obtains the form given in 
(3), which completes the derivation. 

3. EXAMPLES where the dot is used to denote differentiation with 
respect to T and In the following examples, we calculate only 

(14a) R(x,y, t), since the prescription (3) for obtaining 
(14b) P(x,y, t) is straightforward. 

X(t) == e-HtXeHt, 

yet) ==e-HtYeHt. 
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Consider, first, the case where <I> (x , y) is a function 
of x only, i.e., 

<I>(x,y) = F(x). (26) 

Then, from (2), we have 

R{x, y, t) = F{x). (27) 

More generally, if 

<I>(x, y) = y"f(x), (28) 

then 

where 

For the special case 

<l>(x, y) = xmyn, m ~ n, 
we have 

n m!n!xm-iyn-i 
R(x, y, t) = L (30) 

i=O (m - j)! (n - j)! 

Of course, more general functions may be handled 
by the method of linear superposition at the expense 
of increasing the number of terms. 

As another example, consider the case where 
P(x, y, t) is initially a 2-dimensional Gaussian, i.e., 

2 2 
<I>(x, y) = e-A(1t +u ), (31) 

where A is a positive constant. Then the FT \Y(k, q), 
defined by (6), is given by 

(32) 

Substituting (32) into (7), using (5), and changing 
integration variables to u and v defined by k = u + v 
and q = u - l', one obtains 

(l - 4fJ2A2)!R(x,y, t) 

= exp [-Hx + y)2(A-l - 2fJ)-1 

- Hx - y)2(A-l + 2fJ)-1] (33) 

upon performing the integrations. Note that for some 
values of the parameters a, b, c, and A it can happen, 
for large enough t, that 4fJ2A2 ~ 1, in which case 
R(x, y, t)-and hence a solution P(x, y, t) satisfying 
Eqs. (l) and (I ')-no longer exists. 

4. DISCUSSION 

We remark that, by an obvious modification of the 
method given here, the form of the solution given by 

Neuringer can also be obtained. Neuringer obtained 
his solution by a more conventional method which 
involves transforming both independent and depend
ent variables. We have not investigated whether our 
solution can be obtained by conventional means, but 
we suspect that it can. 

The method which we have used should (at least 
in principle) enable one to obtain closed-form solu
tions to other partial differential equations of the 
form (8) where the operator H is a second-degree 
polynomial in the coordinate and partial derivative 
operators, since the Lie algebra for such cases is 
finite dimensional. An analogous statement for the 
creation and annihilation operators describing a many
boson system has been made by Marburger.s 

A further generalization can be made to the case 
where the coefficients multiplying the operators in H 
depend upon t. Although (10) is no longer valid, one 
can still write 

P(x, y, t) = e-Gw<l>(x, y), 

where G(t) is a t-dependent linear combination of the 
operators comprising the same finite-dimensional Lie 
algebra. 6 Since the normal-ordered form of e-G(t) is 
also an exponential of this same Lie algebra, a closed
form expression may (at least in principle) be obtained. 

If (as commonly occurs in more practical problems) 
the Lie algebra of H is infinite dimensional, it still may 
be possible to approximate H by elements of a 
finite-dimensional Lie algebra by using techniques 
known for approximating exponential operators. 
Whether such an approach can compete with con
ventional methods for solving partial differential 
equations remains to be seen. 

In conclusion, we observe that the procedure em
ployed in this paper is just converse to that usually 
followed in quantum physics. There, one converts an 
abstract operator differential equation into an ordinary 
partial differential equation which one then proceeds 
to solve by conventional means. Here, on the other 
hand, we have solved a partial differential equation by 
taking explicit account of its abstract Lie-algebraical 
properties. 

• This paper was supported by the National Science Foundation 
under Grant No. GP-8960 and the Atomic Energy Commission 
under Contract No. AT(1 1-1)-1 13, Project No. 19. 
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An .analysis is given o~ the proce~ure of Newman and Unti for solving the vacuum gravitational field 
equatIOns for all ~pace-tl~es III whIch 'Yo = 0(r-5

). It was found empirically by Newman and Unti that 
when the nonradIaI equatIOns and three of the u-derivative equations have been satisfied to their lowest 
nontrivial order in r'. they are then found to be identically satisfied to all orders. A general proof of this 
result is given which avoids the need for direct verification. 

1. INTRODUCTION 

The behavior of asymptotically fiat empty space
times has been the subject of much study in recent 
years. A considerable proportion of this work is based 
on the spin-coefficient formalism of Newman and 
Penrose. l Using their results, Newman and Unti2 were 
able to give a systematic method for integrating the 
vacuum field equations for all space-times in which one 
of the Weyl spin or components, usually denoted by 
'Yo, is 0(r-5) for large r, where r is a suitably defined 
radial coordinate on the hypersurfaces on which the 
retarded time u is constant. This condition may be 
interpreted3 as requiring that the space-time be 
asymptotically flat and that any incoming gravitational 
radiation die off sufficiently rapidly as time goes on. 
Further developments of this work have been the 
study of the asymptotic multipole structure of the 
field by Janis Newman,4 the extension of this by 
Newman and Unti,5 and the discovery of some 
conservation laws of a new type by Newman and 
Penrose.3 •6 

The work of Newman and Unti,2 however, con
tained a logical gap, in that they did not show that 
they had extracted all the information contained in the 
field equations. Work of other authors,7.s using 
somewhat different approaches, strongly suggested 
that they had done so, but no general proof of this 
was given. In view of the importance of their results, 
the present author feels that this gap should be filled, 
and it is the purpose of this paper to do so. In the 
course of the proof given here, insight is gained into 
the underlying structure of the NU procedure which 
would not be gained if the completeness of their 
results was verified by direct calculation. 

The notation of NP is summarized in Sec. 2, 
together with those equations which will be needed. 
As the proof also needs certain details of the NU 
integration procedure which were not given in NU, a 
fairly detailed account of the NU procedure is given 

in Sec. 3. The proof of completeness is then given in 
Sec. 4, and its results are discussed in Sec. 5. 

2. THE NP FORMALISM 

The notation of NP is based on a null tetrad field 
(/", nil, mil, mil), which may be given arbitrarily at 
every point of the space-time. Here, III and nil are real, 
mil is complex, and the overbar denotes complex 
conjugation. The only nonzero scalar products be
tween these vectors are 

(2.1) 

so that the metric tensor of the space-time, taken as 
having signature - - - +, is given by 

(2.2) 

The affine connection may then be described by 
twelve complex spin coefficients, defined by 

p = lll:.mllm', 

A = -nll :';i1
llm', 

(] = ll';.m"m v
, 

f3 = Hlpnl'm' - ml';.m"mV), 

y = !(l,,;.n"nv 
- mll;vmllnV), 

or = 'It;VmllnV. (2.3) 

If we label the vectors [II, nil, mil, and mil as 1,2, 3, and 
4 in that order, the tetrad components of any tensor 
may be numerically labeled in the usual manner
for example, C1232 = CKAII.lKn).mllnV. The following 
complex functions are then introduced to describe the 
irreducible parts of the curvature tensor: The Weyl 
tensor is described by the five functions 

'Yo = -Cl313 , 'Y1 = -Cl213 , 

'1"2 = HC1234 - CI212), 

'1"3 = Cl224 , '1"4 = -C2424 ; 

(2.4) 

1238 
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the tracefree part of the Ricci tensor R"v by ay x 3 
Hermitian matrix <DAB' A, B = 0,1,2, so that <DAB = 
<DBA' defined by 

and finally the curvature scalar is expressed in terms of 
A = -l"4R. This notation, while seeming very much 
ad hoc as thus defined, appears very natural when 
expressed in the notation of 2-component spinors, 
which is the form in which it was originated in NP. 
The conventions adopted for the curvature tensor are 
given in the Appendix. 

A special coordinate system, together with an 
associated null tetrad field, is next introduced as 
follows. The coordinate Xl = u labels a family of null 
hypersurfaces, so that 

g"Vu,,,u,v = 0. (2.6) 

Take I" = g"vu.v. Then9 11' is tangent to a null geodesic 
congruence, and the coordinate x 2 = r is chosen to be 
an affine parameter along each geodesic of the con
gruence. The coordinates x3 and X4 are left arbitrary, 
as are the other vectors of the tetrad, subject only to 
having the appropriate scalar products. Their com
ponents with respect to this coordinate system then 
have the form 

II' !ill' I' _ s./J + /:ks.II = U2' m - WU2 C; Uk' 

where k = 3,4, thus defining the metric coefficients U, 
Xk, w, and ~\ of which U and X k are real and wand 
~k complex. From (2.2) the contravariant metric 

components are then 

gIl = glk = 0, g12 = 1, 

g22 = 2(U - ww), 

g2k = Xk _ akw + ~kW), 
gk! = _(~k~! + ~k~!), 

where k, I = 3,4. 

(2.8) 

As II' is tangent to a hypersurface-orthogonal null
geodesic congruence, with r an affine parameter along 
its rays, the spin coefficients satisfy 

K = 0, E + i = 0, P = p, T = i'i. + p. (2.9) 

The remaining spin coefficients are then determined by 
the metric equations 

D~k = (p + € - E)e + a~k, 
Dw = (p + € - i)w + aw - T + iT, 

DXk = (7' + 71')~k + (T + iT)~k, 
DU = (7' + 71')w + (T + iT)w - (y + y), 

oXk - Ll~k = (f1 + y - y)~k + Uk, 

(yU - Llw = (f1 + ji - y)w + ~w - ii, 

(y~k _ J~k = (P _ C!.)~k + (i'i. _ P)~k, 

(2.10a) 

(2.l0b) 

(2.1Oc) 

(2.10d) 

(2.11a) 

(2.l1b) 

(2.11c) 

o(~ - Jw = (p - C!.)w + (i'i. - P)w + (f1 - p), 

(2. 11 d) 

where the derivative operators D, (Y, and Ll are defined 
by 

a D = [1'0 =-
I' or' 

o = ml'o = w l + ~k...i... (2.12) 
I' ar oxk ' 

Ll = nl'o I' = U l + ~ + Xk l.... . or au oxk 

By applying the Ricci identity to the vectors II', ml', 
and nl' and writing the results in the above notation, 
we obtain the following 18 equations which form a 
redundant set for the evaluation of,¥ A , <DAB' and A: 

Dp = p2 + aa + <Doo , 

DO' = (2p + 4E)a + '¥o, 
(2. 13a) 

(2.13b) 

(2.13c) 

(2.13d) 

(2.13e) 

(2.13f) 

(2.13g) 

(2.13h) 

DT =(T + iT)p + (7' + 71')0' + 2€T + '¥l + <DOl' 
DC!. - JE = (p - 3E)OC + f3ii - PE + (p + E)71' + <1\0' 

Df3 - OE = (C!. + 71')0' + (p + €)f3 + (iT - i'i.)€ + '¥l, 

Dy - ~€ = (T + iT)C!. + (7' + 71')13 - (y + y)€ + T71' + '¥2 - A + <Du , 

DA. - 1571' = (p - 4€)A. + af1 + (71' + C!. - p)71' + <D20' 
Df1 - 071' = Pf1 + aA. + 71'iT - (i'i. - 13)71' + '¥2 + 2A, 

Dv - ~71' = (71' + 7')f1 + (iT + T)2 + (y - y)71' - 2EV + '¥3 + <D2l , (2.13i) 
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8A - Jv = (y - 31' - f-l - P)A + (2tt + 7T)V - 'Y4, 

bp - Ja = pT - a(3tt- p) - 'Y1 + <1>01' 

btt - J{3 = f-lP - Aa + ttiX + f3P - 2tt{3 + €(f-l - P) - 'Y2 + A + <l>U' 

bA - Jf-l = (f-l - P)7T + f-lT + A(iX - 3{3) - 'Ya + <1>21, 

bv - 8f-l = AX + (f-l + I' + Y)f-l - 1m - 2{3v + <1>22' 

by - 8{3 = f-lT - av - €v - {3(y - Y - f-l) + ttX + <1> 12 , 

bT - 8a = (f-l + Y - 3y)a + Xp + 2{3T + <1>02' 

8p - JT = (I' + Y - p)p - aA - 2ttT - 'Y2 - 2A, 

8tt - Jy = (p + €)V - (T + {3)A + ('9 - I' - p)tt - 'Ya. 

(2.l4a) 

(2.14b) 

(2.14c) 

(2.14d) 

(2.14e) 

(2.14f) 

(2.14g) 

(2.14h) 

(2.14i) 

The redundancy corresponds to the cyclic identity R"U/lv] = 0 of the curvature tensor. A particular instance is 
that, in view of (2.9), any two of the equations (2.13c), (2.13d), and (2.13e) imply the third. 

We shall also need the Bianchi identities. These are given in NP only for a vacuum and for an Einstein
Maxwell field, but the full set has been calculated independently by Szekeres and by McLenaghan, and is 
given by Pirani.lO With the simplifications induced by (2.9), they are 

D(<I>ol - 'Y1) - b<l>oo + J'Yo = (4tt - 7T)'YO - (4p + 2€)'Yl + ('"' - 2T)<I>OO + 2(p + €)<I>OI + 2a<l>10' (2.15a) 

D(2<1>u - 3'Y2) - 2b<l>lO + J(3'Y1 + <1>01) - 8<1>00 

= 3A'Yo + 6(tt - 7T)'Y1 - 9p'Y2 + (p - 2f-l - 21' - 2'9)<1>00 + 2(tt + 7T + f)<I>OI 

+ 2( T - 2iX + ,",)<1>10 + 2p<l>u + 2a<l>20 - 0'<1>02' (2.15b) 

D(<I>21 - 3'Ya) - £5<1>20 + J(3'Y2 + 2<1>u) - 28<1>10 

= 6A'Y1 - 97T'Y2 + 6(€ - p)'P·a - 2v<l>oo + 2A<I>o1 + 2(p - f-l - 2'9)<1>10 + (27T + 4f)<I>u 

+ (4{3 + ,",)<1>20 - 20'<1>12 - 2€<I>21 , (2.15c) 
D'Y4 - J(<I>21 + 'Ya) + 8<1>20 

= -3A'Y2 + 2(tt + 27T)'Ya + (p - 4€)'Y4 + 2V<l>10 - 2A<I>u + (2y - 21' - P)<I>20 

- 2P<l>21 + 0'<1>22' (2.15d) 
8'Yo - £5(<1>01 + 'Y1) + D<I>02 

= (41' - f-l)'Yo - 2(2T + {3)'Yl + 3a'Y2 - X<I>oo + 2(,", - {3)<I>OI + 2a<l>u + (p + 4€)<I>02' (2.16a) 

8(3'Yl - <1>01) - <5(2<1>u + 3lfi'2) + J<I>02 + 2D<I>12 

= 3v'Yo + 6(1' - ,u)'Y1 - 9T'I"2 + 6a'Ya - v<l>oo + 2(p - f-l - 1')<1>01 - 2X<I>lO + 2(T + 2,",)<1>11 

+ (3tt - P + 27T )<1>02 + 4€<I>12 + 2a<l>21 , (2.16b) 

8{3'Y2 - 2<1>11) - <5(<1>21 + 3'Ya) + 2J<I>12 + D<I>22 

= 6v'Yl - 9f-l'Y2 - 6iX'Ya + 3a'Y4 - 2V<l>o1 - 2V<l>lO + 2(2P - f-l)<I>11 + 2A<I>02 - X<I>20 

+ 2(7T + f - 2P)<I>12 + 2({3 + T + ,",)<1>21 - P<l>22' (2. 16c) 
8('Ya - <1>21) - <5'Y4 + J<I>22 

= 3v'Y2 - 2(1' + 2/..t)'Ya + (4{3 - T)'Y4 - 2v<l>u - V<l>20 + 2A<I>12 + 2(1' + P)<I>21 - f<l>22' (2.16d) 

D(<I>u + 3A) - <5<1>10 - b<l>OI + Ll<l>oo 

= (21' + 2'9 - f-l - P)<I>oo + (7T - 2tt - 2f)<I>Ol + ('"' - 2iX - 2T)<I>10 + 4P<l>11 + 0'<1>02 + a<l>20, 
(2.17a) 

D<I>12 - £5(<1>11 - 3A) - J<I>02 + Ll<l>OI 

= v<l>oo + (21' - f-l - 2p)<I>Ol - X<I>lO + 2(,", - T)<I>l1 + (7T + P - 3tt)<I>02 + (3p + 2€)<I>12 

+ a<l>21, (2.17b) 
D<I>22 - b<l>21 - J<I>12 + 8(<1>11 + 3A) 

= V<l>OI + V<l>lO - 2(f-l + p)<I>u - A<I>02 - X<I>20 + (27T - f + 2P)<I>12 + (2,", - T + 2,8)<1>21 
+ 2P<l>22. (2.17c) 
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3. THE NU INTEGRATION PROCEDURE 

Provided that 

(3.1) 

whatever values are chosen for the real functions U 
and Xk, and complex functions wand ;k, the metric 
(2.8) will be nonsingular and have the correct signature 
- - - + for a space-time, and the tetrad vectors 
determined by (2.7) will have the correct scalar 
products (2.1). Moreover, the corresponding spin 
coefficients will satisfy (2.9). But without altering 
either the metric or the coordinate system, one can 
perform any Lorentz transformation of the tetrad 
frames which keeps II' fixed, thus altering the metric 
coefficients U, Xk, w, and ~k, while leaving the func
tional form (2.8) of the components of gl'V unaltered. 
Using this freedom, one may additionally impose that 
the tetrad frame should be parallelly transported along 
the rays of the II' congruence. The spin coefficients will 
then satisfy the stronger restrictions 

K = € = 7T = 0, P = p, T = ex. + (3, (3.2) 

with corresponding differential equations restricting 
the metric coefficients. 

In an empty space-time one also has the vacuum 
field equations 

A = 0, <DAB = 0, A, B = 0, 1,2. (3.3) 

Under the specializations (3.2) and (3.3), the above 
equations (2.10), (2.11), and (2.13)-(2.16) simplify 
considerably, while (2.17) becomes trivial. Let us 
denote this simplified form of an equation by pre
fixing the equation number with an asterisk, e.g., 
(*2.13a). The NU integration procedure aims to 
integrate these simplified equations for all empty 
space-times in which 'Yo = 0(r- 5) as r ---+ 00. It is 
necessary to assume also that the hypersurfaces u = 
const are asymptotically neither plane nor cylindrical. 
The precise statement of this condition is given in NP, 
where, under these assumptions, the order of magni
tude of the asymptotic r-dependence of all the metric 
and spin coefficients and components 'Y A of the Weyl 
tensor is determined. These results form the starting 
point ofNU. 

In NU, a slightly more restrictive assumption is 
placed on 'Yo than just 'Yo = 0(r-5), in order to be able 
to consider the time dependence of the solution. They 
assume that 

(3.4) 

where 'Yg is independent of r. They further assume 
that this may be formally differentiated with respect 

to r once, 

(3.5) 

and that up to four or three derivatives of (3.4) and 
(3.5), respectively, with respect to X3 or X4 may be 
performed without altering this r-dependence of the 
remainder term. This latter assumption is described as 
"uniform smoothness." In subsequent work,3 still 
more terms have been assumed in this expansion of 
\¥ 0 , and so we shall adopt the more general assumption 

N 
'Yo = L'Y~r-n-5 + 0(r-N- 6), (3.6) 

n=O 

again with the same assumptions about derivatives. 
The NU procedure solves simultaneously for the 

metric and spin coefficients, and 'Y1 through 'Y4 , in 
terms of the given 'Yo. Its first step is to integrate the 
"radial equations" (*2.10), (*2.13), and (*2.15), there 
being exactly one equation of this set giving the radial 
derivative of each of the unknown quantities. One 
arbitrary function of u and Xli; occurs in the integration 
corresponding to each unknown quantity, and this is 
denoted by the same symbol as the unknown but with 
a superscript zero. We shall call these the initial/unc
tions. By using the freedom remaining in the choice of 
tetrad frame and coordinate system, without altering 
the family of hypersurfaces u = const on which the 
coordinates are based, it is possible to make 

po = TO = 0, ~04 = i~03 (3.7) 

and to make ;03 real. We write ~03 = P. 
To perform these integrations, the equations are 

divided into sets which are integrated sequentially, all 
members of a set being integrated simultaneously. 
These sets, together with the functions determined by 
them, are given in Table I. The group letters in this 
table are for future reference. The simplifications (3.7) 
are made as soon as that particular initial function 

TABLE I. Integration of radial equations. 

Set Equations 
Group number (*2.10) (*2.13) (*2.15) 

A 
1 a,b 
2 a 

b d,e a 
4 c B 

5 g,h b 
c 6 

7 d 

8 c 
D 9 

10 d 

Functions 
determined 

p,a 
~k 

(0, ct, (3, T, \fi\ 
Xk 

A, /1, 'F. 
Y 
U 
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appears. The leading terms in the resulting expressions are given below, to show the coefficients in which the 
initial functions first appear. More terms in the expansions are given in NU, but we do not need them here. 
We find 

'Y1 = 'Y~r-4 + ... , 
'Y3 = 'Ygr-2 + ... , 

p = _r-1 _ (j°jflr-3 + ... , 
11. = l1.°r-1 + i'f5.°r-2 + ... , 
T = -t'f~r-3 + ... , 
It = flOr- 1 + ... , 

'Y 2 = 'I"~r-3 + ... , 
'Y4 = 'Y~r-1 + ... , 

a = aOr-2 + "', 
(3 = _5.°r-1 

- a°l1.°r-2 + ... , 
;. = ;.°r-1 + ... , 
y = yO _ t'Y~r-2 + ... , 

(3.8) 

v = VO - 'Y~r-1 + ... , 0) = 0)°r-1 + ... , 
u = _(yO + yO)r + UO + ... , ~k = ~Okr-1 _ aO~Okr-2 + ... , 

Xk = XOk + _H~~Ok + qr~~Ok)r-3 + .... 

With the assumption (3.6), this procedure will give 
the 'YAUP to and including the terms in ,-N-5 with a 
remainder term O(r-N - 6), the spin coefficients Xk and 
~k up to the terms in ,-N-4 with a remainder term 
O(r-N - 5), and U and 0) up to the terms in r-N - 3 with a 
remainder term O(r-N - 4). It can be shown that all the 
formal derivatives of these expressions that we need 
are also valid. 

The next step is to use the "nonradial equations" 
(*2.11) and (*2.14) to evaluate most of the initial 
functions. By substituting the above expressions into 
the nonradial equations, they take the form of series in 
powers of r-1 with a remainder term whose power of 
r-1 increases with N. The coefficients of every power 
of r-1 less than that of the remainder term must 
separately vanish if the resulting metric is to satisfy 
the vacuum field equations. If we equate to zero only 
the first nontrivial coefficient in each equation, we 
obtain the results given in Table II, where the order of 
the term used is also given. The operators V' and 0 used 

TABLE II. Integration of nonradial equations. 

Term 
Group Equation used 

B 

c 

D 

(*2.l1c) 
(*Z.14b) 

(*Z.lla) 

(*Z.14g) 
(*Z.14c) 

(*Z.lld) 

(*Z.14h) 

(*Z.14d) 
(*Z.llb) 
(*2.14a) 

r-2 

r-3 

r-1 

r-2 

r- 2 

(
r-1 

r- 2 

r-2 

r-2 

rO 
r-1 

Result 

rxO = !V'P 
WO = -aao 

{

X 03 = X04 = 0 (see text) 
yO = -Hlog P),l 
),0 = a~l + Zy°&" 

[to = -05 log P 
[to = flo (trivial) 

'Y~ - 'P~ = OWO - 5wo 
+ &"Ao - a°)'o 

UO = [to 

'Y~ = 0),0 - 5ft° 
)10 = -5(yO + yO) 

'Y~ = -(5)10 - ),~1 - 4y°),0 

in these results are defined in the Appendix. The 
equations (*2.14e), (*2.14f), and (*2.14i) are not 
listed because their first nontrivial terms are identi
cally satisfied in consequence of the results obtained 
from the other equations. A special feature arises 
when (*2.11a) is considered. Its r-1 terms are first used 
to deduce V'(X03 + iX04) = 0, from which it follows 
that X03 + iX04 is an analytic function of x3 + iX4. 
In consequence2,g it is possible to use a coordinate 
transformation to set X03 = X04 = ° without loss of 
generality. The ,-1 terms of (*2.11a) are then used 
again to evaluate yO. The group letters in the table 
indicate that the determination of the initial functions 
of that group depend only on the radial integrations 
in the corresponding or earlier groups, e.g., 0)0 may 
be evaluated after integrating only the first four sets 
of radial equations. 

At this stage the remaining undetermined data are 
the 'YK and the initial functions P, aD, 'Y~, and 
'Y~ + 'Y~, all as functions of u and xk. Finally, the 
"u-derivative equations" (*2.16) are invoked. Of 
these, (*2.16a) may be considered after groups C of 
the radial and nonradial equations, the others after 
groups D. Equation (*2.l6a) determines o'Y~/ou for 
all n, showing that 'Yo need only be given on one null 
hypersurface u = const, its propagation off this 
hypersurface being then completely determined. The 
other three u-derivative equations are treated similarly 
to the nonradial equations, only the first nontrivial 
coefficient of each being equated to zero, to obtain 
the u-dependence of 'Y~ and 'Y~. These results are 
given in Table III. The first nontrivial coefficient in 
(*2.16d) yields no new information. 

After this stage of the calculations, Newman and 
Unti found that all the higher coefficients of the non
radial and u-derivative equations which they evaluated 
were identically satisfied in consequence of relations 
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TABLE III. Integration of u-derivative equations. 

Term 
Group Equation used 

c 
{ ,-. 

(*2.16a) 
r-5- n 

(*2.16b) r-' 
D 

(*2.16c) r-3 

Result 

p'!... (P-"'!'"") = -0'-1'0 + 3a°'F'O 
OU " 1 2 

() 
Equation for OU '!'"; 

o 
pa _ (P-3,!,"O) = -o'!'"o + 2aD'!'"0 ou 1 2 3 

o 
p3 _ (P-3,!,"0) = _o'!'"o + aD'!'"o ou 2 3 , 

already derived, and they concluded that they had 
extracted all the information contained in the field 
equations. For any fixed value of N it would be pos
sible, but very laborious, to verify this directly, but 
Newman and Unti did not even carry the case N = ° 
to completion in this way, and for N > ° the labor 
required would be enormous. The purpose of the 
present paper is to give a general proof that, for 
arbitrary N, the remaining coefficients vanish identi
cally, and this is done in the following section. 

4. PROOF OF COMPLETENESS 

To begin this discussion it is simplest to assume that 
the term in (3.6) of O(r-N- 6) is explicitly known (al
though not necessarily as a power series in r-1), and 
that the integration of the radial equations and of the 
first u-derivative equation (*2.16a) has been carried 
out exactly. The data needed to perform the NU inte
gration are then three functions of three variables, 
namely P(u, Xk) and aO(u, xk) for all u and ':1"0 on a 
null hypersurface u = uo, say, and two functions of 
two variables, namely ':I"~ and ':I"~ + qr~ for U = Uo. 
However, as yet we have not shown that these data 
may be specified arbitrarily; there may still be inter
relations between them contained in those higher 
coefficients of the nonradial and u-derivative equations 
which have not yet been evaluated. 

To prove that no such extra interrelations actually 
exist, we start from the observation at the beginning 
of Sec. 3: that whatever values are chosen for the 
metric coefficients, provided (3.1) is satisfied, they do 
define a space-time and a null tetrad system through
out it. For this, as any other space-time, Eqs. (2.10), 
(2.11), and (2.13)-(2.17) form a consistent set of 
equations. If some of these are used to evaluate the 
spin coefficients and the ':I" A, <I> AB, and A, then the 
resulting quantities identically satisfy the remaining 
equations. In particular, if we can deduce from these 

equations that 

E=1T=O, <l>AB=O, A=O, (4.1) 

then all the equations used in the NU procedure are 
identically satisfied. So our task is as follows: as
suming the expressions for the metric coefficients 
obtained by the NU procedure, we must dedu~e (4.1). 
Completeness of the NU procedure is then assured. 

Now, in practice, the NU integration is not usually 
carried out exactly, so that the remainder terms whose 
evaluation requires knowledge of the O(r-N - 6 ) terms in 
':1"0 are not known. As remarked above, these remain
ders are O(r-N - 5) in X k and ~k and O(r-N - 4) in U 
and w. It also is useful to know to what accuracy 
(4.1) is satisfied if the metric coefficients are only 
known to this order of magnitude. For this reason, 
we assume only that the NU procedure has been car
ried as far as possible without explicit knowledge of 
the O(r-N-6) terms of ':1"0. For example, (*2.13a) 
and (*2.13b) are only assumed satisfied with an error 
term O(r-N - 6). The prooffor the exact case is obtained 
by formally setting N = 00, as it does not depend 
on ':1"0 being given in the form of a power series, but 
only on the accuracy to which it is known. 

During the proof it is necessary to consider simul
taneously the values of quantities calculated in the 
NU procedure and the values which actually follow 
from the assumed form of the metric coefficients. To 
distinguish between them, all quantities obtained in 
the NU procedure are indicated by a caret. Thus the 
integration of (*2.13a), (*2.13b), and (*2.14b) implies 
that 

D " - ,,2 + ,~ + O( -N-G) p - p aa r , 

Da = 2pa + to + 0(r-N-
6
), 

and 

(4.2a) 

(4.2b) 

8p - Ja = PT - a(3& - t) - 0/1 + 0(r-4
), (4.3) 

whereas the unaccented p and a satisfy (2.13a), 
(2.13b), and (2.14b) in exactly the form given in Sec. 2. 

The proof is most easily carried out by considering 
the situation at the end of each of the groups A, B, 
C, and D of integrations indicated in Tables I-III. 
After group A, the only known NU metric coefficients 
are the £k. We thus take 

(4.4) 

and assume also that three radial derivatives of the 
remainder term may be formally taken, as well as as 
many derivatives in the Xk directions as necessary. 
This can be proved to hold for the remainder term in 
~k. Then (*2.10a) and (2.lOa) give, respectively, 

D~k = p~k + &tk + 0(r-N - 6) (4.Sa) 
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and 
(4.5b) 

But by hypothesis D(~k - ~") = 0(r-N-6); hence, 
because p = 0(r-1) and e = 0(r-2), we get 

(p _ p + € _ €)~k + (a - 8-)lk = 0(r-N- 6). (4.6) 

Now ~k = 0(r-1) and ~3l4 - l3~4 = -2ip2r-2 + 
0(r-3), so that Eqs. (4.6) may be solved to give 

p - p + € - € = 0(r-N - 5) (4.7) 

and 

(4.8) 

But by (2.9) p and p are real and € is purely imaginary. 
Equation (4.7) thus separates into its real and imag
inary parts to give 

p - p = 0(r-N -
5

) and € = o (r-N
-

5
). (4.9) 

Two formal radial derivatives of (4.8) and (4.9) are 
also valid, which is also true for all similar orders of 
magnitude which will be obtained for spin coeffi
cients. If the NU integrations were performed exactly, 
(4.8) and (4.9) would show that the form obtained 
for e after group A would already ensure that e = 0 
and that the forms obtained for p and a correctly 
followed from this value for ~". Subtraction of (4.2a) 
and (4.2b) from (2.13a) and (2.13b), respectively, 
now also gives 

<1>00 = 0(r-N
-

6
) and 'Yo - % = 0(r-1V

-
6
), (4.10) 

showing in the exact version that at this stage one 
field equation is already satisfied and that 'Yo is al
ready determined and has the form initially assumed. 
One formal radial derivative of (4.10) is also valid, as 
is also true for all similar orders of magnitude which 
will be obtained for curvature tensor components. 

This uses up all the information in group A. In 
group B we additionally calculate cO and Xk

, so we 
now also take 

w = cO + 0(r-N - 4) and X" = Xl. + 0(r-N - 5), 

(4.11 ) 

again with three formal radial derivatives and as 
many x" derivatives as necessary. Then, as above, a 
comparison of (*2.10b) and (*2.10c) with (2. lOb) and 
(2.10c), respectively, implies 

T - f = 0(r-X - 5) and 7T = 0(r-N - 5). (4.12) 

From now on the argument becomes more tortuous. 
Use of (2.12) and (3.8) shows that ~l" = 0(r-2), 
with the help of which (2.11c) implies oc - fJ = O(r-l). 
But T = it. + (J; thus, on using (4.12) and (3.8), we 
now get separately \1.., fJ = O(r-1). Together with 
(4.9) and {4.12) this shows that the terms in (2.13d) 
involving ~ and 7f' are 0(r-N - 6), which is the accuracy 
to which (*2.13d) is integrated. Again by using T = oc + 
fJ with (4.12), a comparison of (2.13d) with (*2.13d) 
now yields 

D(\1.. - &.) = p(\1.. - &.) - a(oc - &) + <1>10 + o (r-N -
6
). 

( 4.14) 

Now treat similarly the final radial equation (2.15a) 
used in group B. First observe that (2.14b) implies 
'Y1 - <1>01 = 0(r-3

), which, together with (4.13) and 
(3.8), gives .~1' <1>01 = 0(r-3

) separately. Equation 
(2.15a) thus simplifies to 

D(<I>Ol - 'Y1) + b'Yo 

= 4\1..'Yo - 4P'Y1 + 2P<l>Ol + 2a<l>lo + 0(r-N- 7
). 

(4.15) 

Subtract (*2.15a) from this and use (4.13) to give 

D<I>Ol = 3p<l>Ol + a<l>lO + 2(\1.. - &)'Yo + 0(r-.\'-7). 

( 4.16) 

Using the technique of NU for integrating radial 
equations, we may integrate (4.14) and (4.16) simul
taneously for <1>01 and (\1.. - &.). Note that the other 
quantities p, a, and 'Yo occurring in the equations are 
now known to the required accuracy. This integration 
shows that, if it is known that 

\1.. - &. = 0(r-2) (4.17) 

and 
(4.18) 

then it follows that 

\1.. - &. = 0(r-N- 5) and <1>01 = 0(r-N - 6). (4.19) 

Now group B includes satisfying the r-2 terms of 
(*2.11c), which, with (2.11c) and (4.12), gives 

(\1.. - &)~" - (it. - &)tk = 0(r-3), 

from which (4.17) follows. Also the ,-3 terms of 
(*2.14b) are satisfied, which, with (2.l4b) and (4.17), 
gives 

('Y 1 - 0/1) - <1>01 = 0(r-4). 

Together with (4.13) this implies (4.18). Equations 
(4.19) thus follow, which, with (4.12) and (4.13), also 
give Equations (2.13c) and (*2.13c) now give 

(,P\ - 'f\) + <1>01 = 0(r-A'-6). (4.13) (J - p = 0(r-N - 5), 'Y1 - 'f;'1 = 0(r-N- 6). (4.20) 
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We now have IX, p, p, a, T, 'Yo, and 'Y1 correctly given 
by the NU procedure, with $00 and $01 both of 
0(r-N- 6). This completes group B. 

Group C is the most complicated one to treat. We 
here add in 

u = 0 + 0(r-N-
4
), (4.21) 

again with three radial derivatives and as many Xk 

derivatives as are needed. Equations (2.l0d) and 
(*2.lOd) immediately give 

Re (y - y) = O(r-N-li); (4.22) 

hence, on using (4.30), we obtain 

p(p - fi,) + 'Y2 - 'f2 + 2A = 0(r-4). (4.32) 

Together with (4.28) this implies 

D(ft - (t) = 2p 1m (ft - (t) + 0(r-4), 

which, on using (4.25), integrates to give 

(.1, - (t = 0(r-3). (4.33) 

Put this back into (4.32) and use (4.23) to obtain 

1m (\f 2 - 'f 2) = 0(r-4) and $11 - 3A = 0(r-4). 

(4.34) then, on remembering that E is purely imaginary, 
comparison of the real parts of (2.13f) and (*2.13f) 
gives The r- 2 terms of (*2.14c) are next satisfied, giving 

Re(\f2 - 'f2) - A + $11 = O(r-N-G). (4.23) 

The entire equations (2.13f) and (*2.13f) then give 

D(y - y) = Im('Y2 - 'f2) + 0(r-N- 5
), (4.24) 

where Re p = !(p + if), 1m p = HlP - if), for any 
quantity p. Now satisfying the r-1 and r-2 terms of 
(*2.1Id) gives 

1m (ft - ,1) = 0(r-3
), (4.25) 

whilst satisfying the r-1 terms of (*2.lla) gives 

ft - {t - 2 1m (y - y) = OCr-I) (4.26) 

and A = 0(,-1). Noting that A, (t, 1m 9 = 0(,-1), we 
see that Eqs. (4.25) and (4.26) together give ft, 1m y = 
0(r-1

), and thus also y - 9 = O(r-l) on using (4.22). 
Comparison of the equations (2.13g) and (2.13h) with 
(*2.l3g) and (*2.13h) now yields 

D(A - A) = peA - A) + a(ft - (t) + <1>20 + OCr-iV-G) 

(4.27) 
and 

D(ft - ,1) = p(ft - it) + a(A - A) 

+ 'F2 - tV2 + 2A + 0(r-N-
6
). (4.28) 

Turning next to the nonradial equations, by satis
fying the r- 2 terms of (*2.14g) we ensure that 

peA - ).) + $20 = 0(,-3). (4.29) 

With (4.27) this implies DCA - A) = 0(r-3 ), which 
integrates to give 

;, - A = 0(r-2). (4.30) 

With (4.29), this implies 

(4.31) 

Next, satisfy the ,-2 terms of (*2.14h). The ,-3 terms 
are then identically satisfied in virtue of the values of 
yO and;'o already obtained from (*2.11a) and (*2.14g); 

('Yz - 0/2) - A - $11 = 0(r-3), 

which, with (4.23) and (4.34), shows that <1>11' 
A = 0(,-3). 

The next step is to derive radial equations for A, 
$11' $02' and 1m ('Y 2 - 'f 2)' Comparison of the ima
ginary parts of (2.15b) and (*2.15b) gives 

D Im(\f2 - 'f2) 

= 3p Im(\f2 - 4'2) 

- 1m [(A - A)\fo + a$20) + 0(r-X- 7
). (4.35) 

Their real parts, together with (2.17a), give the two 
equations 

and 

D(<Pll - A) = 2P($1l - A) 

+ iRe (CA - A)'Yo] + 0(r-N
-

6
) 

(4.36) 

D(<Pu + 3A) = p($l1 + 3A) + 3p($11 - A) 

+ 2 Re (a$20) + O(r-N-G). (4.37) 

Finally, satisfaction of the u-derivative equation 
(*2.l6a) with a remainder 0(r-N- 6) gives 

D$02 = P<P02 + 4(y - 9)'1"0 - (ft - (t)'Yo 

+ 3a('Y2 - 'f2) + 2a$11 + 0(r-N- 6
). (4.38) 

In deriving these last four equations it is necessary to 
use many of the orders of magnitude previously 
calculated. We now have a system of seven radial 
equations, (4.36), (4.38), (4.37), (4.35), (4.24), (4.27), 
and (4.28), which may be simultaneously integrated 
by iterating them sequentially in this order. Starting 
from the initial conditions 

$11' <1>02, A = 0(r-3), 1m ('Y2 - ~2) = o (r-4) , 

y - 9 = 0(r-1), ;, - A = 0(r-2), ft - (t = 0(r-3), 

(4.39) 
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which have already been derived, and using (4.23) But (2.l4e) gives <1>22 = 0(r-1), so that (4.48) inte
during the iteration, we then obtain grates to give <1>22 = 0(r-3

). Now (2.17c) reduces to 

<1>11 , <1>02' A, 0/2 - 'f'2 = 0(r-N
-

5
), 

y - y, A - A, f1, - /t = 0(r-N-
4
). ( 4.40) 

A further application of (4.35), and then also of the 
imaginary part of (4.28), yields the slightly more 
stringent results 

By using <1>22 = 0(r-3
) as initial condition, this implies 

(4.49) 

Finally, comparison of (2.15d) with (*2.15d) gives 
\f"2 - ~'2 - A + <1>11 = 0(r-N

-
6
) 

and D(o/4 - 0/4) = P(o/4 - 0/4) + 0(r-N- 5
), 

(4.41) which, on using (4.47), integrates to give 
but these cannot be extended to improve the results 
(4.40) themselves. 

Finally, we come to group D. First deduce y = 
0(1) from (2.11 b) and then <1>12 = 0(r-1) from (2.14f). 
With these, (2.17b) simplifies to 

D<I>12 = 3pcj)12 + £1<P21 + 0(r-X-
6
). (4.42) 

Now compare (2.15c) with (*2.15c) and use (4.42) to 
put the result in the form 

D('Y3 - 0/3 - <1>21) 

= 2P(o/3 - ~'3 - <1>21) + 0(r-N- 6
). (4.43) 

But in group D we satisfy the r-2 terms of (*2.14d), 
which gives 

0/3 - 0/3 - <P21 = 0(r-3
). 

Using this, we integrate (4.43) to give 

nr lTJ' ,1-. O( -N-5) 
T 3 - T 3 - '1'21 = r' . ( 4.44) 

We also satisfy the r-4 terms of (*2.16b), from which 

D<P12 = 3£1(\f"3 - 0/3) + £1<P 21 + 0(r-5
) 

= 4£1<P21 + 0(r-5
) 

by (4.44). Using <1>12 = O(r-l), we integrate to give 
<P12 = 0(r-4), which may be used as the initial con
dition in (4.42). On using (4.44) again, we obtain 

<P12 = 0(r-.\'-5) and 0/3 - 0/3 = 0(r-N-
5
). (4.45) 

Together with (2.13i) and (*2.13i), these now give 
D(v - Y) = 0(r-X-5). But satisfying the rO terms of 
(*2.11 b) gives y - Y = O(r-l), so that this integrates 
to give 

(4.46) 

Next use the vanishing of the r-1 terms of (*2.14a) 
to obtain 

( 4.47) 

With this, the vanishing of the r-3 terms of (*2.16c) 
gives 

(4.48) 

(4.50) 

This completes the proof. We have now shown that, 
if the NU integration is performed exactly, then the 
metric coefficients obtained generate an empty space
time, together with a null tetrad satisfying (3.2), and 
that the correct values are obtained for the spin 
coefficients and Weyl tensor components of this 
metric. If the remainder terms are not explicitly calcu
lated, then we have discovered the accuracy to which 
the field equations are satisfied and to which the spin 
coefficients and Weyl tensor components are obtained. 
A summary of these results is given in Table IV. 
Within each group of NU integrations, the corre
sponding completeness proof divides naturally into 
two parts. Some results are obtained by direct com
parison of starred and unstarred radial equations, 
while the others require integration of a radial equation 
using initial conditions which are derived from the 
nonradial and u-derivative equations of NU. Table 
IV also shows the group in which each result is 
derived and whether it follows by direct comparison or 
needs such a radial integration. 

5. DISCUSSION 

The above proof makes clear the reason why some 
NU equations have to be satisfied exactly, while for 
others only the first nontrivial term need be satisfied. 
Those equations which are satisfied exactly either 
immediately ensure that some spin coefficient or Weyl 
tensor component is correctly given by the NU 
procedure, or else give a radial equation for the error 
in such a quantity. These radial equations may be 
integrated to prove that such an error is actually zero, 
provided that as an initial condition we know that 
that error vanishes at least as rapidly as some power 
of r-1 , which power is determined by the radial 
equation. It is these initial conditions which are pro
vided by those NU equations which need only be 
satisfied to their lowest order. 
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TABLE IV. Summary of results. 

Group Derivation o (,-N-') o (,-N-6) o (r-N- 6) Exact 

P = p, K = 0, 
geometry E + i = 0, 

T = Ii + p, 

assumption ~k _~k 

comparison {P - ~ <Doo 
G-G 

'Yo - to E 

A 

assumption CJJ-w Xk_gk 

B 
comparison T - -r, 1T 

integration {p = ~ <DOt 
'Yt - 4"t 

assumption U-U 
comparison Re (I' - y) Re ('F. - 4".) - A + <Dn 

c r- p <D n , <Do., A 
integration A-A 'Y2 - t. 1m ('1"2 - .y.) 

p,-p, 1m (p, - p,) 

v-v 
D integration 'Y, - t, 'Ya - 0/3 

<D.2 <D12 

For completeness, it should be noted that the values 
of the initial functions given in Table II can be simpli
fied by a suitable choice of the hypersurfaces II = 
const. It is shown in NU that this choice can be made 
so that oPjou = 0. In particular, this gives 1'0 = 
VO = 0, and thus by (3.8) makes y = 0(r-2) and 
y = O(r-l). However, it would not have simplified the 
above proof if we had used this further restriction on 
the coordinate system, and so we did not introduce it 
earlier. 

APPENDIX: NOTATION AND CONVENTIONS 

The signature of space-time is taken as - - - +. 
The curvature tensor is taken so that the Ricci identity 
for a covariant vector Aa is 

'Va 'V pAy - 'V P'V aAy = R~p/ A6 . 

The Ricci tensor Rpy ' curvature scalar R, and Weyl 
tensor CaPy6 are then defined by 

Rpy = R~p/, R = gPYR py , 

CaPy6 = Rapy6 + t(gayRP6 - gaaRpy + gpaRay - gpyRaa) 

+ t R(ga6gPr - gaygpo)' 

In Tables II and III the operators V and 0 are used. 
These are defined in the context of the coordinate 
system introduced in Sec. 2, when the further special
ization (3.7) has been made, but before the reality of 
~03 is imposed. At this stage the freedom remaining in 
the choice of tetrad system is merely that of a rota-

tion in the (m, m) plane: 

(At) 

where "p is an arbitrary real function of u and Xk. A 
quantity 'f}, referred to this tetrad system, is said to 
have spin weight s if, under the transformation (AI), 

(A2) 

Suppose s ~ O. Then the real quantity defined by 

'f}at" 'as = f}mat ... rna. + ijmat ... rna. (A3) 

is independent of "p. It is thus a well-defined tensor of 
rank s, from which 'f} may be reconstructed: 

On using (2.3) and (2.12), we get from (A3) that 

(mPVp'f}at'''a.)mat ... rna, = &] + s(~ - (3)'f) (AS) 

and 

(mP'V p'YJat'" aJmat ... rna, = J'YJ - S(IX - p)'YJ. (A6) 

We also observe that the left-hand sides, and thus 
also the right-hand sides, of (AS) and (A6) are 
quantities of spin weights (s + 1) and (s - 1), respec
tively. Hence, if their values are known for one 
particular choice of orientation of (m, m), they can be 
obtained for any other orientation by using (A2). 

Now suppose that 'f} is independent of r. This is well 
defined, as the transformation (A2) only allows 
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functions "p which are themselves independent of r. 
We can then use (3.8), together with the value of OCO 

given in Table II, to evaluate the right-hand sides of 
(A5) and (A6) for the orientation of m and iii which 
makes ~03 = P real. This is the choice originally made 
in Sec. 3. We obtain 

Or; + s(El- ~)r; = -r-1fu) + r-2a°f}r; + 0(r-3
) (A7) 

and 

Jr; - s(rx - P)r; = -r-1f}r; + r-2aOor; + 0(r-3
), (A8) 

where 0 and "8 are defined by 

or; = _pl-Sv(pSr;) and brj = _p1+SV(P-Sr;), (A9) 

with v = (ajax3) + i(ajax4) and V being the complex 
conjugate of v. 

The above discussion only holds if s 2 O. But if 
s < 0, we may apply (A7) through (A9) to ij, which 
has positive spin weight -so We then define 

or; = (tJij)* and fu) = (oij)*, (AIO) 

where, to avoid undue complexity in printing, * and 
- are both used to denote complex conjugation. With 
this definition we see that (A7) through (AIO) now 
hold for all s. 

If a different choice is made for "p, then or; and 5r; 
are taken as defined by the expansions (A7) and (A8). 
As each term in these expansions must have the same 
spin weight, this shows that or; and 5r; also have spin 

weights (s + 1) and (s - 1), respectively. The oper
ators 0 and fi are only defined when acting on quan
tities which are independent of r and which have 
well-defined spin weights. They were introduced by 
Newman and Penrosell and have been more exten
sively studied by Goldberg et al. 12 The results of NU 
are all expressed in terms of v, but many of them take 
a much simpler form when 0 is used. Not all the 
spin coefficients have well-defined spin weights. 
Those that do are a:2; K, 7: 1; p, fl, € + E, y + 1':0; 
7T, 11: -1; A: - 2. '¥ A and <I> AB have spin weights 
2 - A and B - A, respectively. The initial functions 
aO, etc., have the same spin weight as the correspond
ing spin coefficient, being defined in terms of the 
asymptotic power series of that spin coefficient. 
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A method is presented for the construction of unitary representations of semisimple Lie groups (or, 
more precisely, of the corresponding algebras), proceeding directly from the commutation relations 
among the canonical generators e±" and h". In the case of the orthogonal groups, the correspondence 
between the canonical generators and the more usual tensor generators is written down explicitly. It is 
shown how this method can be used to construct a certain class of representations (bounded above or 
below) of the Lie algebras of the noncompact groups SU(p, q) and SO(p, q), which arise in the dynamical 
group treatment of certain physical systems. 

1. INTRODUCTION 

Noncompact groups and their algebras have 
arisen in connection with models for hadron spectra 
and transition amplitudes,1.2 strong-coupling models,3 
the properties of Regge trajectories at t = 0,4 and the 
Bethe-Salpeter equations,5 among other structures. 6 

It appears likely that further applications will arise 
as we become more familiar with such groups. 
Although properties of unitary representations of 
compact groups (and finite-dimensional representa
tions in general) have been studied in terms of the 
commutation relations among the canonical genera
tors e+", e_a , and h" ,7 it seems that little use has so 
far been made of these commutation relations for the 
explicit construction of unitary representations of 
noncompact groups (or their algebras). The purpose of 
the present article is to describe rules for constructing 
certain unitary representations of noncompact groups 
in this way, proceeding directly from the canonical 
commutation relations. 

Section 2 presents a brief review of the general struc
ture of semisimple Lie algebras. Section 3 shows how 
this structure can be used to construct representations 
of the algebra AI' Section 4 derives a method of 
constructing bounded representations of more general 
semisimple Lie algebras. Sections 5 and 6 carry this 
out in more detail for the representations of An 
[corresponding to the groups SU(p, q)], and of Bn 

and Dn [corresponding to the groups SO(p, q)], 
respectively.s In particular, in Sec. 6 the canonical 
generators are related to the usual tensor generators, 
and the hermiticity properties of the former are 
derived for unitary representations. Section 7 illus
trates these methods by using them to obtain some 
previously known results.5 •9 Finally, the Appendices 
review the representations of the rank-one groups 
(as opposed to the algebras); this material is needed 
for some applications of larger groups.2 

2. THE STRUCTURE OF SEMISIMPLE 
LIE ALGEBRAS 

The Lie algebra arises from expressing Lie group 
elements in exponential form: 

(2.1) 

The IXi are the parameters of the group, and the 
generators Xi constitute a basis for the corresponding 
Lie algebra, which consists of all elements of the 
form of the exponent. As the product of two elements 
must be preserved in any representation of the group, 
so, correspondingly, the commutation relations 
among generators must be preserved in the repre
sentation of the algebra; these define the structure 
of the Lie algebra. The general classification of Lie 
algebras allows the parameters in (2.1) to be arbitrary 
complex numbers; imposing appropriate reality 
conditions on these parameters leads to groups such 
as the compact group SU(p) or the noncompact 
groups SU(p, q). 

The general classification of simple Lie algebras7 is 
into four sequences, called An, Bn , en, Dn, and the 
five "exceptional" algebras E5 , E6 , E7 , F4 , and G2 • 

We are particularly interested in the sequences An, 
Bn , and D n , which correspond to the unitary groups, 
the odd-dimensional rotation groups, and the even
dimensional rotation groups, respectively, and to 
their noncompact versions: 

An f"ooJ SU(n + 1 - q, q), 

Bn f"ooJ SO(2n + 1 - q, q), (2.2) 

Dn f"ooJ SO(2n - q, q), 

where n is a positive integer (n ~ 3 for Dn) and where 
q, n + I - q, 2n + I - q, and 2n - q are all non
negative integers. The structure of these algebras can 
be summarized by the following Dynkin diagrams, 

1249 
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the significance of which will be explained below: 

An 0--0--0-------0 , 

Bn • 0--0------0 , 

o~ 

o 

/-0-------0 , (2.3) 

where n is equal to the total number of filled or open 
dots. The dots will be labeled IX, p, y, etc. To each 
dot (filled or open) there corresponds a triplet of 
generators, say e±", and h"" which satisfy the commuta
tion relations 

(2.4) 

[h"" e±",] = ±2e±",. (2.5) 

We note that for SU(2) r-.; A l , which corresponds to 
just one dot, these are essentially angular momentum 

operators; e±", = 12 j± and h", = 2js. Any two opera
tors corresponding to two dots not connected by a 
line commute. However, the commutator of two 
generators corresponding to connected dots is 
generally not zero and in some cases defines a new 
generator. 

A general semisimple Lie algebra is a direct sum of 
simple Lie algebras, with the generators corresponding 
to different summands commuting. The Dynkin 
diagram for a general semisimple Lie algebra is thus a 
set of connected diagrams, such as those in (2.3). 

In order to specify the commutation relations 
completely, it is convenient to introduce the Cartan 
scalar product (IX, P) defined on the IX, p, y, ... (called 
the simple positive roots), considered as basis vectors 
in a vector space of their own. Up to an over-all factor 
which is irrelevant, this scalar product is defined in 
terms of the kind of connection as follows: 

o 0 (IX, P) = 0, 
'" p 
0--0 (IX, P) = -HIX, IX) = -t(P, P), 

p 

• 0 (IX, fJ) = -(IX, IX) = -HfJ, P), 
p 

':_=30 (IX, fJ) = --HIX, IX) = -t(P, P)· 
p 

(2.6) 

(The last kind of connection is listed for completeness; 
it occurs only for G2 , and so is not of interest here.) 
The set of all positive roots is defined to include the 
simple positive roots IX, p, y, ... and certain other 
expressions of the form 

x = jlX + kP + ly + ... , (2.7) 

wherej, k, I, ... are nonnegative integers, not all zero. 
The expressions (2.7) which occur can be found from 
the rule that, if x is a positive root, then 

x + jlX (2.8) 

is a positive root for integral j such that 

o < . < _ 2(x, IX) . 
_1 _ ( ) IX,IX 

(2.9) 

When constructing the positive roots according to this 
rule, it is sufficient to use only positive roots x such 
that x - IX is not a positive root. As an example, we 
note that (2.6)-(2.9) applied to 

(2.10) 

yield the positive roots 

IX, p, IX + p, 21X + p. (2.11) 

A complete set of generators (i.e., a basis for the 
Lie algebra) is given by the set of all h", and e±." 
where IX is any simple positive root, x is any positive 
root, and the e±," for x not a simple root are defined 
by expressions such as 

(2.12) 

Note that a definite order must be chosen for the 
commutators in definitions such as (2.12). The 
complete set of commutation relations can then be put 
in the form 

[e"" e_",] = hoc, 

2( IX, u) 
[h"" e,,] = --e", 

(IX, IX) 

[h"" hp] = 0, 

with N uv ¢ 0 

if u + v is a root, 
(2.13a) 

if u + v is not a root 

and u + v ¢ 0, 

(2.13b) 

(2.13e) 

(2.13d) 

where u and v are roots (that is, expressions of the 
form ±x, where x is a positive root) and IX and fJ 
are simple positive roots. 

3. THE ALGEBRA Al AND ITS 
REPRESENTATIONS 

The algebra AI' along with its associated groups, 
deserves special discussion before proceeding to the 
other algebras-not only because it provides the 
simplest example of the general method, but also 
because the content of its commutation relations can 
be taken over directly to the larger algebras. 
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The group SL(2) is defined by the set of all 2 x 2 
matrices with determinant + 1. If we write a typical 
element in exponential form, 

(3.1) 

then ib is a 2 x 2 matrix with trace zero. (The i has 
been inserted for convenience later.) The set of all 
such 2 x 2 traceless matrices forms the Lie algebra 
AI' The Pauli matrices constitute a basis for AI; 
that is, 

(3.2) 

where the ~i are complex numbers. The definitions 

e± == -Hal ± ia2) and h == as (3.3) 

lead to the commutation relations 

[h, e±] = ±2e± and [e+, c] = h, (3.4) 

in agreement with (2.4) and (2.5), or (2.l3b) and 
(2.l3c). The expansion in terms of this basis will be 
written as 

where 
(3.6) 

The group SL(2) contains several interesting 
subgroups. One is the subgroup which preserves the 
scalar product 

xty == xtYl + xtY2; (3.7) 

this is the subgroup SU(2) of unitary 2 X 2 matrices 
with determinant equal to +1. From (3.1), the 
condition ata = I implies that b is Hermitian, i.e., 
bt = b. Thus the fs in (3.2) must be real, or, from 
(3.6), 

~! = ~'f and ~: = ~a 

for this subgroup, SU(2). 

(3.8) 

Another subgroup is the one which preserves the 
scalar product 

xtaaY = XiYl - xtY2; (3.9) 

this is the pseudounitary group SU(I, 1). Preserva
tion of (3.9) evidently requires that 

(3.10) 
that is, 

where 

b == aabtag = -Ua1 - ~:a2 + ~:aa. (3.12) 

Multiplication from the left by aa shows that (3.11) 
can be satisfied in general only if h = b; from (3.12), 
this means that ~1 and ~2 must be imaginary and ~3 
must be real. From (3.6), 

Finally, there is the subgroup SL(2, R) of real 
2 x 2 matrices with determinant + I, which could act 
on a space of two real coordinates. In this case, the 
elements of the matrix b in (3.1) must be imaginary. 
If we make the permutation a1 -+ a2 -+ as -+ 0'1 on 
the usual representation of the Pauli matrices, which 
preserves the commutation relations, then ~l and ~2 
must be imaginary and ~3 real, as for SUO, 1). Thus 
SL(2, R) is isomorphic to SU(1, 1). 

The groups SU(2) and SU(I, 1) ""' SL(2, R) are 
called real forms of SL(2), since in each case a choice 
of generators can be made such that the parameters 
are real. Conversely, SL(2) is called the complexi
fication (or complex extension) of any of the others 
since it can be obtained from anyone of them by 
making the parameters complex. Of course, SU(2) is 
compact, while the others are noncompact. 

The set of all 2 x 2 nonsingular matrices and the 
subsets which are unitary or pseudounitary are called 
the fundamental representations of the abstract 
groups SL(2), SU(2), and SU(l, 1), respectively. To 
find general representations of SL(2), SU(2) , or 
SU(1, 1), we must find (finite- or infinite-dimensional) 
matrices E± and H such that 

(3.14a) 
and 

(3. 14b) 

The matrices representing group elements are then of 
the form 

A = eiB, (3.15) 
where 

with 
B = ~+E+ + ~_E_ + ~3H, (3.16) 

t! = ~=f for SU(2), 
~: = ~3 and 

~! = -~=f for SU(l,I). 
(3.17) 

There are no restrictions on the ~'s for SL(2). For 
unitary representations we must also have 

Bt = B; (3.18) 
this means that10 

t 
t _ {E± = E'f for SU(2), 

H - H and E~ = -E'f for SU(I, 1). (3.19) 

It is evidently impossible to satisfy (3.18) for SL(2) 
by any condition on the generators. However, this 
impasse can be broken by splitting the parameters 
into real and imaginary parts, writing 

a 
B = ~ (~iai + i'I'Jjai ). (3.20) 

;=1 
~;, = -~=f and U = ~a 

for this subgroup, SUO, 1). 
(3.13) If we take the ai and iai as generators, then the 

condition on the parameters is that they must all be 
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FIG. 1. Part of a weight dia
gram for A l . 

real; for unitary representations, the matrices corre
sponding to these generators must then be Hermitian. 
A direct check of the commutation relations shows 
that we can make the identifications 

ta, = L jk , i,j, k cyclic, 

!(iai) = iL4i' (3.21) 

where the Lij satisfy the commutation relations for 
orthogonal transformations. From the reality of the 
parameters, it follows that this is just the algebra cor
responding to the pseudo-orthogonal group SO(3, 1). 

Now we turn to explicit determination of the 
structure of the unitary representations of SU(2) and 
SU(1, 1). Equation (3.l4a) states that E± raises/ 
lowers the eigenvalues of H by two units: 

H(E± 1m» = E±H 1m) ± 2E± 1m) = (m ± 2)(E± 1m»), 

(3.22) 

where Him) = m 1m). But normalization is not 
necessarily preserved; in fact, E± 1m) could be zero. 
Therefore, we set 

E+ 1m) = PI 1m + 2), E_lm + 2) = Al 1m), 

E_lm) = Aalm - 2), E+ 1m - 2) = itaim), (3.23) 

with the conditions (m 1 m) = (m + 21 m + 2) = 
(m - 2\ m - 2) = 1. This can be diagrammed as in 
Fig. 1. Equation (3.14b) yields the relationship 

(3.24) 

Next we consider the implications of the unitary 
conditions (3.19). First we see that the eigenvalues of 
H must be real: 

m* = m. (3.25) 

For the stepping operators, we find 

(ml E+ = (±)(E_lm»t = (±)Ai' (m - 21, (3.26) 

where the (±) depends on whether the group is SU(2) 
or SU(l, I). Thus 

(ml E+E_Im) = (±)Ai'A2(m - 2\ m - 2) = (±)Ai'A2 , 

(3.27) 

assuming the states to be normalized. But also, 

(ml E+E_Im) = A2 (ml E+ 1m - 2) 

Thus 
= A2lt2(m I m) = ).2fl2· (3.28) 

fl2 = (±)Ai, if A2 ¥: O. (3.29) 
Similarly, 

Al = (±)lti, if 1t1 ¥: O. (3.30) 

Substitution of these equations into (3.24) yields 

IA212 = IAl12 + (±)m. (3.31) 

We shall choose the phases of the states to make the 
Ai real and positive; Eqs. (3.29), (3.30), and (3.31) 
then serve to determine all the normalization factors 
when anyone is known. 

Taking first the case of SU(2), for which 

Iti = Ai and IAi+112 = IAil2 + m i , (3.32) 

we see that a chain such as indicated in Fig. I cannot 
go down forever, since the m i eventually become 
negative. Thus (3.32) must lead to a Aj which is zero 
for some j. Neither can the chain go up forever, since 
the m i eventually become positive; thus Itk must vanish 
for some k. Consideration of (3.32) also shows that 
the normalization factors are symmetrical about the 
middle; in particular, if the top vector is 1m), the 
bottom vector must be I-m). 

For SU(1, 1), for which 

fli = - Ai and IAi+112 = IAil2 - m i , (3.33) 

the limitation is that the chain can have a lower end 
only at some positive mj or an upper end only at some 
negative mk • It cannot have two ends; it may have 
none. 

The above results can also be obtained by considera
tion of the invariant operator 

2 {= 4E+E_ + H(H - 2), 
~ == ~i + ~i +}.;~ = 4LE+ + H(H + 2). (3.34) 

(The invariance of this operator follows directly from 
the commutation relations.) Equations (3.28) and 
(3.29) yield 

2{> 0 for SU(2) , 
(ml E+E_lm) = (±) 1,.1.21 < 0 for SU(l, 1). (3.35) 

That is, the eigenvalues of E+E_ are positive for SU(2) 
and negative for SU(1, 1). If the chain extends 
arbitrarily far up or down, the eigenvalues of 
H(H - 2) become arbitrarily large and positive, 
while I;2 remains unchanged. This leads to a contra
diction of (3.34) for SU(2) , but not for SU(I, 1). 
However, for the latter there can be a contradiction 
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FIG. 2. Some representations of Ai: (a) is 
unitary for SU (2); (b) is unitary for SU(1, I); 
(c) and (d) are unitary for the covering group 
of SU(I, I). The square roots are values of 
Ai = (±),ui' 

(a) 

for small eigenvalues of H(H - 2), if ~2 is small 
enough. That is, unitary representations of SU(2) must 
be bounded at top and bottom, while those of SU(l, I) 
may be bounded at top or bottom, but not both. 

Some typical representations of Al are shown in 
Fig. 2. These representations are, of course, well 
known; that in Fig. 2(a) is just one of the usual spin 
representations (with states labeled by 2ja), while 
the other kinds have been discussed, for example, 
by Barut.H Incidentally, they illustrate the general 
property that unitary representations are finite
dimensional for compact groups such as SU(2) and 
infinite-dimensional for noncompact groups such as 
SU(l, 1). The evaluation of group elements in such 
representations is discussed in the Appendices. 

4. CONSTRUCTION OF BOUNDED 
REPRESENTATIONS 

We now proceed to the construction of bounded 
representations of larger semisimple Lie algebras, 
that is, representations having either a highest or a 
lowest weight. This construction will be further 
restricted to representations for which E! = ±E_a 

when the matrices of the fundamental representation 
satisfy the corresponding conditions eJ = ±e_1I (the 
choice between plus and minus for a given operator 
may be different in the two representations).12 As 
before, Greek subscripts will be used for simple 
positive roots, x and y for roots which are positive 
but not necessarily simple, and u, v, and w for general 
positive or negative roots. 

The construction of such representations will be 
based on the following relations, which refer only to 
simple operators, i.e., those labeled by simple roots; 

[Ea' E_p] = l5apH", (4.1a) 
2(0(, p) _ 

[Ha, E±p] = ± --E±P' (4.1b) 
(0(,0() 

[H", Hpj = O. (4.1c) 

(b) (c) 

I J~ -211"+2 
I 

(d) 

It will first be shown that these relations imply the 
complete set (2.13) for the matrices Eu and Ha in 
representations satisfying the above conditions. 

Equations (4.1) do not specify the commutators 
[Ea, Ep], [[Ea' Ep], Ey], .... In part, such commuta
tors serve to define new matrix operators Ea.+p, 
Ea+p+y , ••• , in those cases where 0( + p, 0( + P + y, 
... are positive roots. So we define the operators E±x 
recursively byl2 

Ex+" == _1_ [Ex, Ea], (4.2a) 
N x" 

1 
E-(xH) == N-

x
.-« [E-x' E_J (4.2b) 

for all positive roots x + 0(, where the N±x.±/lC are the 
coefficients which occur in (2.13a). (Note that 
N±x.±" =;!: 0 if x + 0( is a positive root.) In case 
x + 0( = Y + p, withy also a positive root, we choose 
just one of the possible commutators to define 
Ex+a = E11+p, or E_x_" = E_y- fJ • A priori, there is the 
possibility that some of the operators (4.2) vanish; 
however, we do not have to concern ourselves 
directly with this problem, since it will be shown 
below that these operators have all the correct 
commutation relations. 

Use of the Jacobi identity 

[A, [B, C]] + [B, [C, A]] + [C, [A, Bn = 0 (4.3) 

yields 

[H", Eu+/l] 
1 

= - [H", fE,,, Ep)] 
NufJ 
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provided Ha and Eu satisfy 

[H E) = 2(1X, u) E . (4.5) 
(2:' U (ex, ex) u 

Thus an induction on the order of Eu [the total 
number of com mutants in the definition (4.2a) or 
(4.2b») proves (4.5) for operators Eu of any order. 
Equation (4.5) is the analog of (2.13c) for matrix 
operators. 

Since (4.la) includes all relations of the form 
(2.l3b), it remains only to show that the matrix 
operators satisfy 

[Eu' Ev] = N uvEu+v (4.6) 

with the same coefficients N"v that occur in (2. 13a). 
We start by showing that 

[E" , E±«] = N",±«E uH (4.7) 

(where u is any positive or negative root) by an 
induction on the order n of Eu' 

Equation (4.7) is satisfied for n = 1; this follows 
from (4.1a), the definition (4.2), the fact that [A, B] = 
- [B, A] for both matrices and abstract operators, 
and the equation 

[E±«, E±p) = 0 if IX + (3 is not a root, (4.8) 

which will now be proven. Use of (4.3), (4.1a), and 
(4.lb) yields 

[[Ea, E/I]' E-d = - [[E p, E-d, E«] - [[E_~, Eal, Ep] 

= -op~[Hp,Ea) + oadHa,Ep) 

= 2(1X, (3) - - + -. (4.9) ( 
Ea Ep ) 

«(3, (3) (IX, IX) 

This evidently vanishes for rJ. = (3. For 1X:;t. (3, 
(IX, fJ) S 0; hence (2.9) requires that it vanish, since 
IX + f3 is not a root. Thus the commutator (4.9) 
vanishes for all t; it will be shown below that this 
implies 

(4.10) 

in representations which are bounded below. Since 
E_« = ±E! for the representations in which we are 
interested, the other half of (4.8) follows immediately. 
In the case of representations bounded above, the 
roles of raising and lowering operators are just inter
changed. Thus (4.7) is valid for n = 1 for bounded 
unitary representations. 

Assume now that (4.7) is valid when Eu is of order 
S n. Consider first commutators of the form 

1 
[E,., E_«l = - [[Ell' Elll, E_«l (4.11) 

N yp 

with E,. of order n + 1. Use of (4.3), (4.1a), (4.5), 

and (4.7) for order S n yields 

[E"" E_«] 

1 
= - - ([[Ep, E_a], Ey] + [[E_a, E1/]' Ep]) 

Nyp 

1 
= - -(oap[Hp, Ey] + N_«,I/[E1/-a, E/l]) 

N yp 

= - _1_(20ap«(3, Y) E + NNE ) 
Nyp ({J, {J) 1/ -«,II y-a,/l 1I-a+p 

= __ 1 (20ai{J, Y) + N_ N _ )E _. (4.12) 
N yp ({J, {J) a,1I 11 «,p "'« 

Note that E1/-a is of order n - 1, so that a separate 
evaluation must be carried out for the case n = 1; 
but it is straightforward, and is left to the reader. 
Should it happen that y - IX or y - IX + f3 is not a 
root, we define N_a,1I == 0 or N1I- a./l == 0, respectively; 
the definition of EI/_« or E1I-«+p is then immaterial. 
An evaluation analogous to (4.12) can also be carried 
out in the abstract algebra, with the result that 

But we also know that 

[e"" e_a] = N,.,_ae",_a' (4.14) 

Now either x - IX is a positive root-in which case 
ex_a is well defined and the coefficients in (4.13) and 
(4.14) are equal-or it is not, in which case both 
coefficients vanish. Thus (4.12) can be rewritten 

[Ex, E_a) = N ",.-«E",-a (= 0 if x - rJ. is not a root). 

(4.15) 
A similar proof holds for 

[E_", , Ea] = N.,,.,aE-x-ta. (4.16) 

This derivation of (4.15) and (4.16) could be sum
marized as follows: The commutator in (4.l5) or 
(4.16) can be evaluated in terms of commutation 
relations already known to have the correct form; 
since this evaluation is the same in the matrix algebra 
as in the abstract algebra, we must obtain the correct 
answer, namely, (4.15) or (4.16). 

Next consider commutators of the form 

( 4.17) 

where E", is of order fl + 1. Use of (4.3), (4.1a), (4.15) 
for order n + 1, (4.5), and (4.7) for order n yields 
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The same operations can be carried out in the abstract 
algebra, with the analogous result; also, 

[[e .. , e«], e-d = N:a:«[e:a:+,,, e-d = N:a:«Nz+«._,e:a:+a.-{' 
(4.19) 

Thus the coefficients in (4.18) and (4.19) must be 
equal, so that 

[[E .. , E«], E-d = N:a:«N:a:+«dE:a:+«-{' (4.20) 

On the other hand, if the definitions (4.2a) prescribe 

1 
E .. +« = -- [EII+«' E,,] 

N y+«,,, 
(4.21) 

(note that y need not be a root, though y + rx 
necessarily is). then 

= - -- 2b,,{ + N _{.II+«NI/+a.-',,, Ez+l)d 1 ( ('Y]. y + rx) ) 
NI/+«,,, ('Y].'Y]) 

= N:a:+«dE:a:+«-{. (4.22) 

where the last expression follows. as before, from 
comparison with the result of carrying out similar 
operations in the abstract algebra. From (4.20) and 
(4.22) we have 

(4.23) 

for all {. As will be shown below, this is sufficient to 
guarantee the vanishing of the first commutant for 
representations bounded below; i.e., 

(4.24) 

Since E_p = ±EJ and e_p = ±el for the unitary and 
fundamental representations in which we shall be 
interested (though the choice between plus or minus 
for a given operator may be different in the two 
representations), it also follows that 

(4.25) 

To show this, one need only express (4.24) and its 
analog in the fundamental representation in terms of 
commutators of simple operators; the Hermitian 
conjugates of these two equations can be rearranged 
into the form (4.25), with the same coefficients. In the 
case of representations bounded above, the same 
arguments evidently go through with positive and 
negative roots interchanged. Thus (4.7) has been 
proven for order n + 1 and, hence, by induction for 
all orders of Eu' 

Finally, we can prove (4.6) by an induction on the 

order m of E". For m = 1, it reduces to (4.7). If 

1 
E" == - [Ew, E±d 

N w{ 
(4.26) 

is of order m + I, then use of (4.3) and (4.6) for order 
of the second commutant less than Of equal to m 
yields 

1 
[Eu, E,,] = - [Eu' [Ew' E±d] 

N w{ 

1 
= - ( - [[E", E±d, Ew] + [[Eu, Ew), E±,]) 

N w{ 

1 
= N (-NuH,wN",±{ + N"+w,±,N,,,w)Eu+,,' 

we 
(4.27) 

Consideration of the corresponding expression in the 
abstract algebra shows the coefficient of E"+,, to be 
just Nu,,' 

To complete these proofs, it must be shown that in 
a representation bounded below 

(4.28) 
for all , implies 

(4.29) 

where Z+ stands for E+:a: or a commutator of such 
operators. First, note that in an irreducible repre
sentation every basis vector except the lowest can be 
lowered by some E_(1.' For example, suppose that some 
vector la) cannot be lowered. Then, since this is an 
irreducible representation, there must be an operator 
E+a. which raises it, say to Ib) (see Fig. 3). If it were 
possible to lower Ib) by some operator E_ fJ with 
fJ 7": 0(, then (4.la) would be violated; and lowering 
Ib) by E_a.just leads back to /a), by (4.la). Thus all of 
the states connected to la) must lie higher than la); 
that is, la) is the lowest vector of the representation. 
Now suppose that there exists a raising operator 
Z+ which commutes with all the E_" but yet yields a 
nonzero result when applied to some vector la). 
Since Z+ la) == Ib) is not the lowest vector, there is 
some operator E_a. which lowers it. Thus we must 
have the condition depicted in Fig. 4. That is, there 
must exist a vector Id) lower than la), such that Z+ 
applied to it yields a nonzero result. But this will 
ultimately lead to a contradiction for a representation 
bounded below. Thus Z+ = O. 

FIG. 3. Demonstration that 
E_a la) = 0 for all <X implies that 
la> is the lowest vector. 
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FIG. 4. Demonstration that Z+ must vanish identically. 

A similar argument shows that in a representation 
bounded above 

(4.30) 

for all ~ implies 
(4.31) 

where Z_ stands for E_x or a commutator of such 
operators. 

Thus it has been shown that Eqs. (4.1) imply the 
rest of the required commutation relations for repre
sentations which are bounded either above or below 
and satisfy the conditions E1 = ±E_~ when the 
matrices of the fundamental representation are chosen 
to satisfy el = ±e_p. The general method of using 
(4.1) will now be indicated; specific examples are 
given in the following sections. 

Equations (4.1c) will be satisfied by choosing basis 
states for which the operators Ha are diagonal. 
Relations (4.1 b) state that the E±p's are raising and 
lowering operators for the eigenvalues of the Ha's. 
Actually, only two kinds of connection occur for the 
algebras considered here, leading to the following 
specializations of (4.1b): 

0--0 [Ha, E±al = ±2E±a' [Ha' E±pJ = =fE±P' 

a fJ [Hp , E±p] = ±2E±P' [Hp , E±a] = =fE±(.p 

(4.32) 

• () fHa' E±aJ = ±2E±,,,, fHa' E±p] = =F2E±P' 

p [Hp, E±pl = ±2E±P' [H fJ , E±al = TE±a' 

(4.33) 

That is, E±g always raises/lowers Hs by two units; 

.-=-!)-<)-. --

ex {3 'Y 

ex-2 /3+1 'Y 

{3-1 

it lowers/raises H, by one unit if ~ is connected to ~, 
except when ~ = {J and ~ = oc for the case of the 
double connection (4.33). The actions of the lowering 
operators, for example, can be diagrammed as in 
Fig. 5. A set of eigenvalues roc {J y .. '1 labeling states 
in such a diagram is called a weight. The normaliza
tion factors to be associated with the raising and 
lowering operators in order to produce normalized 
states follow from (4.1a) for a. = {J, just as in Sec. 3. 
Also, these equations can often be used to show that 
E_a and E+a applied in succession to a state yield that 
state back again, as indicated in Fig. 5 by the dashed 
arrows. Note that two boxes have been drawn around 
the weight [a. {J -1 Y + 1 ... 1 to indicate that more 
than one vector may correspond to this weight; 
whether or not this happens is determined by (4.1a) 
with a. ~ {J. If there is only one state with weight 
roc {J-l y+l" ,1, then the product of the normal
ization factors corresponding to the lower path E+aE_II 
must equal the product of the two normalization 
factors corresponding to the upper path E-fJE+a . If the 
two products are unequal, this indicates either that 
there are two (nonorthogonal) states with the weight 
roc {J-l y+ 1 ... J or that the representation is im
possible, depending on the direction of the inequality. 

5. THE ALGEBRAS An 

The group SL(p) has as fundamental representation 
the group of all unimodular p x p matrices. We take 
the exponential form (3.1) for each group element a 
and expand b as follows: 

p-l p 

b =.2. ~ihi +~ ~ijeii' (5.1) 
t=l 1.,,=1 

i*i 

where hi is defined to have + 1 in the iith position, 
-1 in the (i + 1)(i + l)th position, and zeros else
where, while eiJ (i ~ j) has + 1 in the ijth position and 
zeros elsewhere. This form automatically satisfies the 
condition Tr b = 0, or det a = 1. We note that 

/3-2 'Y+1 ... 

(5.2) 

FIG. 5. Part of a weight dia
gram corresponding to B,,; 
1:1., p. y • ... denote eigenvalues of 
the operators Ha. HfJ, Hy.· ..• 
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transformation FIG. 6. Generators 
of SL(4) in the 
fundamental repre
sentation. Shading 
indicates nonzero ma
trix elements. 

0--0---0 x --+- ax, y --+- ay (S.7) 
a fj 'Y requires 

This means that e's with indices differing by more 
than one unit can be constructed from those with 
indices differing by ± 1; e.g., el3 = [eu, e23]' So the 
set 

e+a = el2 , e_a = e21' 

e+ fJ = e23 , e_fJ = eS2, 

constitutes a subset of generators from which the 
rest can be obtained by commutation. Thus (S.1) can 
be rewritten 

b = 2. ~php + 2. ~±pe±p + 2. ~±(p+a)[e±p, e±a] + ... , 
I' ±.p ±,p,a (5.4) 

where the fs are complex numbers, the dots denote 
terms involving higher-order commutators, and 
p, (1, ••• range over ~, {J, .... The generators (S.3) 
satisfy commutation relations of the form (2.13). 
Explicitly, 

[e±p, e±a] = e±(p+a) -:F 0 if p, (1 are adjacent, 

(5.8) 
or 

(5.9) 

since g2 = I. Referring to the exponential expression 
(3.1), we see that this requires 

gMg = b (5.10) 

for the matrix b of (S.4), in the fundamental repre
sentation. Now we note the following relations, which 
follow from the definitions (5.3): 

t 
hI' = hI" 
t 

e±p = e~p, 
ghpg = h", (5.11) 

ge±"og = - e±po ' 
ge±pg = -I- e±p for p -:F Po, 

where e±po are the operators which span the change 
in metric; for example, if g has the diagonal elements 
(l, 1, 1, 1, -1, -1), then epo and e_po are the matrices 
e46 and e54, respectively. Substitution of (5.4) and 
(5.11) into (5.10) yields 

2. ~:hp + 2. €p~:pe~" - 2. €p€a~=(p+a)[e~p, e~a] + ... 
I' ±," ±,p,a 

[e+ p, e_a] = bpah" , 

[h" ' e±p] = ± 2e±P , 

[hI" e±a] = =Fe±a 
(5.5) = 2. ~php + 2. ~±pe±p + 2. ~±(p+a)[e±p, e±a] +"', 

if p, (1 are adjacent, " ±,p ±,p,a (5.12) 

[h", hal = O. 

Furthermore, comparison with (2.13), (2.6), and (2.3) 
shows that these commutation relations are those of 
An with n = p - 1. For example, the generators (5.3) 
for SL(4) take the form shown in Fig. 6, with the 
indicated correspondence to the Dynkin diagram for 
A3 • We note that the third sum in (5.4) can be 
restricted to values of p and (1 such that each sum 
~ + {J, {J + y,' .. occurs precisely once; combinations 
such as IX + yare not needed, since e's with non
adjacent indices commute, according to the definitions 
(5.3). That is, this sum is really over just the positive 
roots of the form p + (1 of An. Similar remarks apply 
to the subsequent sums in (5.4). 

The pseudo unitary group SU(p - q, q) is that 
subgroup of SL(p) which preserves the scalar product 

xtgy = xiYl + ... + x:_qYP_q 

- x:-q+1YP-Hl - ... - x:YP' (5.6) 

where g is a diagonal matrix with + I in the first 
p - q positions and -1 thereafter. We note that 
SU(p, 0) is just SU(p). Preservation of (5.6) under the 

where 

Thus 

€po = -1, 

101'=+1 for P-:FPo' 

~: = ~p, 
~:p = €p~~p, 

~:(p+a) = -€p€a~~(,,+a)' 

(5.13) 

(5.14) 

In a unitary representation, on the other hand, we 
must have t 

B = B. (5.15) 
That is, 

2. ~;H! + 2. ~:pE~p - 2. ~:(p+a)[E~p, E~a] + ... 
P ±,P ±.p,a 

= 2.~pHp + 2. ~±pE±p + I ~±(P+a)[E±p, E±a] + ... , 
" ±,p ±,P,a (5.16) 

where the parameters are the same as in the funda
mental representation; in particular, they satisfy 
(5.14). Thus 

(5.17) 
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0---0 
(I (3 

These are the unitarity conditions for representations 
of SU(p - q, q). Together with the commutation 
relations among simple triplets, which are the same 
as for SU(2) and SU(1, 1), relations (5.17) yield 

IAp,i+11 2 = IAp.i1 2 + Epmp,i and I-'p,i = EpAp,i' (5.18) 

in complete analogy to (3.32) and (3.33). 
The commutation relations in all representations 

are the same as in the fundamental representation, 
Namely, within each triplet, 

[Ha, E±aJ = ±2E±a, 

[E+o' E-aJ = Ha; 

and, between neighboring triplets, 

[Ha, E±p] = =fE±P' 

[E±a' E±pJ == E±(a+P) ::;1= 0, 

[E+a, E_pJ = 0, 

[Ha, Hpj = O. 

(5.19) 

(5.20) 

The first equations of (5.19) and (5.20) show that 
while E±a still raises/lowers the eigenvalues of Ha by 
two units, it also lowers/raises the eigenvalues of any 
neighboring H by one unit. 

As an example, two possible representations of 
SU(3) are shown in Fig. 7. In this case, where there is 
no Po, the unitarity relations (5.18) tell us that both IX 

and p chains must be finite and symmetrical with 
respect to the eigenvalues of Ha and H fJ , respectively, 
as for SU(2). Note that the new commutation relation 
[E+a, E_pJ = 0 precludes situations such as those 
depicted in Fig. 8; it also serves to determine the 
multiplicities and some of the normalization factors 

FIG. 7. Two unitary 
representations of SU(3). 
The actions of E±a are 
indicated by lines sloping 
downward toward the 
left, and the actions of 
E± fJ, by lines sloping 
downward toward the 
right. Arrowheads indi
cate paths to be traversed 
in one direction only; 
note that 100, b) must be 
replaced by a linear com
bination of 10 0, a) and 

1

00, b) orthogonal to 
00, a) in order that E±a 

and E±fJ satisfy the uni
tarity relations (5.17). 

for weights such as [0 0] in the second representation 
of Fig. 7. This latter representation also illustrates a 
complication which arises with degenerate weights. 
The state 100, a) = E_a 12 - l) is not orthogonal to 
100, b) = E_p 1-1 2), and the portions of E±a and 
E±fJ (as defined by Fig. 7) referring to these states do 
not satisfy the unitarity relations (5.17). This is easily 
remedied by replacing 100, b) by the "isospin zero" 
state 

100, A) == -~! 100, a) + ~t 100, b). (5.21) 

The new normalization coefficients, easily found from 
Fig. 7, satisfy (5.17). 

As a second example we take SU(2, 1), with the 
second triplet chosen to be the noncompact one so 
that Po = p. Relations (5.18) tell us that IX chains 
are finite and symmetrical, while each p chain is 
infinite and can have only a "positive" lower end, 
a "negative" upper end, or no ends at all. Figure 9 
shows the general form of unitary representations 
having an IX singlet at the upper end of the leading p 
chain. The convention has been adopted that non
compact generators act horizontally. Representations 
with IX doublets, IX triplets, etc., at the upper end can 
be obtained from Fig. 9 by setting w = 0, -1, etc., 
and taking the portion to the right of the vanishing 
normalization factors; there are also other representa
tions starting with IX doublets, IX triplets, etc., which 
have degenerate weights. We note that Fig. 9 is a 
representation of the group SU(2, 1) only for integral 
w; since exp (2rrihfJ) is the identity in the fundamental 
representation, exp (2rriHfJ) must be the identity in 
any other true representation of the group. 

FIG. 8. Structures prohibited by 
[E+" , E-fJl = o. 
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o -IIJ 
1 -w- 2 h (w+ 1) .--2--""1---:....~-I 

'---....,.--' 

FIG. 9. A class of 
unitary representations of 
the algebra of SU(2, I), 
co> O. (Normalization 
factors for E+p are the 
negatives of those shown 
for Kp.) 

o---c 
a fj 

Finally, Fig. 10 shows the classic example of a 
representation of SU(3, 1) which yields the spectrum 
of the simple harmonic oscillator in three dimensions; 
this can be generalized in an obvious way to the 
representation of SU(N, 1) which yields the spectrum 
of the simple harmonic oscillator in N dimensions. 

6. THE ALGEBRAS Bft AND D .. 

The proper complex orthogonal group in m 
dimensions, SO(m, C), has as fundamental repre
sentation the group of all unimodular m X m 
matrices which preserve the bilinear form 

xY == X1Yl + X:V'2 + ... + xmYm· 

We again take the exponential form 

a = eib , 

so that preservation of (6.1) is equivalent to 

b = -b. 

This condition is satisfied by setting 

b = I ~i;li;' 
i,i 
i< ; 

FIG. 10. A unitary representation of 
SU(3, 1) "" A3 corresponding to the 
energy levels of the simple harmonic 
oscillator; I± = e±", + e±p, I. = 
hrz + hp. Most of the 'Y paths have 
been omitted. 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

where each I;; is defined to have + 1 in the ijth position, 
-1 in the jith position, and zeros elsewhere. Trace
lessness in this case is an automatic consequence of 
the anti symmetry of b. We note that the parameters 
need not be real, since we are defining the complex 
orthogonal groups. The commutation relations among 
the above generators are 

For the case that m is odd we make the definitions 

(6.6) 

We note that any Ii;' with i:F 1 and j :F I, can be 
constructed as the commutator 

(6.7) 

and thus as a linear combination of commutators of 

J=1 

1=0.2 
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the l±~, I±P' etc. Next we define, for SO(2n + 1, C), where m = 2n + 1), for SO(2n + 1, C) f'oooI Bn: 

e±~ == ±1±~ = ±112 - illS, 

h~ == [e+~, e_~] = 2i123 , 

e±P == ±UI±p, l:p] = H±(124 + 135) - i(125 -134)}, 

hp == [e+p, e_p] = i(l45 - 123), (6.8) 

e±y == ±UI±y, l'fp] = H ±(l46 + 157) - i(147 - 156)}, 

hy == [e+y, e_y] = i(167 - 145), etc., 

where the final expressions follow from the commuta
tion relations (6.5). The rJ. operators are a special case, 
but thereafter it is clear that the scheme will continue 
in the fashion of the fJ and y operators. The I's 
defined in (6.6) can be expressed in terms of com
mutators of the e's, since 

l±p = ± [I±~, e±P]' (6.9) 

I±y = ± [l±p ,e±y], etc. 

Thus (6.4) can be rewritten in terms of the e±P and 
their commutators: 

b = ! ~php + ! ~±pe±p + ! ~±(p+ .. )[e±p, e± .. ] + .... 
p ±,p ±,p,.. (6.10) 

The commutation relations below have been used to 
eliminate certain terms from this expansion. 

The virtue of the operators defined in (6.8) is that 
they satisfy commutation relations of the general 
form (2.13). Explicitly, 

[e±P' e± .. ] == e±(p+ .. ) ¢ 0 if p, (J are adjacent, 

(6.lla) 

[e+p, e_ .. ] = t5p .. hp, (6.llb) 

[h p, e±P] = ±2e±P' (6.llc) 

[h p, e± .. ] = =fe±.. if p, (J are adjacent, p ¢ rJ., 

(6.lld) 

[h p , h .. ] = O. 

(6.lle) 

(6.1H) 

The only relation above which differs from the SL(p) 
case is (6.11e); comparison with (2.13) shows that it 
corresponds to the double connection of (2.6). There 
are, of course, other commutators involving e±(p+ .. ) , 
etc., and operators with different nonadjacent indices 
commute. The Dynkin diagram and a summary of the 
actions of the raising operators are given below (we 
note that the commutation relations are those of B"" 

f 0 0--0------

" p 

e+,,: [ 2 -1 0 0 ... ] 
e+p: [-2 2 -I 0 ... ] (6.12) 

e+y: [ 0 -1 2 -I ... ] 
etc. 

For the case that m is even, we make the definitions 

I±~ == 103 ± il02 , 

I±~ == 112 =f il13 , (6.13) 

I±p == 114 =f il15 , etc., 

replacing (6.6). Instead of (6.8), we set, for SO(2n, C), 

e±s == ±t(l±s + I±~) = H±(112 + 103) - i(1l3 - 102)}, 

e±~ == ±-H-I±s + I±~) 
= H±(l12 - 103) - i(1l3 + 102)}, 

hs == i(123 + 101 ), 
(6.14) 

h~ == i(l23 - 101), 

e±P == ±Ul±P' I'F~] = H±(l24 + 135) - i(125 - 134)} , 

hp == i(l45 - 123), etc. 

Subsequent expressions are exactly the same as (6.8), 
for SO(2n + 1, C). These operators satisfy the 
commutation relations 

[eH' e_s] = hs' [h s' e±s] = ± 2e±s' 

[eH , e_~] = h~, [h~, e±~] = ±2e±~, 
[e±s' e+~] = [e±s' e_~] = 0, 

[h;, e±~] = [h", e±;] = 0, 

[hp, e±;] = =fe±;, [h;, e±P] = =fe±p, 

[h p, e±~] = =fe±~, [h~, e±P] = =fe±p, 

etc. (6.15) 

These commutation relations and all subsequent ones 
are of the form (6.11), omitting (6.11e), if ~ and 'I} 

are both considered to be adjacent to fJ but not to 
each other. Thus the Dynkin diagram and the actions 
of the raising operators are as follows, for SO(2n, 
C)f'oooID,,: 

110 

o---~---'-o-o--o-------
~ p 6 

e+s: [2 ° -1 0 O· .. ] 

e+'I: [0 2 - 1 0 0· .. ] 

e+p : [-1 -1 2 -1 0"'] 
e+y: [0 0 -1 2 -1, .. ] 

etc. (6.16) 
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The real pseudo-orthogonal group SO(p, q) pre
serves the bilinear form 

X' y' == x{y{ + ... + x~y ~ - x~+ly~+1 

- ... - x~+qy~+q, (6.17) 

where the coordinates x; and y; are real; it can be 
viewed as the subgroup of SO(p + q, C) which 
preserves the reality conditions of the subspace 

x; = x; (real) for 1::; j ::; p, 

Xi = ixj (imaginary) for p + 1 ::; j ::; p + q 

(6.18) 

of the complex (m = p + q)-dimensional space of 
(6.1). Thus Eqs. (6.2)-(6.16) can be retained, but with 
certain reality conditions imposed on the parameters 
defined in (6.4) and (6.10). For the parameters of (6.4), 
these are evidently 

~ij is real if i::;p <j, 
~ij is imaginary if i <j ::; p or p < i <j; 

(6.19) 

that is, the $ij are real if i,j span the change in metric, 
and are imaginary otherwise. The reality conditions on 
the parameters in (6.10) are determined by the require
ment that the replacement of the hI' and e±p by the Ii; 
according to the definitions (6.8) or (6.14) must lead 
to an expression of the form (6.4) with the $;; 
satisfying (6.19). Examination of (6.8) and (6.14) 
shows that, except when p and q are both odd, we can 
label the coordinates in such a way that only one pair 
of operators e ±Po are constructed from li;'s which 
span the change in metric. Thus we find the reality 
conditions 

$;=+$1" 

~:po = - ~"'po ' 

$:1' = +~"''' if p:;e Po, 

~:(p+a) = +$"'(1'+17) if P = Po or a = Po, 

(6.20) 

~:(p+a) = - $"'(1'+17) if p:;e Po and a :;e Po, etc., 

provided that p and q are not both odd. (We note 
that $±2po does not occur in the expansion since the 
corresponding commutator vanishes.) 

In a unitary representation, with 

we must have 

where 

B = ! $pHp + ! $±pE±p 
±p,p 

(6.21) 

(6.22) 

+ ! ;±(p+a) [E±p , E±a] + .. '. (6.23) 
±,p,a 

Equations (6.20), (6.22), and (6.23) are satisfied by 
the choice10 

t 
HI' = HI" 
t 

E±po = -E",po' (6.24) 
t E±p = +E",p for p:;e Po, 

where E±po are the operators which span the change 
in metric. Thus, again, there is only one pair of non
compact simple generators (or stepping operators), 
provided p and q are not both odd; that is, the Po 
strings are infinite and subject to the normalization 
condition (3.33), while all others are finite and 
symmetrical and are subject to the normalization 
condition (3.32). 

The algebras corresponding to SO(p, q) with p and q 
both odd remain as a special case. The difficulty can 
be seen in the first such semisimple group, SO(3, 1) "" 
SL(2, C). The generators in this case are just the first 
six (the $ and 'YJ operators) of (6.14), and the expan
sion (6.10) is simply 

b = $ghg + $"hq + $HeH + Lge_g 

+ $+qe+q + Lqe_", (6.25) 

since [e±~, e±'1] = O. If the coordinates are labeled so 
that the metric takes the form (+ - - -), then the 
coefficients in (6.25) must be chosen so that the 
coefficients of 10i are real, while those of Iii for i,j :;e 0 
are imaginary. This requires 

;; = $q 

which suggests 

t Hg = Hq 

(6.26) 

and Et , = E--
±~ +" (6.27) 

for a unitary representation. Equations (6.27) are 
consistent with the commutation relations 

[H g• E±gJ = ±2E±~, [Hq, E±q] = ±2E±q, 

[EH , E_g] = Hg, [E+q, E_ II ] = Hq, (6.28) 

[EH' E±"J = [E_g, E±IIJ = [HII , EHJ 

= [Hg, ErllJ = O. 

However, diagonalization of H~ and Hq is evidently 
not possible, since the first of (6.27) requires the 
eigenvalues to be related by complex conjugation, 
while Eqs. (6.28) say that EH raises the former 
eigenvalue by +2 but leaves the latter eigenvalue 
unchanged. The question of bounded representations 
for the algebras corresponding to SO(p, q) with p and 
q both odd will not be pursued further here. 

Figure 11 shows a representation of the algebra of 
SO(3, 2) constructed from the commutation relations 
(6.11 b)-(6.11f) and the unitarity conditions (5.18). 
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~ 
a fJ 

afi 

Note that some weights are degenerate in this repre
sentation, with a resulting complexity in the normal
ization factors. 

7. APPLICATIONS TO DYNAMICAL GROUPS 

The methods described above will now be illustrated 
by application to two cases of possible physical 
interest. The results are not new; the purpose of this 
section is to show how the present methods yield a 
rather pictorial derivation of some known results, 
proceeding directly from the commutation relations 
for the groups in question. 

A. Spherical Harmonics in N Dimensions 

The dynamical groups of a certain class of physically 
interesting equations have been shown to be 
SO(N,2).5 This demonstration proceeded from the 
fact that the solutions are essentially spherical 
harmonics in N dimensions. The connection between 
these spherical harmonics and SO(N, 2) is readily 
shown as follows. 

We first note that a basis for the N-dimensional 
spherical harmonics YJ~ of degree t can be obtained 
from the tth-order monomials 

(7.1) 

FIG. 11. A unitary representation of 
SO(3, 2) ~ B.; a == (¥)l, b == (l-.)t, 

c == (¥)!. The basis states corre
sponding to degenerate weights have 
been chosen to be eigenstates of the 
SU(2)a Casimir operator. (Normal
ization factors for E+fJ are the nega
tives of those shown for E-fJ.) 

by forming a maximal set of polynomials irre
ducible under SO(N) and evaluating them on the unit 
sphere. The coordinates Zi transform like the (N-dimen
sional) vector representation of SO(N). The highest 
weight of this representation for SO(2n + 1) "" Bn 
with N = 2n + I ;;::: 5 is 

• 0--0· - .. -0---0 

[0 0 0 0 1] (7.2a) 

and for SO(2n) "" Dn with N = 2n ;;::: 6 is 

o 

o.---~--'o- ... --0----0 

[0 o o o 1] (7.2b) 

The monomials (7.1) are necessarily symmetric; that 
is, they belong to the t-fold symmetric direct product 
of the appropriate representation (7.2) with itself. Since 
the weight of a direct product of vectors is just the 
sum of the weights of the vectors, the highest weight 
occurring in the product representation is just 

[0 0 0 ... 0 t] (7.3) 

in the coordinates Zi of an N-dimensional space for N either odd or even. Thus the Y~ form a basis for 
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t = 0 t = 1 
h(w+l) 

r 

-1 Iw+l h(w+2) 

, 

----0--0---0 Jw+1 ' h(w+2) 
3 'Y p. r 

, , , 
" 

, 
'" '" , 

" 
, 

FIG. 12. A unitary representation of SO(N, 2) for N ~ 5, which is spanned by the N-dimensional spherical harmonics y~ for all t. The 
relation [E+)., E-d = 0 requires w = I, by Eq. (7.8). (Normalization factors for E+{ are the negatives of those shown for E-I;') 

the representation with greatest weight (7.3). Repre
sentations of SO(N, 2) of the form indicated in Fig. 12 
appear to yield the complete set of representations (7.3) 
for all I, where the last eigenvalue in each weight is that 
of He' defined by the scheme of SO(2n + 1,2),..., Bn+1 : 

• 0 0-' .. -0--0--0 (7.4a) 

or of SO(2n, 2),..., Dn+1 : 

o 

). I' 

o---~--"'o- ... -0--0--0. 
). I' 

(7.4b) 

There is, however, a further condition on w arising 
from the commutation relation [E+I' , E-d = O. 
This relation is satisfied for the states shown in Fig. 
12, and trivially for the states lying below these, 
until we come to the last two states of the 
1 = 1 multiplet and the states of the 1 = 2 multi
plet connected to them. These states are shown 
in Fig. 13. At first sight, the situation appears 
to be complicated by the fact that the weight 
[0' . ·0 0 I -w - 2] is degenerate. However, only 
the state (1/../2)E_1' 10 ... -1 21 -w - 3) connects 
with 10'" 0 -11 -w); for example, [E+{, E_;.] = 0 
yields 

E+cE_;. 10· .. 2 -1 I -w - 2) 

= E_;.E+c 10···2 -11 -w - 2) = 0, (7.5) 

t = 1 t = 2 

FIG. 13. The portion of the representation of Fig. 12 which 
contains the bottom of the t = 1 multiplet and the states of the t = 2 
multiplet which connect to it. The weight [0 ... 00 I -00 - 2] has 
multiplicity n for N odd and n - 1 for N even. 

since no state of the 1 = 1 multiplet is connected to 
10· .. 2 -11 -w - 2). Thus the relation 

0= [E+Jl , E-d 10···0 -11 -w) (7.6) 

yields just 

or 
o = (2w)1 - (w + 1)1 

w=l. 

(7.7) 

(7.8) 

The cases N = 3 and N = 4 remain to be treated, 
but they go through in much the same way. Note that 
(7.3) is replaced by [2/] for N = 3 and by [I I] for 
N = 4; w = t for N = 3. 

The observationS that these representations remain 
irreducible under the subgroup SO(N, 1) can be 
made as follows: From (6.8) or (6.14) we see that the 
restriction of SO(N, 2) to this subgroup is equivalent 
to dropping the stepping operators E±, and substi
tuting just the one operator 

N odd: LI,N+I = H' .. [(E+" - E_", E+p - E_p], 

E+y - E_y], ... , EH - E-c] (7.9a) 
or 

N even: LI,N = H'" [(EH - E_~ + E+q - E_q , 

E+p - E_p], E+y - E_), ... , 

E+{ - E_,]. (7.9b) 

Applied to the 1 = 0 state of Fig. 12, it evidently 
yields a state of the 1 = 1 multiplet. [Note that only 
one ordering of the commutants in (7.9a) or (7.9b) 
contributes, and only the lowering operator from each 
pair.] Since the stepping operators of SO(N) are 
still included, we get all of the t = 1 multiplet. In 
general, the operator (7.9a) or (7.9b) applied to the 
highest state of multiplet 1 yields a linear combination 
of a state of multiplet t + 1 and a state of multiplet 
t - 1. Thus, if we progress from left to right across 
Fig. 12, we see that the irreducible representation 
of SO(N, 1) which contains the t = 0 state must also 
contain all the other states of that SO(N, 2) repre
sentation. 
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oc 0 
E {J ." 

n=! ;j=~, I.~ 
FIG. 14. The baryon representation (see Ref. 9). [E+~, E_p] = 0 requires w 2 2 in general, and w = 2 if the weights are to be non

degenerate. For w = 2, n is the eigenvalue of -~H. Normalization factors for E+fJ are the negatives of those shown for E-fJ. For w ¥'- 2, 
two of the n = ~ weights and six of the n = ~ weights become degenerate, with a corresponding increase in the number of connecting paths 
and associated normalization factors. [A similar case of degenerate weights for SO(3,2) is shown in Fig. 11.] y21± = E±~ + E±~, 
21. = H~ + H q . 

B. The Dynamical Group Model of the Baryons 

In the dynamical group model of the baryons,9 
the S = 0, T = t, Ta = +t baryons are associated 
with the representation of SO(4, 2) '"" SU(2, 2) shown 
in Fig. 14, for ()) = 2. More precisely, these baryons 
are assigned to linear combinations of the states of 
this representation and those of the similar repre
sentation with greatest weight [0 -(I) 1] which have 
positive parity; the other combinations are presum
ably to be associated with a sequence of negative
parity baryon resonances. These representations are 
singled out by the requirement that they have a spin 
doublet at the top. The corresponding anti baryon 
states are then, of course, to be associated with the 
representations having lowest weights [-1 OJ 0] and 
[0 ()) - 1]. The choice9 of OJ = 2 is favored by the 
present experimental situation, since it corresponds 
to nondegenerate weights and, hence, to the least 
number of low-spin baryons. 

One would like to be able to identify the proton, 
for example, with the n = i- doublet of Fig. 14. 
However, in order to obtain the correct characteristic 
mass ~ m", (rather than 2m.,) in the form factors, it 
is necessary to apply the tilt operator (lIN) exp (i(JL04) 

[(lIN) exp (i(JL45) in the notation of Ref. 9] to these 

states; this has the effect that the proton is now a 
linear combination of all the j = ! multiplets in Fig. 
14. Alternatively, of course, one can view this 
instead as a complication of the simple form of the 
current and boost operators which enter the model.9 

The calculation of the proton magnetic form factor 
can now be easily traced out; that for the electric form 
factor is similar, except that parity eigenstates must 
be used throughout to avoid spurious terms. We have9 

GM(t) = . hI 1r (p' = O,j. = -tl'62 Ip,j. = +t) 
S111 20, 

1 
= 2 N2 . h 1~ 

, p sm 2 

x < -1 - OJ + 1 01 e-i8Lo'J2eiOLo. 1 i) 
X (il e-i8Lo'ei~L14ei6Lo'll -OJ 0), (7.10) 

where '(\"2 is the X 2 component of the current operator, 
the sum is over a complete set of intermediate states, 
and exp (i~L14) is the boost which transforms a state 
from rest to momentum p along the Xl axis. The space 
coordinates have been taken to be Xl = Z, X2 = X, 

and Xa = y, so that 1z = 11 = HH. + Hq) is diagonal; 
X4 = t is the time coordinate, while Xo and X5 are the 
extra spacelike and timelike coordinates, respectively. 
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Also, 

, == sinh-1 (p/m) and t = 2m(m - E). (7.11) 

The first matrix elements after the summation sign 
in (7.10) are easily evaluated, since the current 
operator in this model is chosen to be a sum of terms, 

itl' = 2 aiiti, (7.12) 

at most linear in momenta and in SOC 4, 2) generators; 
hence, each has simple transformation properties. In 
particular, let us consider the term made purely from 
SO(4, 2) generators: 

itl' == (LIS, L25 , L 35 , L45)' 

Since [see Eqs. (6.14)] 

(7.13) 

iti = L 25 = ti(E+p + E_p + [EH , [E+p, E+~]] 

+ [E-s' [E_p, E_~]]) (7.14) 

commutes with L 04 ' the matrix elements in question 
are easily evaluated from Fig. 14; the nonzero matrix 
elements involving (-I - w + I 01 are, for w = 2, 

(-1 -w+1 Olit~IO -w-l 

(-1 -w+1 01 iti 1-2 -w+1 

1) = -ti, 
-1) = i/.J2. 

(7.15) 

Evaluation of the other matrix elements in (7.10) is 
facilitated by writing the operator in the formI3

: 

(7.16) 

This can be viewed as a sort of Euler-angle repre
sentation in 014 space. The parameters IX, p, and y in 
(7.16) can be evaluated by replacing the Lij by tiO'k; 
this yields 

-*i(,,+") cosh H + i sinh 0 sinh g e - ,-
- cosh tP , 

ei;(,,-y) = 1, (7.17) 

sinh tP = cosh 0 sinh g. 
Matrix elements of the operator on the right-hand 
side of (7.16) are readily evaluated, since LIO is 
diagonal with respect to the states of Fig. 14: 

(7.18) 

from (6.14). This leaves only the evaluation of matrix 
elements of exp (iflL14). For this purpose we decom
pose Fig. 14 into representations of an appropriate 
triple of operators satisfying the canonical commuta
tion relations 

[E+, E_1 = H, [H, E±l = ±2E±, (7.19) 

with E+ + E_ proportional to L 14 ; exp (iPL14) can 

-2w-3 

-2.'.1 :;13 {iAIO::~;111} :;:18 l-lf.l-l_W-2
2Ij :;:/is 

~ -- -;';;ll-w -201 ----
E! Hh:\12- w-l-ll E! [± 

-1£ )3 -"'-2 -21 

FIG. 15. A subspace of Fig. 14 which is a representation of 
E± and H, for w = 2. For w 7'f 2, the second and third states 
become linear combinations of three and six states, respectively. The 
numbers above the boxes are eigenvalues of H. 

then be evaluated as in Appendix A. From (6.14), we 
see that a suitable choice is 

E± == - i[E±P' E±~ + E±~] = iL14 ± L 15 , 

H == Hs + 2Hp + Hq = 2iL45 • (7.20) 

The representation of (7.20) which starts with the 
weight [1 - w 0] can easily be extracted from Fig. 
14; it is shown in Fig. 15. Since 2iL14 = E+ + E_, 
Eqs. (A22) and (A23) together with Fig. 15 yield, for 
w=2, 

eiPLt411 -w 0) 

= (cosh tP)-3[11 -w 0) 

+ i.J3 tanh (tP)(vi 10 -w-1 1) 

+ vi 12 -w-1 -1» + ... ], (7.21) 

so that the matrix elements between 11 - w 0) and 
the kets of (7. 15) are 

(0 -w-1 11 e"LIOeiPL14e yLIOll -w 0) 

. sinh tP i;("-a) = Ie' , 
(cosh tP)4 

(-2 -(1)+1 -11 eaLloeiPL14eyLlOll -w 0) = O. 

(7.22) 

Equations (7.10), (7.15), (7.17), and (7.22) yield 
G~I (t) for w = 2. The form of the result for w ¥: 2 is 
obtained by noting that the power of cosh tP in (7.21) 
is always -2w + I, the eigenvalue of H on the state 
11 -w 0). Thus 

GP ( few) cosh (j 

MI t) = 2N~ (cosh tP)2o> , (7.23) 

where few) = I for w = 2. From (7.11) and the last 
of (7.17), 

2 cosh2 (j 
cosh tP = 1 - --- t. 

4m2 
(7.24) 

The contributions to the magnetic form factor from 
the other terms in the current (7.12) used in Ref. 9 
can be calculated in the same way. These contribu
tions also have the t dependence (cosh tP)-2W; thus 
the choice9 of w = 2 not only yields the smallest 
number of low-spin resonances, but also leads to a 
second-order pole in GlU(t), in agreement with 
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experiment.9 (Of course, () is chosen so that the pole 
occurs at the correct place, namely, 2m/cosh () R::i mw.) 
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APPENDIX A: EVALUATION OF GROUP 
ELEMENTS 

Matrix elements of noninfinitesimal group elements 
are often needed in the applications of noncompact 
groups. Except for the simplest representations, it is 
impractical to obtain these directly from the exponen
tial expression (2.1). For completeness we describe 
here, in some detail and in terms of the present 
notation, a method of calculating such matrix elements 
for the rank-one subgroups SU(2) and SU(1, 1).14 
As was seen in Sec. 7B, this permits the calculation 
of matrix elements for larger groups also. 

The differential operators 

f;+ == xall , f;_ == yax , :re == xax - ya1l (AI) 

satisfy the commutation relations 

[:re, &±l = ±2&±, [f;+, f;_l = :Ie (A2) 

and hence are a realization of the generators for 
SL(2) or its subgroups SU(2) or SU(l, 1). A general 
transformation of SL(2) is then written in the form 

(A3) 

Since the operators (AI) are differential operators, 
a general analytic functionf(x,y) transforms accord
ing to 

W f(x, y) = f[W(x), W(y)]. (A4) 

For example, 

eaE+ = ea;c •• = 1 + (IXX)Oy + t(IXX)20; + .. " (A5) 

so that 
ea&+f(x, y) = f(x, y + IXX), (A6) 

as can be seen by comparison with a Taylor series 
expansion of f in the second variable about the point 
y. A similar result holds for the subgroup generated 
by f;_ = yo",. Finally, a consideration of the action 
of the differential operators on the monomials in a 
power series expansion shows that 

eYJef(x, y) =f(eYx, e-Yy). (A7) 

The actions of these three subgroups on the co-

ordinate functions are thus 

e.E+[;J = [IXX: yJ epE-[;J = [X: PYJ 

eYJeGJ = [e~;l (A8) 

The transformations (A3) or (A8) on the coordinates 
can also be written in the form 

x'= Wx, (A9) 

where x is the column formed from x and y, and W is 
the matrix operator 

(A 10) 

in the fundamental representation, with 

e+ = [~ ~J. e_ = [~ ~J. h = [~ _ ~J. 
(All) 

We review first the familiar case of SU(2), for which 

- [u v] W - with lul 2 + Ivl2 = 1, (AI2) - -v* u* 

so that WtW = I and 

xtx = Ixl 2 + lyl2 == a2 (Al3) 

is an invariant. These transformations can be visual
ized as moving points around on "spheres" in a 
complex two-dimensional space; in particular, they 
induce transformations on sets of functions defined on 
the unit sphere. Such a set of functions must, of course, 
transform according to some representation of SU(2); 
generally, this will be a larger representation than the 
two-dimensional one which acts on the x - y space. 
Using the definition (AI), it is easily shown that the 
monomials15 

(AI4) 

belong to a representation of the form shown in Fig. 
16. But we know that such a representation of SU(2) 
is unitary if and only if it is bounded at both ends. 
Some typical unitary representations are shown in 
Fig. 17. We note that for unitary representations w 
is a nonpositive integer and 0 ~ k ~ Iwl. With these 
restrictions, the monomials (AI4) are analytic every
where (except at infinity) and hence are a suitable 

--~ -w+2 \ I -w M -w-2 ~--
E+ 2+ 

k=-l - k=O - k=l 

FIG. 16. The form of the monomial representations. The numbers in 
the boxes are eigenvalues of Je. 
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o 
CD w =0 

k=O 

J1 -1 
x I E± I y I w =-1 

k=O k=l 

2 12 0 .[2 -2 

x2 I Il2xy I y2 I w=-2 
E± E± 

k=O k=l k=2 
FIG. 17. Unitary representations of SU(2). The eigenvalues 

of Je are written above the boxes. 

domain for the operators (Al). The explicit evalua
tion of matrix elements for SU(2) will not be carried 
out here, since it is both well known and analogous 
to that for SU(1, I), which will be treated next. 

For SU(I, I), 

W-_[u v] 
- v* u* with lul 2 

- Ivl2 = I, (AIS) 

so that wt<TaW = <Ta and 

xt <TaX = Ixl 2 - lyl2 == a2 (AI6) 

is an invariant. These transformations move points 
around on "hyperbolas" in the complex two
dimensional space; in particular, functions on the 
unit hyperbola (a = I) transform according to 
representations of SU(1, I). Again, the monomials 
(AI4) belong to a representation of the form of Fig. 
16. However, the conditions for unitarity are changed; 
for example, there is the class of unitary representa
tions bounded above shown in Fig. 18. In this case the 
functions are singular at x = 0; but this point is not on 
the unit hyperbola, so that the generators (Al) are 
still well defined. 

We next consider the problem of obtaining matrix 
elements corresponding to the transformation (AlS) 
for SU(1, I). Let 

z == y/x, w == I/x, (A17) 

so that the basis functions (A14) take the form 

(A18) 

and the unit hyperbola /x/ 2 - /y/2 = 1 becomes the 

FIG. 18. Unitary represen
tations of the algebra of 
SU(1. 1) bounded above; 
w > O. Eigenvalues of Je are 
written above the boxes. The 
normalization factors given 
are for &_; those for &+ differ 
by a minus sign. 

-w 

k=o 

FIG. 19. The circle of 
convergence of Eq. (A20) 
(outer circle) and the range 
of z on the manifold (AI9) 
(inner circle). The branch 
cut exists unless w is integral. 

sphere 

z plane 

(AI9) 

When the transformation (AIS) is applied to X, the 
basis functions transform to 

Nkz'kW'''' 

(v*x + U*y)k '" (u*z + V*)k 
= Nk = Nkw 

(ux + vy)k+'" (vz + u)k+'" 

= Nku-k-"'W"'(u*z + v*)k[1 - (k + w)(v/u)z 

+ t(k + w)(k + w + 1)(v/u)2z2 - .. ']. (A20) 

The functions above have only the one singularity at 
z = -u/v, so this expansion converges within the 
circle Izl = lu/vl (see Fig. 19). Since lu/vl > 1 accord
ing to (AIS), this region of convergence includes the 
entire manifold (AI9). The expansion (A20) can 
evidently be put into the form 

Nkz'kW'''' = .2 AIN1z'w"'. (A21) 
I 

The coefficients A, are then the desired matrix ele
ments of 'ill. For example, the operators of interest in 
Sec. 7B are of the form 

w~ = e~("++e_) = [C~Sh oc sinh oc], oc real; (A22) 
smh oc cosh oc 

that is, u* = u = cosh oc and v* = v = sinh oc. 
LabelingstatesbytheeigenvaluesofJe(= -2k - w), 
we find 

'ill~ I-w) = WI'" 

= c-"'w"'[l - wtz + tw(w + IWz2 
- ••• ] 

= c-"'[I-w) + (.jw)t I-w - 2) 

+ [tw(w + 1)]!t2 1-w - 4) + ... ], 
(A23) 

where c == cosh oc and t == tanh oc. The following 

-W-2 -w-4 

~X-W-2y2~ __ 

k=1 k=2 
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w+4 w+2 

__ -1~X2y-w-217 
k=2 

~ -w-I 
vW X y 

k=1 

matrix elements can now be read off immediately: 

(-wi 'ill", I-w) = c-w
, 

(-w - 21 'ill", I-w) = (.jw)tc-W, (A24) 

(-w - 41 'ill", I-w) = [tw(OJ + 1)]!t2c-w
, etc. 

These matrix elements are, of course, independent of 
the fact that we have used a specific realization of the 
algebra in terms of differential operators; they are 
determined by the commutation relations. 

A similar calculation can be carried through for 
representations which are bounded below. In this case 
the monomials take the form 

and 
z == x/y, w == l/y. 

(A2S) 

(A26) 

The representations then have the form shown in 
Fig. 20; Eq. (A20) is replaced by 

Nkz,kW'W 

= Nku*-k-WWW(uz + vt(1 + v*Z/U*)-IC-W 

= Nku*-k-WWW(uz + v)k[l - (k + w)(v*/u*)z 

+ t(k + w)(k + w + 1)(v*/u*lz2 - ... ], (A27) 

and Eq. (A24) is replaced by 

(wi 'ill", Iw) = c-w, 

(OJ + 21 'ill", Iw) = (-.jw)tc-W
, (A28) 

(w + 41 'ill", Iw) = [tw(O) + t)]tt2c-W
, etc. 

General expressions could be written for matrix 
elements such as those in (A24) and (A28); but for 
small values of k it is probably easier to evaluate the 
special cases directly. It should be noted that the 
representations discussed above are true representa
tions of the group SU(t, 1) only when w is integral, 
since only in that case is exp (27TiJe) equal to the 
identity, as it is in the fundamental representation and 
hence in any other true representation. The signifi
cance of the other representations of the algebra and 
the question of multiple-valuedness are discussed in 
Appendix B. 

-w -w-2 

-<42 rw w 
iJW{'2- lz Y c± 

w 

k=o 
FIG. 20. Unitary repre

sentations of the algebra 
SU(1, I), bounded below; 
00>0. 

APPENDIX B: THE COVERING GROUP OF 
SO(2,1) 

The Lie algebra determines much, but not all, of 
the structure of unitary representations of the corre
sponding groups. For example, to the algebra A2 
there correspond the two compact groups SU(3) 
(with quarks) and SU(3)/Z3 (without). The choice 
among noncompact groups belonging to a particular 
algebra is much wider; for example, to Al there corre
spond the noncompact groups SO(2, 1), SO(2, 1) >9 
Z2 '"'-' SU(1, 1), SO(2, 1) >9 Z3' etc. For true repre
sentations of these groups there are the restrictions 
that w = 2m, m, 2m/3, etc., respectively, where m is 
an integer. The purpose of this appendix is to clarify 
the status of these representations of the algebra with 
nonintegral values of OJ. 

A natural set of generators for SO(2, I) is 

I:i ; == Xiaj - xjai , for i,j = 1,2,3; 

E± == il:23 ± 1:31 , Je == 2i1:12 • (BI) 

These are essentially the usual angular momentum 
operators. Setting 

y == Xl - iX2' Y == Xl + iX2' Z = -iX3' (B2) 

we find 

Jey = 2y, Jez = 0, Jey = -2y, 

E+y = 0, E+z = iy, E+y = 2iz, (B3) 

E_y = -2iz, E_z = -iy, E_y = O. 

From these equations, one can easily obtain the 
familiar finite-dimensional representations that are 
unitary for SO(3), starting with i and ending with 
y-I. Of more interest here are representations which 
are unitary for SO(2, I); one such class is shown 
in Fig. 21. In the last function listed, use has been 
made of the restriction x~ + x~ + xi = x~ + x~ -
Z2 = 1, which defines a manifold preserved by the 
group SO(3, C) with complex parameters. A suitable 
choice of reality conditions on the parameters leads to 
the subgroup SO(2, 1), which preserves the real 

-w-4 
Jz(w+l ) ~ -W-2t~ ~ 2 ~ 2(w+l) y 2 - tI Z +1 ~ 

t± 
FIG. 21. Unitary representations of the algebra of SO(2, 1) bounded above; 00 > O. The eigenvalues of Je are written above the boxes. 
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manifold 

X~ + x~ - Z2 = 1, with Xl' X2, and z real. (B4) 

The analog of the transformation (A22) is 

The corresponding parametrization for SU(1, 1) is 

'\1)'( cP, IX, tp) = 'lD'( cP)'\1)'(1X)'\1)'( tp) 

= e'PC'12e2i«C'l8e'l'C'12 (B11) 
with 

(85) 1.:~2 == Je' /2i and 1.:23 == (&~ + &~)/2i, (BI2) 

The action of this transformation on the Xi can be 
deduced from the series expansion of the exponential, 
with the result 

'\1)(IX)[~] = [~:' 
z ICS 

where C == cosh IX and s == sinh IX. In particular, 
this yields 

'UJ(IX) 1-(0) = y'-leo 

= c-wy-ieo[l _ 2itz/y - t2(1 + z2)/lr!eo 

= c-Wy-tW [l + iwtz/ y 

+ iwt2(-WZ 2 - Z2 + J)/y2 + ... J 

= c-"'[I-w) + (,,fw)t I-w - 2) 

+ aw( w + l)Ji t2 1-W - 4> + ... ], 
(87) 

where t == tanh IX. The last expression in (87) is 
identical to that in (A23), as indeed it must be. The 
series expansion in (87) is valid over the entire real 
manifold (B4), since it amounts to expansion of the 
function 

(8S) 

where &~ and Je' are now the operators defined in 
(Al). As in (A22), 

'\1)'(IX{;J = L :J [;J (813) 

and, from (AS), 

'W'(cP)GJ = [e~h'P e~'PJel (B14) 

Remembering that matrices have to be multiplied in 
the opposite order from their corresponding differ
ential operators, we find 

[
X] [ce-h('P+v,) sefi('P-V')] ['X] 

'\1)'( 4>, IX, 1p) = _1.( _ ) t.() • (815) 
Y se lH 'P 'I' ce~' 'P+v' y 

On the other hand, the group SU(l, 1) is defined by 
(A 15); Fig. 22 indicates some ranges of the angles 4> 
and 1p for which (B15) covers each of the matrices 
(At5) just once. 

The range 0 ~ 4>, tp ~ 27T of the parameters for 
SO(2, 1) corresponds to the shaded square in the 
lower left of Fig. 22. That is, the elements of SO(2, 1) 
can be put into one-to-one correspondence with 
"half" of the elements of SU(l, 1); the other half of 
SU(l, 1) can be obtained from this half by multiplica
tion with the element 

(B16) 

in powers of w; and the singular points w± = in SUO, 1). That is, 
t(iz ± 1) of (BS) lie outside the real manifold 
(B4), on which Iwl2 = lyl-2 = (Z2 + 1)-1. SU(1, 1) '"'-' SO(2, 1) x) Z2, (BI7) 

We introduce an "Euler-angle" parametrization of 
SO(2,1): Vt 

'U)(4), IX, 1p) == 'U)(4))'UJ(IX),W(1p) == e<l'C12e2i~C23eV{12, 

(89) 

where the matrix corresponding to 'UJ(IX) has already 
been written down in (B6). Equations (B1) and (B3) 
yield 

'm(~)m - [~' .. :, ~mJ (810) 

and a corresponding expression for '\1)(tp). The angles 
in (89) must evidently cover the range 0:::;; 4>, 
1p :::;; 27T, as can be checked by actually carrying out 
the matrix multiplication corresponding to (B9). 

4~ r-------~------~ 
0(. " I' 

2' X" I', I' 
~;/ I ~x,~ 

In" I v·' 
). / 4 I 3 '~6' 

/ I "~ 
2~ " 1 , 

FIG. 22. Ranges of the parameters'" and !p. Triangles 1',2',3', 
and 4' are equivalent to 1,2, 3, and 4, respectively. The elements of 
S U(I, I) are covered just once when", and !p range over either the 
dashed square or the two shaded squares. 
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where 
Z2 == {I, -I}. (BI8) 

The product in (BI7) is only semidirect, since SO(2, 1) 
is not a normal subgroup of SU(1, 1) (it is not even 
a subgroup). Alternatively, if SU(1, 1) is partitioned 
into cosets with respect to Z2' the two shaded squares 
of Fig. 22 become equivalent; that is, 

SU(1, I)/Z2 '"'-' SO(2, 1). (BI9) 

Since W(t/> = 21T) = exp (-1TiJe) is the identity in 
SO(2, 1), we see from Fig. 21 that w must be an even 
integer for true representations of SO(2, 1). The 
restriction is somewhat less stringent for SU(1, 1), 
where the identity first occurs for W'(t/> = 41T) = 
exp ( - 21TiJe); there it is only necessary that w be an 
integer. 

In the case of nonintegral w, the basis functions in 
Fig. 21 are multiple-valued, because of the factor y-~co. 
Thus the manifold (B4) has to be taken to be a multi
sheeted hyperboloid; transformations will generally 
carry some points from one sheet to another. This 
suggests that we introduce the new coordinate space 
(0, z), where the old coordinates y and yare given by 
the functions 

y = +(Z2 + l)*e-iB, 

y = +(Z2 + l)*eiB
• 

Equation (BIO) is then replaced by 

(B20) 

and similarly for W(lp). Equations (B6) and (B20) 
yield the nonlinear relations 

[

tan-1 [(C2 + S2) tan 0 ] 

W(oc{~J = + 2cszj(Z2 + 1)* cos 0] , 

(c2 + S2)Z + 2CS(Z2 + 1)* sin 0 

(B22) 

where 0 must evidently remain on the same branch of 
the tangent function, since W(oc = 0) is the identity. 
At oc = 0, (B22) yields 

d() 2z cos () 

doc = (1 + z2)1 ' 

dz = 2(1 + Z2)* sin 0, (B23) 
doc 

which tell us that W(oc) moves points along the 
"flow lines" sketched in Fig. 23. The transformation 
(B21) is, of course, just a translation along the 0 
axis; and a general "boost," W( -t/»W(oc)W(g,) , 

z 

FIG. 23. Qualitative representation of the transformation 
'UJ(IX) on the (8, z) plane. 

e 

corresponds to a flow pattern obtained from Fig. 23 
by shifting it a distance t/> along the () axis. 

From this last comment, we see that 

an == W(t/> = 21Tn), n integral, (B24) 

commutes with W(oc). Thus for arbitrary t/>, oc, and tp 
we have 

W(g,)W(oc)W(tp) = 'In W(cP)W(oc)W(1ji) 

with 0 ~ cP,1ji ~ 21T, (B25) 

for a suitable choice of n. Furthermore, any product of 
such transformations can also be written in this form. 
Since the set of all 'In forms a group isomorphic to the 
additive group of integers Z, and since the elements 
W(¢)W(oc)W(1ji) can be put into one-to-one corre
spondence with the elements of SO(2, I), this is just the 
statement that 

c '"'-' SO(2, 1) >9 Z, (B26) 

where C is the set of all transformations of the form 
(B25). 

The basis functions of Fig. 21 take the form 

(B27) 

where F(z) is a well-defined function of z, provided 
we always take the branch of (Z2 + lr!co-1k which 
goes to 1 at z = o. Thus all representations of the 
form of Fig. 21 are representations of the group C. 
We can also construct the representations of the 
algebra which are bounded below or unbounded in 
terms of similar sets of functions; and these also are 
representations of C. Thus C is the covering group 
for the algebra SO(2, 1). 

For representations with w = 2njm, 0 + 21Tm is 
evidently equivalent to (), from (B27); and so 'J m is the 
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identity on these representations. That is, such 
representations are also true representations of 

SO(2, 1) ~ Zm, (B28) 

where Zm is the additive group of integers modulo m. 
Representations with irrational (J) evidently belong 
only to C. 

Finally, we note that the expressions obtained for 
matrix elements of 'UJ«(X) in Eqs. (A24) , (A28), and 
(B7) are valid in any case; we are evidently to take 
the branch of (cosh (X)-ro which goes to unity at (X = 0, 
since 'UJ( (X = 0) is the identity. 
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A large class of noncompact simple Lie algebras is examined to determine those that admit unitary 
irreducible representations in which the multiplets associated with the compact subalgebra are labeled 
by the eigenvalues of a generator, with only a finite number of multiplets corresponding to each eigen
value. It is shown that such representations are precisely those which are bounded above or below, so 
that the eigenvalues of the labeling generator are bounded above or below. It is found that many of the 
algebras examined do not have such representations; for example, among the pseudo-orthogonal groups 
SO(p, q) with p and/or q even, only those of the form SO(p, 2) do admit representations of this kind. 

1. INTRODUCTION 

In a number of applications of noncom pact groups,! 
the multiplets corresponding to the maximum com
pact subgroup (henceforth called compact multiplets) 
are labeled by an additive quantum number, which 
often has a physical significance. In the classical 
examples of the hydrogen atom and the simple 
harmonic oscillator, for instance, this is the principal 
quantum number, specifying the principal part of the 
energy difference between states. It is also true in these 
applications that only a finite number of multiplets 
correspond to each value of this quantum number. 

With the expectation that this feature will be of 
importance in future applications, we examine here 
a large class of algebras to determine which admit 
unitary representations with the compact multiplets 
labeled in this way. As will be shown in Sec. 2, these 
representations are precisely those which are bounded 
above or below; this means that the spectrum of 
the multiplet-labeling quantum number is, in fact, 
bounded above or below. The algebras to be examined 
include, among others, those for SU(p, q) and for 
SO(p, q) with p and q not both odd. 

The formalism2•a to be used will now be briefly 
reviewed. The form 

will be assumed for group elements, with 

B = L (~pHp + ~+pE+p + ~_pE_p) 
p 

(1.1) 

+ L (~+p+cr[E+p, E+cr] + Lp_cr[E_p, E_crD + ... , 
P.cr (1.2) 

where the fs are complex numbers, the dots denote 
terms involving higher-order commutators, and 
P, IY,' •• range over the simple positive roots. The 
number of simple positive roots is equal to the rank 
of the algebra; the H's are a maximal set of commuting 
generators. The following commutation relations will 

be needed: 

[Eu, E,,] = Nu"Eu+v, with N uv =F- ° if u + v is a root, 

= 0, if u + v is not a root and u + v =F- 0, 

(l.3a) 

Cl.3b) 

[Hp , Eu] = [2(p, u)/(p, p)]Eu' (1.3c) 

where p, IY denote simple positive roots and u, v 
denote general roots. The definition of (u, v) and 
further discussion can be found in Refs. 2 and 3; the 
above commutation relations correspond, for example, 
to Eqs. (2.13) of Ref. 3. 

The algebras to be considered here are those for 
which 

~~ = ~P' ~!p = Ep~H' 
~!(p+cr) = -EpEcr~'f(p+a), etc., (1.4) 

Ep==+l, for P=F-Po, 

Epo == -1. (1.5) 

(These algebras differ from the corresponding 
compact algebras only by the presence of Epo ') For a 
unitary representation, Eqs. (1.1), (1.2), (1.4), and 
(l.5) imply 

If E+p la) = 0, Eqs. (l.3b) and (1.6b) yield 

wp(a) == (al Hp la) = (al E+pE_p la) 

(1.6a) 

(1.6b) 

= Ep(E_p la»tE_p la). (1.7) 
Thus 

E+p la) = 0 => wia) ~ 0, for P =F- Po, 

=> w(a) == wpo(a) ::;;; 0, for p = Po, (1.8) 

in a unitary representation; and, similarly, 

E_p la) = 0 => w/a) ::;;; ° for p =F- Po, 

=> w(a) == wpo(a) ~ 0 for P = Po. (1.9) 

1272 
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The complex simple Lie algebras are conventionally 
classified in terms of the Dynkin (or Schouten) 
diagrams2 : 

An:O-O-"'-O Bn:. 0-"'-0 

o 
en: 0 .- ... -. Dn: )0-" '-0 

o 
Es:O-O-b--O--O 

E7:O--O-O--1--0 --0 

E8:0--o-0--0--~-0--0 

(1.10) 

Each dot corresponds to a simple root; the type of 
connection and the coloring determine the Cartan 
scalar product (p, 0') which enters, e.g., in (1.3c). 
The noncompact algebras we are considering here 
can be described by replacing one circle by a square 
to indicate the location of Po. For example, corre
sponding to B3 there are the three real noncompact 
algebras 

• 0-0 • 0-0 • 0-0 (1.11) 

belonging to SO(I, 6), SO(3,4), and SO(5,2), 
respectively.3 

The elementary stepping operators E±P' with p a 
simple positive root, connect the basis states of an 
irreducible representation; and, in general, 

(1.12) 

where la) and Ib) are any two states of an irreducible 
representation, and the symbol L without a subscript 
has been used to denote a linear combination of the 
terms following. The generators E±po step between 
different levels of the representation; within each 
level, the operators E±p with p ¥- Po connect basis 
states belonging to the same compact multiplet (i.e., 
to the same irreducible representation of the maximum 
compact subalgebra). In general, there will be more 
than one compact multiplet to a level. 

The commuting operators Hp will be chosen to be 
diagonal, so that basis states are (partially) labeled 
by their eigenvalues; the set of eigenvalues corre
sponding to a given state is called the weight of that 
state. From the commutation relations (1.3c), each 
application of the raising operator E+p (or lowering 

operator E_p) changes the weight of a state by a 
prescribed amount, which will be denoted by + [p] 
(or - [pD. If la) and Ib) in (1.12) have the definite 
weights [a] and [b], then 

[b] = [a] + L ±[p], (1.13) 
±p 

where the sum is over the same set of simple -roots 
±p as the product in any term of (1.12). [Note that 
a given simple root may occur more than once in the 
sum of (1.13), and in the products of (1.12).] If after 
canceling equal positive and negative terms, the sum 
in (1.13) reduces to a sum over only positive (negative) 
roots, then [b] will be said to lie above (below) [a], 
and Ib) above (below) la). A weight will be called 
maximal (minimal) if no weights lie above (below) it. 
In general, a representation may contain no maximal 
or minimal weights, or it may contain several, with 
several states corresponding to each. However, an 
irreducible representation of any semisimple Lie 
algebra4 contains at most one maximal and one 
minimal weight; when such highest and lowest 
weights exist, they are nondegenerate [see state
ments (I) in Sec. 2]. Since a compact multiplet is an 
irreducible representation of the compact subalgebra 
and is finite dimensional, it has a highest weight and 
corresponding highest state; these completely specify 
the structure of the multiplet as a representation of the 
compact subalgebra. If an irreducible representation 
of the whole algebra has a highest (or lowest) weight 
and state, it will be said to be bounded above (or 
below); its structure is then completely specified by 
this highest (or lowest) weight. Such a semibounded 
representation5 has a highest (or lowest) level, where 
the levels are ordered with respect to the number of 
times ± [Po] occurs in (1.13); in fact, the highest (or 
lowest) level of an irreducible representation contains 
just one compact multiplet. [This follows from 
statements (I) in Sec. 2.] 

It is always possible to define an operator of the 
form 

(1.14) 

which labels the levels of an irreducible representation. 
Thus our objective is to determine which algebras 
admit unitary irreducible representations with only 
a finite number of compact multiplets at each level. 
We show in the next section that, for the algebras 
defined by (1.4) and (1.5), these representations are 
precisely those that are bounded above or below; 
and in Sec. 3 we determine which of these algebras 
can have such representations. 
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2. EQUIVALENCE OF SEMIBOUNDEDNESS 
AND HAVING A FINITE NUMBER OF 

MULTIPLETS AT EACH LEVEL 

We first show that a semi bounded irreducible 
representation (i.e., one bounded above or below) 
can have only a finite number of multiplets at each 
level. Let la) and Ib) be basis states of an irreducible 
representation, and express Ib) in the form (1.12). 
From the commutation relation (1.3b), the raising 
operators E+p can be commuted toward the right 
(without changing their order) at the expense of 
introducing additional terms containing the operators 
Hp. But the latter operators are diagonal; hence 

where L again denotes a linear combination of the 
terms following. If the representation is bounded 
above, let la) be the highest state; then (2.1) reduces to 

(2.2) 

By (1.3a), any E_p:s which occur in (2.2) can be 
commuted toward the left with the addition of similar 
terms involving operators E_." where x denotes a 
general positive root containing Po. The latter opera
tors can also be commuted to the left, with the final 
result 

Ib) = L (II E_.,) (II E_p ) la). (2.3) 
., P*Po 

Since there are only a finite number of linearly 
independent states in a compact multiplet, there is 
only a finite number of linearly independent states of 
the form (IIp¥Po E_p) la). Furthermore, there is only 
a finite number of positive roots x corresponding to 
any given algebra, and the total number of times Po 
occurs in the roots x in any term of (2.3) is just equal 
to the number of levels by which Ib) lies lower than 
la); hence there is only a finite number of possible 
factors II., E_.,. Thus there is only a finite number of 
linearly independent states (2.3) (or, equivalently, of 
compact multiplets) to a given level. An analogous 
proof holds, of course, for an irreducible representa
tion bounded below. 

The rest of this section is devoted to proving the 
converse statement that any irreducible representation 
with a finite number of compact multiplets (or of 
states) at each level is necessarily bounded above or 
below. In fact, it is necessary to know only that one 
level has a finite number of compact multiplets; this 
can be seen as follows. Let la) and Ib) belong to 
levels I and m, respectively, and assume I> m (i.e., I 

higher than m). Then Ib) can be expressed in the form 
(2.1), where the difference between the number of 
E_p:s and the number of E+p:s is equal to 1- m. Now 
regroup the operators in (2.1) (without changing 
their order), 

Ib) = L (~E_p,,) (~E_pw) (¥ E+p') la) 

== L (1) E_p ,,) la'), (2.4) 

so that E_po occurs in IIpm E_pw the same number 
of times as E+po occurs in IIp. E+p'; that is, so that 
la') belongs to the same level as la). If we know that 
level 1 contains only a finite number of linearly inde
pendent states la'), then an argument similar to that 
following (2.2) applied to the last expression in (2.4) 
shows the same to be true of level m. Conversely, if 
there is only a finite number of independent states in 
the lower level m, it can be shown in a similar way 
that there is also only a finite number of independent 
states in the higher level I. 

The following statements will be needed for the 
main proof of this section: 

(Ia) If 

(2.5a) 

for all simple positive roots p, then la) is the highest 
state of the irreducible representation to which it 
belongs; in particular, if la) belongs to level I, there 
are no states in levels higher than I . 

(Ib) If 

E_p la) = 0 (2.5b) 

for all simple positive roots p, then la) is the lowest 
state of the irreducible representation to which it 
belongs; in particular, if la) belongs to level I, there 
are no states in levels lower than I. 

Figure 1 gives a diagrammatic representation of 
these statements. To prove (Ia) , we note that any 
other state Ie) of the representation can be expressed 
in the form (2.1). If Ie) did not lie lower than la), 
then each of the terms in (2.1) would have to contain 

(a) (b) 

FIG. 1. Diagram
matic representations 
of level structures for 
the cases that (a) 
E+ p la) = 0 for all p. 
and (b) E_p la) = 0 
for all p. The ellipses 
represent levels. and 
the operators E ±Po 
act toward the left 

and right, respectively. The dashed lines indicate levels which cannot 
occur by statements (Ia) and (lb), respectively. Also, la), Ib).· •• are 
the highest states of their respective muItiplets in case (a) and the 
lowest states in case (b). 
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at least one raising operator; hence by (2.5a) it would 
vanish. The proof of (Ib) is analogous. 

Also needed are the following statements concerning 
irreducible representations with finite - dimensional 
levels: 

(lIa) If the states Is) == (E+PO)8 la) belong to weights 
which are maximal in their respective levels for s = 0, 
1, 2, and 3, then they are the highest states of their 
respective levels for all s. 

(lIb) If the states Is) == (E_p)'la) belong to weights 
which are minimal in their respective levels for s = 0, 
1, 2, and 3, then they are the lowest states of their 
respective levels for all s. 

Note that if either sequence of states terminates at 
Iso), then so does the corresponding sequence of 
levels-that is, there are no levels beyond that con
taining Iso), by statements (I). Statements (II) are 
diagramatically represented in Fig. 2. 

To prove (lIa), we note that any other state Ib) of 
the irreducible representation containing la) can be 
expressed as in (2.1). Consideration of the weights 
shows that if Ib) did not lie lower in its level than the 
corresponding state (E+pY la), then each of the 
terms of (2.1) would take the form6 

(1] E_p) (rr E+p,,) E+iE+poY I a) (2.6) 

with (J ¥: Po. These terms can be put into more 
transparent form by use of the identity 

r rl 
ABT = I . BT-mCA, B]m, (2.7) 

m=O (r - m)! m! 

where, for example, 

[A, Bla == [[[A, B], B], B], (2.8) 

and [A, B]o == A. The conditions of (lIa) imply that 

[E+" , E+po]m la) = 0, for m = 0, 1,2,3, (2.9) 

where (J is any simple positive root other than Po. 
Furthermore, it follows from the commutation 
relations (1.3a) and the rules for the construction of 
roots [see, e.g., (2.6)-(2.9) of Ref. 3] that 

(2.10) 

__ '4) IO~~)2) _~_0Jl0D.Q __ 
au 0 0 (J '0) U) 12) 10) ,.) 

FIG. 2. Diagrammatic representation of statements (II). If 10), 
11), 12), and 13) belong to maximal (minimal) we~ghts of their 
respective levels, then 10), 11),12),13),14), ... are the hIghest (lowest) 
states of their respective levels until they vanish. 

FIG. 3. A typical situa-
tion for the case that 
(E_po)3Ia) "" O. 

SO:5roS=4ru~:)3mS=2mS=lm~:)O --

[Actually, the third-order commutator can be non
zero only for G2 , and for An even the second-order 
commutator vanishes; cf. (3.20) below.] From (2.7), 
(2.9), and (2.10) it follows that 

(2.11 ) 

for all r, and so all the terms (2.6) vanish. A similar 
proof holds for statement (lIb). 

We now proceed to the main proof of this section, 
the first part of which is summarized in Fig. 3. If a 
level contains only a finite number of compact 
multiplets, it must have at least one maximal weight 
with at least one corresponding state la). If 

(2.12) 

does not vanish (the case when it does will be con
sidered below), construct the series 

(2.13) 

Note that Is = 3) belongs to the same weight as la), 
which is maximal in its level. If Is = 2) did not belong 
to a maximal weight of its level, there would be some 
maximal weight and a corresponding state 12') lying 
above it. Then,if 

(2.14) 

vanished, 12') would satisfy the conditions of (Ia) , 
and the existence of la> would be contradicted; if 13') 
did not vanish, [3'] would be a weight lying above 
[a], in the same level. Hence Is = 2) belongs to a 
maximal weight of its level. In the same way, it 
follows that Is = 1) and Is = 0) also belong to 
maximal weights of their respective levels. Thus, by 
(lIa) , the states (2.13) are all highest states of their 
respective levels, and hence of compact multiplets 
within these levels. However, each application of 
E+ lowers the eigenvalues of those Hp with P ¥: Po Po 

for which P is connected to Po / whereas all these 
eigenvalues must be nonnegative for the highest state 
of a compact multiplet [from (1.8)]. Therefore the 
sequence (2.13) must terminate with some state Iso), 
satisfying 

(2.15) 

for all p; and by (Ia), the representation is bounded 
above. 
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If, on the other hand, (E-plla) vanishes, let 
Ib) = (E_p/ la) be the nonzero state such that 

E_po Ib) = O. (2.16) 

(See Fig. 4. Actually, it always turns out that Ib) = la), 
but this is not needed for our proof.) As was noted 
in (1.9), for a unitary representation (2.16) implies 
that 

web) ~ 0, (2.17) 

where Hpo Ib) == web) Ib). As above, Ib) belongs to a 
maximal weight of its level, and must therefore be 
the highest state of some compact multiplet. Let Ie) 
be the lowest state of this same multiplet. If the multi
plet is the trivial one, Ie) = Ib), then 

(2.18) 

for all p, and by (Ib) the representation is bounded 
below. If the multiplet containing Ib) and Ie) is non
trivial, the eigenvalues wp with P :F Po occurring in 
[b]([eD must be nonnegative (nonpositive) integers, 
with at least one not equal to zero. We note that 
while E_p lowers wp , it raises Wu if (J ¢ p but is 
connected to it. From this it follows that any term in 
the expression 

Ie) = ~ (II E_p ) Ib) (2.19) 
P'*Po 

must contain at least one operator which raises 

wee) > web). (2.20) 

Let [d] be the minimal weight of the level which lies 
below [e] (actually, it can be shown that [d] = [cD; 
then 

proof that the states (2.13) belong to maximal weights. 
Therefore, by (lIb), the states (2.24) must be lowest 
states of their respective levels. But the eigenvalues of 
Hp for P ¢ Po must be nonpositive for the lowest state 
of a compact multiplet, while some of these eigen
values are raised by each application of E_po ' Thus 
the sequence (2.24) must terminate; and so by (Ib), 
the representation is bounded below. 

Incidentally, Figs. 3 and 4 depict typical representa
tions bounded above and below, respectively, with 
compact multiplets increasing in size (and usually 
also in the number per level) toward the right in the 
first case and toward the left in the second case. It can 
be shown from statements (I) and (n) that the sequence 
of states 

(2.25) 

formed from the highest state Ih) or the lowest state 
1/) are all highest or lowest states of their respective 
levels. 

3. ALGEBRAS WITH SEMmOUNDED 
UNITARY REPRESENTATIONS 

In this section it is shown that many of the non
compact algebras described in Sec. 1 do not possess 
unitary representations bounded above or below. 

Let la) belong to a minimal weight of the highest 
level of a unitary representation bounded above, so 
that 

E_p la) = 0, for P:F Po, 

E+po la) = O. (3.1) 

If, as before, wp(a) is defined by Hp la) == wp(a) la), 
then 

(3.2) 

wed) ~ wee). (2.21) by (1.8) and (1.9). In fact, we can assume that 

wu(a) < 0 (3.3) From (2.17), (2.20), and (2.21), we have 

wed) > O. 
Therefore 

(2.22) for at least one simple positive root (f, since otherwise 
(l.3b) and (3.1) would yield 

Ie) == (E+Po )3 Id) ¢ 0 (2.23) 

by (1.8) and the fact that each application of E+ po 

raises w. It follows from (Ib) that the states 

(2.24) 

belong to minimal weights of their respective levels 
for s = 3, 2, 1, and 0, by reasoning analogous to the 

FIG. 4. A typical situation 
for the case that E_pola) = O. 

o = (al Hp la) = - (al E_pE+p la) 

= -(E+p la»t E+p la) (3.4) 

for every p :F Po and a similar equation for p = Po· 
Combined with (3.1), these would imply 

E±p la) = 0 (3.5) 

for all p; thus la) could only be the one state of the 
trivial one-dimensional representation of the whole 
algebra. 

For many of the algebras described in Sec. 1, 
there is a further condition on the w/a) which can 
be derived by consideration of the operators E±m' 
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where m (the "maximum" positive root of the given 
algebra) is such that m + P is not a root for any 
positive simple root p. From (1.3a), 

[E_rn' E_p] = O. (3.6) 
If 

m = (1 + fl + ... + 7 (3.7) 

in terms of simple positive roots (1, fl, ... , 7, we 
make the definitions 

E+rn == [[ ... [E+,T' E+I']' ... J, E+ T], 

E_ m == [E_T' [ ... , [E_I" E_,,] ... ]], (3.8) 

in agreement with (1.3a). Note that the commutators 
defining E_m have been written in the reverse order 
from those defining E+m , so that (1.6b) yields 

Et = (_1)NmE +m -m' (3.9) 

where N m is the number of times that Po occurs in 
the expression (3.7). 

It can be shown that 

[E+m' E_m] = 2.f':nH p' (3.10) 
p 

with 
f':n > 0, for all p. (3.11) 

The general form (3.10) follows from the form of the 
commutation relations (1.3), by repeated use of the 
Jacobi identity. One way of demonstrating (3.11) is 
to note that in a finite-dimensional (nonunitary) 
representation8 •9 of the algebra we can choose 

E:p = E_p (3.12) 

for all p, so that 
(3.13) 

The operators E±m are, of course, defined as in (3.8); 
and since commutation relations are the same in all 
representations, 

[E+m' E_m] = 2.f':nJep (3.14) 
p 

with the same coefficients!:;' as in (3.10). Let la) be 
the highest state of a nontrivial finite-dimensional 
representation; then (3.14) and (3.13) yield 

2.f':n (al Jep 10) = (al E+mE_m 10) 
p 

Note that equality is not permitted in this last relation, 
for that would mean 

(3.16) 

expressed [cf. (2.2)] as 

16) = 2. (1] E_p ) la), (3.17) 

Eqs. (3.6) and (3.16) would require E_m to be identi
cally zero, in conflict with (1.3a). Equation (3.15) 
must be true for any finite-dimensional representation; 
and the only condition on the set of numbers 
(al Jep la) (the greatest weight of the representation) 
is that they be nonnegative integers. 9 Thus (3.15) 
implies conditions (3.11). 

Since Po occurs at least once in m [see, e.g., (3.20) 
below] and la) belongs to the highest level of the 
unitary representation, 

E+m la) = O. (3.18) 

Therefore (3.10) and (3.9) yield 

(_1)N,. 2.f':n (al Hp la) = (_1)Nm (al E+mE_m la) 
p 

= (E_ m la»tE_m la) ~ O. 

(3.19) 

This is clearly inconsistent with (3.2), (3.3), and 
(3.11) if Nm is even. That is, if the maximum root m 
of an algebra contains the noncompact root Po an 
even number of times, then the algebra does not 
possess any unitary representations bounded above; 
there is, of course, an analogous proof that it does 
not possess any unitary representations bounded 
below. (The trivial representation is naturally ex
cluded.) 

The positive roots corresponding to a given algebra 
are easily calculated according to the rules given in 
Refs. 2 and 3 [e.g., Eqs. (2.6)-(2.9) of Ref. 3]. The 
maximum positive roots m are found to take the 
following forms, in terms of simple positive roots 
oc, {3, ~, 'fj, ... , 7, ,: 

An: m = oc + {3 + ... + 7 + {, 
En, F4 : m = 20c + 2{3 + ... + 27 + {, 

en: m = oc + 2{3 + ... + 27 + 2', 

DIP E6 , E7 , E8: m = ~ + 'fj + 2{3 + ... + 27 + " 
G2 : m = 30c + 2', 1= 20c + " (3.20) 

where oc and , denote roots at the left and right ends 
in (1.10), respectively, while ~ and 'fj denote end 
roots in general. The additional root I has been 
included for G2 , since it yields an additional restriction 
of the same form as does m; we note that direct 
calculation yields 

(3.21) 

since any other state It) in this representation can be so that (3.11) is satisfied also by the Ii . 
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The general result from (3.20) for the noncompact 
algebras described in Sec. 1 is that semibounded 
unitary representations can exist only in the following 
cases: 

An: 6-6-' .. -6, Bn:' 0-'" -0, 

Cn:O .- ... -t, D n ::)0-"'-6, 

odd; our result is that of these only the ones of the 
form SO(p, 2) can have unitary representations of the 
above type. The Dn-type algebras (except with Po at 
the left ends) correspond to SO(p, q) with p and q 
both even and p + q ;;:: 6; again, only those of the 
form SO(p, 2) can have unitary representations of the 
above type. 
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4. CONCLUSIONS 
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This recurrence formula, derived in a previous paper [J. Math. Phys. 10, 2263 (1969)1 to evaluate 
(S(kl)S(ks) ..• S(kn»~s extended here, for the case when kl + k. + ... + k n = 0 but no other partial 
sum of the set kl , k 2 , ••• , k n is zero. The average is of O(N) as compared to the 0(1) when kl + 
k. + ... + k n ¢ O. Formulas are then proposed for the situations when more than one partial sum 
of the set vanish. (S(k)S( -k» is considered for a parabolic probability distribution s(r) with a cutoff 
which shows striking similarity with x-ray diffraction pattern of liquids. 

t. INTRODUCTION 

A few definitions and equations from a previous 
paperl are collected for the sake of completeness: 

N 

S(k) = LeikX; 
i~l 

= eikrl + eik(r l+r21 + ... + eik(rl+r'+"'+rNl, (1) 

S(k1)S(k2) ••• S(kn) 

L ei(KlTl+K.r.+· "+KNrN1 (2) 
Kl.K •. ·" .Kn 

[Eqs. (Ll) and (I.2)], whereKI = kl + k2 + .,. + k n 

and the sum is subjected to condition I. 

(S) = lim (S(N» was determined under the con-
lV--+OO 

dition that no partial sum of kl' k2' ... , k n is zero. 
SeN) was expressed as 

It was shown by the method of induction that 

(SUl(N» = PlK1, K~11, ... , K~j-ll 

+ QlK1 , KPl, ... , K~i-ll, N), (5) 
where 

Pi = L, f(K 1) 

KloKl(l). '" .Kl"-li 1 - f(K 1) 

and 

Q, = L [c(;1N(K ) + CU 1N(K(1) 
, Kl ..... Kl li- li 0 1 1 1 

+ ... + C~~dN(K~i-ll)]. (7) 

CW C W ••. CW depend on j(K) j(K(ll) ... 
0' l' ';-1 1 ' l' , 

j(K~i-l1) but do not depend on N. Thus Q; involves 

the Nth powers of j(K) which would tend to zero as 
N --+ 00 because Ij(K) I < 1, for K=Jf O. In Sec. 2, we 
consider the Qi in detail because the derivation of 
the formula for (S(kl)S(k2)'" S(kn» when kl + 
k2 + ... + k n = 0 is found to depend on the result 
for (S(N - 1», (S(N - 2», ... , (S(n - 1)); there
fore, it is not enough to know just the limit of 
(S(N» as N --+ 00. 

2. A RECURRENCE RELATION 

SeN) = L eHKlrl+K.r2+"+KNrNl 
l(l,K2,,··, ]-{n 

as in I, but Kl = kl + k2 + ... + k n = 0 in this 
paper. K2, K3 , ••• , Kx are subjected to the condition 
I. The sum SeN) is here written as 

(8) 

where 

SiN) = S~ll(N) + 'Bj21(N) + ... + 'B~nl(N), 
when j ~ N - n + 1, 

= 'B~ll(N) + 'B~21(N) + ... + 'Bf+l-i(N), 

when N ~ j > N - n + 1. (9) 

'B(V)(N) is the sum of those terms of'B(N) which have v 
distinct Kn and 'B~v)(N) is that subs urn of 'B(v)(N) in 
which the coefficient of'l' '2' ... , 'i is Kl . In view of 
this, Eq. (9) defines 'Bi(N) as that subsum of SeN) in 
which every term has Kl = K2 = ... = Ki . The 
subdivision of 'B(N) in 'Bi(N), j = 1,2, ... ,N, is 
preferred to its subdivision in 'B(v)(N), v = 1, 2, ... , 
n, as in Eq. (4), because 'Bi(N) has a factor 
eiK1 (Tl+r2+' "+rj) which is equal to unity and the 
second factor 

L ei(KI+lr;+l+'" +K NT N) 
1«;+1.···, [(N 

1279 
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can be evaluated by use of the following equation 
[Eqs. (1.18), (1.8), and (1.l0)]: 

(';:;'(N» _ ~ f(K l) + ~ f(Kl) 
.... - t 1 - f(K l) KI.7tllli 1 - f(K l) 

X f(Kio) + ... + ! f(K 1) 

1 - f(K~l» KI.···. Kiln-I'I - f(Kl) 

X f(K~O) f(K~n-l» 

1 - f(K~l» 1 - f(Kin- l» 

+ ! C&lyN(K}) 
KI 

+ ! III[C~21N(K}) + C~l)f(N)(K~l»] 
KloKI 

+ ... + ! [c~n1N(Kl) 
KI.KIIl) •..•• Kiln-II 

+ ... + C~~dN(K~n-I»]. (10) 

Consider the subsums 

SlN) 
= iK1(r1+r.+·· '+ri) ! eitKi+1ri+1+' "+KNrN ), 

Kj+l,"',KN 

j = 1,2, ... ,N - 1, 

SN(N) = eiKI(rl+r2+"'+rN) = 1, (11) 

where Ki+1 :;l: Kl (the sum of the full set) but can be the 
sum of any subset including the empty set. 

Considering again SJ' j :::;; N - I, one can take 
out the single term, in which Ki+1 is the empty set, 
and write 

Sj(N) = 1 + ! ei(K i+lr i+l+" '+KNrN" 
Ki+l.···.KN 

j = 1,2, ... , (N - 1). (12) 

In the remaining sum all terms have a nonvanishing 
phase because KJ+l :;l: Kl and Ki+1 :;l: O. 

Hence, by Eqs. (8) and (12), 

N 

SeN) = ! Sj(N) 
i=l 

N-l 
= N + ! ! ei (Ki+1ri+l+"·+K NrN). (13) 

j=lKi+I.···. KN 

Note that Kj+1 can be equal to the sum of any of 
2n - 2 subsets (= nCl + nC2 + ... + "Cn-l) of k l , 

k2' ... , kn' which is the same for all j from 1 to 
(N - I). The summation over j is now performed and 
the subscripts in the exponents are redefined. The 
labels attached to the variables ri are immaterial 
(until two different r's are replaced by two different 
ones), and the condition I indicates that, in any sum 

! ei (K;+1r ;+I+" . +K Nt" N), 

Ki+'" ··.KN 

the permissible values of KJ+2,' .. ,KN are only 
dependent on K/+l • Therefore, Eq. (13) can be written 

as 
SeN) = N + ! eiCKlr2+' "+KNrN) 

Ka.···.KN 

+ ! eiCKar2+"'+KN_IrN_I) 

Kz,"',KN-l 

+ ... + ! eiK1r •. 

K. 
(14) 

The second, third,"', (N - n + 2)th terms of 
Eq. (14) are averaged by the application of (10). Since 
the set of possible values of K2 is identical with the 
set of values of K~l) in Paper I (because K2 :;l: Kl , 
K2 :;l: 0) and is the sum of a subset of kl' k2' ... , 
kn' K2 can be replaced by K~l). We then have 

(S(N» 

= N + (N - n + 1)( ~ f(Ki
o

) + ... 
K7l) 1 - f(KP» 

f(KiO) f(Kin
-

lJ ) ) 

+ KIIlI."~Klln-l) 1 - f(Kil»'" 1 _f(K~n-l) 
+ (I ! eiCK.r2+"·+Kn-trn-I)\ 

\Ka ... ·.Kn-1 I 
+ ... + I! eiKar.\) 

\K. I 
+ V%JK'l)C~l1V(K~1) 
+ L [C~21V(K~o) + ci2)r(Ki2»] 

KI"I.Kllai 

+ ... + L [c(n-l1v(K(1» 
KI"I ..... Klln-l) 0 1 

+ ... + C~':.2l1v(Kin-o)]}. (15) 

The values K~l) takes in the first sum are different 
from those it takes in the second sum. K~ll in the first 
sum is any proper subsum of kl' k2' ... , kn' whereas 
K~lJ in the second sum is equal to only those proper 
subsums which have more than one k i in them. In 
the last term the sum over v leads to geometric series, 
the common ratios being f(K~IJ), f(K~2», ... , 
f(K~n-l», the modulus of which are all less than unity. 
The sum of each geometric series is, therefore, finite. 
The average of the last (n - 2) terms of Eq. (14) is 
also finite. Since in the limit of large N only the terms 
of order N need be retained, 

(S) = (S(k l )S(k2 ) ••• S(kn» 

=Nl+L + ... ( 
f(K(1) 

KIll) 1 - f(KP» 

f(KP» f(K~n-l») 
+ KlI11."~Klln-1I1 - f(Kio)"'1 - f(K~n-O) . 

(16) 
This is of O(N). We showed in I that (S) is of 0(1) if 
kl + k2 + ... + k n :;l: O. Thus, there is a change of 
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Diagram I. 

~-----_\:~:?~I--_I--~ 
ki+ ki,+1 +···+kn=O 

Diagram 2. 

order from 1 to N as kl + k2 + ... + k n takes a 
value of zero instead of one different from zero. 

The b-singularity of the operators (in the plane-wave 
representation) (Ho - z/)-lU(Ho - zl)-lU'" U(Ho
Z/)-l arises from this change of order. The diagonal 
elements correspond to kl + k2 + ... + k n = 0 and 
the nondiagonal elements to 

kl + k2 + ... + k n ¥= O. 

On regrouping the terms of Eq. (16) in the same 
was as the terms of Eq. (1.20) were regrouped to give 
the recurrence formula of Eq. (1.21), we obtain 

(S(k1)S(k2) ... S(kn» = N (1 + i~l (S(ki» 

+ ... + i,i, .t: l=l(S(ki)S(k j ) ••• S(k1»). (17) 

Since the lower products (S(k;) ... S(k1» are such 
that k i + ... + kl ¥= 0 and there is no subsum of 
ki' ... , kl which is zero, the conditions of (1.21) are 
satisfied and can be evaluated by its application. 

3. CASE OF SEVERAL VANISHING 
PARTIAL SUMS 

We now generalize the recurrence formula of Eq. 
(17) when more than one partial sum vanishes. In 
order to distinguish between two possibilities that 
may arise, we proceed as follows: Let us consider a 
segment of the real axis and allot unit lengths to each 
of kl , k2' ... , k n: 

With every partial sum of kl' k2' ... , k n we shall 
associate a union of intervals. One possibility is that 
the unions for vanishing partial sums have a null 

intersection and the other is that they have a non
null intersection, as Diagrams 1 and 2 illustrate. 

The main difference between Eqs. (1.21) and (17) is 
the replacement of the factorf(K1)/[1 - f(K1)] by N. 
We conjecture that when a partial sum vanishes, a 
factor N is introduced in place of f(K)/[1 - f(K)] , 
where K stands for that partial sum. This arises from 
the fact that in the geometric series 

r r N+1 r 
r + r2 + ... + r IV = - ,...., --

l-r l-r 

when /r/ < 1 and is equal to N if r = 1. Suppose we 
write the expression for (S(k1)'" S(kn» when 
kl' k2' ... ,kn satisfy the conditions of Diagram 1, 
ignoring the fact that the expression is derived under 
the assumption that no other partial sum vanishes. 
Among the terms within the bracket of the rhs of Eq. 
(17) will occur a term which contains j S's. 

(S(k1)S(k2) ... S(k;» 
has a factor 

f(k1 + k2 + ... + k;)/[1 - f(k1 + k2 + ... + k;)] 

which because of kl + ... + k; = 0 should be 
replaced by N. Further, these are terms involving the 
product of this with 

f(k 1 + k2 + ... + ki)/[l - f(k1 + k2 + ... + k;)] 

which on account of kl + k2 + ... + k i = 0 intro
duces another N, giving an average of O(N3). There 
are two other sums of O(N3) arising from the expres
sions having n - i, i + n - j S's. The rest of the 
terms are of smaller order and can be neglected. We 
now state without giving a proof that, ifthejvanishing 
partial sums belong to unions of intervals which have 
a null intersection, the average is O(Ni). 
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To arrive at a result when the vanishing partial 
sums belong to unions which have a nonnull inter
section, note that the factors 

f(k1 + k2 + ... + ki +1) 

and 
1 - f(k 1 + k2 + ... + ki+1) 

f(ki - 1 + ki + ki+1 + ... + k j ) 

1 - f(k i - 1 + k i + ki+1 + ... + k i ) 

never occur as a product in (S(kl)S(k2)'" S(kn» 
because the factors that multiply are always such that 
the set of k's in the partial sum of one contains or is 
contained in the set of k's occurring in the partial sum 
of the other. Therefore, kl' k2' ... , k n of Diagram 2 
will give terms of O(N2) and not of O(N3). This 
should hold generally. 

The formulas we have established can handle fully 
the problem of averaging of the perturbation terms, 
i.e., determining the average energy spectrum. When 
these ideas are applied to discuss the perturbation 
series elsewhere, we shall see that the case of null 
intersection is of greater interest than the case of 
nonnull intersection. 

4. THE AVERAGE OF TWOFOLD 
PRODUCTS 

The behavior of twofold products (S(k1)S(k2» 
when kl + k2 = ° for a parabolic probability distri
bution s(r) with a cutoff at a reasonable distance is 
studied. According to Eq. (17) , 

(S(k)S( -k» = N( 1 + i~ (S(ki») 

Thus, 

If 

then 

_ N(l f(k) + f( -k) ) 
- + 1 - f(k) 1 - f( -k) , 

f(-k)=f*(k) from (T.9). (18) 

(S(k)S( -k» = N[l + 2Re f(k) J. 
1 - f(k) 

s(r) = - ~ [(r - ro)2 - d2], 
4d 

when -d ~ r - ro ~ d, 
= 0, otherwise, (19) 

(20) 

_ (kd)2 - 9j~(kd) 

- (kd)2 - 6(kd)it(kd) cos kro + 9ji(kd) . 

8.0 

7.0 

6.0 

~ 
~ 5.0 

oX 
-...!,... 
II) 

,........ 4.0 
l...0 

oX 
......", 

~ 
_1~3.0 

2.0 

1.0 

o 71' 27r 37r 47T 5Tr 61f 71r 
kto 

FIG. I. 

As kro -+ 00, this function tends to I; as kro -+ 0, 
it tends to tCdJro)2. The behavior of this function for 
ro = 4d is shown in Fig. 1. This is finite for all kro. 
This figure shows great similarity with the x-ray 
diffraction pattern of liquids, the characteristic of 
which is a strong maximum at kro = 27T with one 
or two subsidiary maxima. 

A study of the averages of higher products and the 
connection of this work with the evaluation of 
perturbation series for energy of one-electron levels 
will be published elsewhere. 
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This paper is an extension of a previous one [J. Math. Phys. 11, 762 (1970)], and describes a tech
nique for finding the moment equations of a nonlinear stochastic system containing random 
parameters with small and large correlation time. The nonlinear term can then be linearized by various 
methods. Finally, the moment inequalities are preserved using the technique described by Bellman and 
Richardson. 

I. INTRODUCTION 

In a recent paper, Sanchol described a technique for 
finding the moment equations of a nonlinear stochastic 
system of the form 

x(t) + od(t) + tp(x(t» = J(t), (1) 

where IX is a constant, tp(x(t» is an arbitrary "smooth" 
function of x(t), and J is a random forcing function 
which is not Gaussian white noise. Such a system was 
also considered by Morton and Corrsin,2 who gave 
the assumptions needed to derive the Fokker-Planck 
equation for the random forcing function, and the 
experimental confirmation of the equation is shown 
for the moment equation in the steady state. 

The purpose of this paper is to extend the results 
described by Sancho l for finding the moment equations 
of a nonlinear stochastic system containing random 
parameters with small and large correlation time. 
After the moment equations are found, the nonlinear 
terms can then be linearized by various "bootstrap" 
or "self-consistent" methods,3.4 or even by a dishonest 
approach.5•6 Finally the moment properties are 
preserved, e.g., (X2);;:: (X)2 using the technique of 
Bellman and Richardson.7 The point, however, is that 
no matter how crude an approximation we take to 
linearize the nonlinear term in the moment equations, 
the technique of Bellman and Richardson7 ensures the 
moment-preserving properties. 

II. STATISTICAL ANALYSIS 

A. Some Statistical Analysis 

Let us consider now a simple nonlinear system of 
the form 

x(t) + box 2(t) + bIx(t) + n(t)x(t) = 0, (2) 

where bo and bi are known constants and net) a random 
noise term that is Gaussian with small correlation 
time and zero mean. We wish to derive (Llx I x) and 
«LlX)21 x), where Ll is a finite forward-increment 

operator over the time increment Llt and ( ... I x) is 
the conditional expectation given x. 

We assume that net) has the same statistical prop
erties for the random forcing function J(t) of the 
system (1) described by Morton and Corrsin. 2 The 
results are summarized as follows: 

(I) net) is a stationary Gaussian random variable 
with zero average value and noninfinite integral scale; 

(2) the statistical properties of net) are independent 
of the system response; 

(3) the largest statistically characteristic time of 
net), T max' say, must be so much smaller than the 
smallest characteristic time of x(t), 0"" say, that there 
can exist a time () which is very much larger than the 
former and very much smaller than the latter, i.e., 

0", » () » Tmax' 

In finding (Llx I x) by conventional means, we may 
have some form of stochastic integral, which may lead 
us to certain difficulty. The stochastic integral as 
defined by Ito (see Ref. 8) is defined by the limit 

f!(S) dz(s) = lim :~: !(tk ) [z(tk+1) - z(tk )], (3) 

where z is the random term, a = to < tl < t2 < 
t3 < ... < tn- I < tn = b, and 'T = max (tHI - ti)' 
Such a definition is quite consistent mathematically, 
for if z(t) were a well-behaved function it would give 
the usual notion of an integral. 

However, Doob8 has shown that formal integrals 
differ quite often from stochastic integrals. For ex
ample, we have 

f[Z(t) - z(a)] dz(t) = Uz(b) - z(a)]2 - D(b - a), 

(4) 
where (dz)2 = 2D dt. Hence, one can show that 

f F'(z) dz ¥= F(z). (5) 
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In Eq. (2) the x(t) term is often a mathematical 
approximation for a Gaussian process with a short 
correlation time. Hence, x(t) is, therefore, not so 
obscure as to require a different form of integration. 
The engineer and physicist (see Ref. 9) would find it 
far more convenient to use a formal rather than a 
stochastic integral in the interpretation of Eq. (2). 

It would be possible, on the other hand, to define 
an integraPO in a more symmetric way than was done 
in (3). This gives a "symmetric" stochastic integral as 
the limit 

f!(S) dz(s) 
",-I 

= lim L Hf(tk+l) + !(tk)][Z(tk+l) - z(tk)]. (6) 
1->0 k=O 

Here tk and T are as in Eq. (3). Stratonovich's defini
tion is also used by Wong and Zakai,ll who also 
show that such a definition leads to an integral that is 
symmetric in time and identical to the formal integral. 
Therefore, differentials would retain their usual form 

dF(z) = F'(z), (7) 

and integration would not yield the odd results. The 
mathematican, therefore, uses the stochastic integral 
when net) is strictly white noise, but physicists use a 
formal integral since net) is an approximation for a 
Gaussian process with a very small correlation time. 
We retain our identity of a formal integration by 
integrating Eq. (2) to obtain 

and its statistical properties are independent of system 
x(t). It should be pointed out that if we had used Ito's 
definition of the stochastic integral, we would have 
obtained, for (11), 

(~x I x) = -box2~t - blx~t + O(~t)2, (13) 

and Eq. (12) would have been the same since net) has 
zero mean. 

Let us now put 

(14) 

and introduce the autocorrelation function 

R",(T) == (n(t)n(t + T»/(n2). (15) 

Equation (14) can be written as 

(16) 

provided that n(t) satisfies the conditions given earlier. 
Let us now note that, as ~t becomes smaller, then 

(17) 
and let us put 

D == A(O)O-l r-J lim [A(~t)/~t]. 
M->oo 

Equations (11) and (12) can now be written 

(~x I x) = -box2~t - blx~t + tDx~t + O(~t)2 
(18) 

~x = x(t + ~t) - x(t) (8) and 

= X(t>[ exp ( - box(t)~t - bl~t 

- fHtn(t)dt) -lJ (9) 

(10) 

Therefore, 

(~x I x) = -box2~t - blX~t 

and 

+ tx (fHtn(t) dty + O(~t)2, (11) 

«~x)21 x) = x2[fHtn(t) dfT + O(~t)2, 
since net) has zero mean, i.e., 

/ rt+~t \ t+ M 

\Jt net) dt/ = Jt (n) dt = 0, 

(12) 

B. Further Statistical Analysis 

We consider again the system given by Eq. (2), but 
this time net) satisfies the first two conditions of Mor
ton and Corrsin2 as given in Sec. ILA but does not 
satisfy the third, i.e., it has a large correlation time. 
The random noise term net) is considered to be con
tinuous, Gaussian, and Markovian; it is therefore 
governed by a stochastic differential equation of the 
form 

dn(t) + an(t) dt = dw(t), (20) 

where a is a known constant and wet) is a Wiener 
process with the following incremental properties: 

(dw(!» = 0, 

(dw(t)dw(t» = 2C dt. (21) 

We now regard net) as a state variable in Eq. (2). 
However, the dimension of (2) is increased by one, 
with a new type of nonlinearity, namely n(t)x(t). In 
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any case, one type of nonlinearity is as bad as another, 
so we have little to lose if net) is taken as a new state 
variable. However, if Eq. (2) were linear, then it 
would have now become nonlinear by the introduction 
of net) as a new state variable. We, therefore, have 

(~x I x, n) = -box2~t - blX~t - nx~t + O(~t)2, 
(22) 

«~x)21 x, n) = (b~X4 + b~X2 + n2x2)(~t)2 + O(~t)2, 
(23) 

(~n I x, n) = -an~t + O(~t)2, 
and 

(24) 

«~n)21 x, n) = 2C~t + a2n2(~t)2 + O(~t)2. (25) 

Equations (22)-(25) and also (18) and (19) are needed 
in using the Fokker-Planck equation for the proba
bility density function. It also is used in the next 
section to find the differential equations governing 
the moments. It should be pointed out that the same 
results are obtained for (22)-(25); no matter what 
type of definition, Itos or Stratonovich,lo for stochas
tic integral is used. 

It is noted that systems described by differential 
equations involving o-function-correlated random pa
rameters have been discussed by Leibowitz.l2 

III. MOMENT EQUATIONS 

A. Moment Equations of Stochastic System 

In order to find the moment equations of (2), where 
net) is a random noise term with a small correlation 
time, we follow the same procedure given by Sanchol 

and also by Cumming. l3 We consider now B(x; t), 
an arbitrary function of x(t), whose partial derivatives 
Bx and Bxx are continuous and bounded on an interval 
of xCt). We derive a differential equation for the ex
pected value (B) of B. Using Taylor's series, we have 

~B = Bx~x + tBx.,(~X)2 + O(~X)2. (26) 

Taking the conditional expectation of (26), given x, 
and using (18) and (19), we have 

(~B I x) = -B.,(box2 + blx - tDx)~t 

+ tBxxDx2~t + O(~t)2. (27) 

Now taking the expected value of (27), we have as 
«I:1B I x» = (I:1B) , 

(I:1B) = -(Bx(box2 + blx - tDx»l:1t 

+ tD(Bxxx2)l:1t + O(~t)2. (28) 

Dividing through by I:1t and taking limit as I:1t __ 0 and 
interchanging (-) and d operator on the left-hand 

side, we obtain the ordinary differential 

~m 2 2 - = -(B.,(box + blx - tDx» + tD(Bxxx). (29) 
dt 

The moment equations of the system are found by 
substituting B = x, X2, x3 , etc., and we have 

d(x) 2 --:it = -bo(x ) - bl(x) + tD(x), (30) 

d(x2
) -- = -2bo(x

3
) - 2bl(X

2
) + D(x2

) + D(x\ (31) 
dt 

d(x3
) -- = -3bo(x

4
) - 3bl(X

3
) + fD(x3

) + 3D(x3
), (32) 

dt 

and so on. If we continue in this manner, an infinite 
system of differential equations is obtained. 

B. Further Moment Equations 

We consider again the system (2), with net) as a 
random noise term with large correlation time. As 
in Sec. [LB we regard net) as a new state variable 
governed by Eq. (20). Consider again B(x, n; t) an 
arbitrary function of x(t) and net) whose first and 
second partial derivatives are bounded. We have used 
Taylor's series 

I:1B = Bxl:1x + Bnl:1n + tB",.,(l:1x)2 

+ tBnn(~n)2 + O(~x, ~n). (33) 

Following the same procedure in Sec. IlI.A and using 
Eqs. (22), (23), (24), and (25), we arrive at the ordinary 
differential equation 

d(B) 2 
-- = -bo(BxX ) - bl(Bxx) - (Bxnx) 

dt 

- a(Bnn) + C(Bnn). (34) 

The moment equations are obtained by substituting 
the appropriate value for B. Therefore, we have 

d(x) 2 
- = -bo(x ) - bl(x) - (nx), 
dt 

d(x2
) 3 2 2 dt = -2bo(x ) - 2bl(x ) - 2(nx ), 

(35) 

(36) 

d(nx) 2 2 dt = -bo(nx ) - bl(nx) - (n x) - a(nx), (37) 

d(nx2) 3 2 2 2 • ----:it = -2bo(nx ) - 2bl(nx ) - 2(n x ) - a(nx"), 

(38) 
d(n2x) 2 2 " 2 --:it = -bo(n X) - bo<n"x) - 2a(n x) + 2C(x). 

(39) 
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Continuing in this manner, we again obtain an 
infinite system of differential equations. 

C. Moment Equations of Higher-Order Systems 

A differential equation governing the moment 
equations is found similarly for an nth-order stochastic 
differential equation whose coefficients contain ran
dom parameters with small and large correlation 
time. If Xi is a state variable (or X is an n-dimensional 
state vector) of an nth-order system, then we again 
have, using Taylor's series, 

n n 

IlB = I BXillxi + t I BXiXjllx/),Xj + O(llxllxT
). 

i i ,j 

(40) 

Taking the conditional expectation of (40), given x, 
we have 

(IlB I x) = i BXj(llxi I x) 
i 

i ,i 

We then find (IlXi I x) and (IlXillxi I x) by the methods 
described in Secs. ILA and II.B. The differential 
equation governing the moment equations can then be 
found by taking the expected value of (41), dividing by 
Ill, and taking limit as Ilt -+ 0. 

It should be pointed out that in systems containing 
random parameters with large correlation time a new 
state variable representing random term always has 
to be introduced into system. 

IV. LINEARIZATION 

So far, we have obtained an infinite system of 
differential equations governing the moment equations. 
In order to obtain either an analytic or computational 
solution, we employ a closure method which replaces 
the infinite system by a finite system. 

The simplest one is to use the Poincare-Lyapunov 
stability theorem.14 Consider a vector-matrix differ
ential equation 

dz - = Az + g(z), z(o) = c, (42) 
dt 

where A is a constant matrix whose characteristic 
roots have negative real parts and g(z) is a vector all 
of whose components are power series in the com
ponent of z lacking constant and first-degree terms. 
The classical stability theorem of Poincare and Lya
punov then asserts that, if llell is sufficiently small, the 
solution of (42) is bounded and tends to zero as 
t -+ 00. Bellman and Richardson3 have shown that an 

infinite system of differential equations can be replaced 
by a finite one, where Zi is now the order of moment of 
system, by ignoring the higher-degree terms (or 
nonlinear terms) provided they satisfy the conditions 
of the Poincare-Lyapunov stability theorem. More
over, the larger the order of the system (or moments), 
the better the approximation. For example, the 
moment equations described by Eqs. (30)-(32) can be 
approximated to a finite one to third order by omitting 
the term (x4 ) in (32), providing the conditions for the 
Poincare-Lyapunov theorem are satisfied. 

If the conditions for the Poincare-Lyapunov theo
rem are not satisfied, then a "dishonest" approach can 
be used5•6 to linearize the nonlinear term. For ex
ample, in Eqs. (35)-(37) for moments up to second 
order we put (nx2) c:::. (n)(x2) = 0, since n has zero 
mean, and (n2x) c:::. (n2)(x); and (n2) is a constant if n 

is stationary. If we wish to approximate up to third
order moments, we use Eqs. (38) and (39), together 
with (35)-(37), and put (nx3 ) c:::. (n)(x3 ) = 0, 

(n2x2) c:::. (n2)(x2), 

and (n 3x) c:::. (n 3 )(x) = 0, since we can show that the 
moments of n raised to odd powers are zero in 
stationary case by using (34). 

Another form of linearization3•ls is to replace the 
nonlinear term by a constant times a linear term and 
use a mean-square norm as a measure of approxima
tion to find the constant term. This method of appro x
imation is probably more cumbersome than the 
others previously described. 

V. PRESERVATION OF MOMENT PROPERTIES 

In approximating moment equations, we have not 
shown that moment properties are preserved. For 
example, we must have (x2 ) ~ (x2). The method of 
Bellman and Richardson4 ensures these moment prop
erties, no matter what type of approximation is used 
to form a finite closure. The technique to be described 
is also given by Sancho.1 It consists of using the linear 
matrix differential equation 

Y' = BY + YBT
, YeO) = K, (43) 

whose solution is given by 

yet) = eBtKeBTt. (44) 

Now, yet) is positive definite if K is positive definite 
for t > O. If moments up to second order are required, 
we replace Y' by the linearized solution of moment 
equations (up to second order in the example shown 
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below) in a symmetric form, i.e., Y' is replaced by 

(45) 

where (Xo) = 1 and the linearized form of (x)' and 
(x2)' has been substituted into (45). We let 

(46) 

where bl , b2 , ba, and b4 are real parameters to be 
determined in such a manner that 

(47) 

is a minimum. We always obtain bi = b2 = 0 if (Xo) = 
1 and ba = 0 if (x) -+ 0 as t -+ 00. Hence we set 

II Y112 = roo Tr (yy'l') dt = roo (~Y;i) dt. (48) Jo Jo '.3 

The resulting equations for the first and second 
moments after (47) is solved for b4 are 

where ki = (x(O» and k2 = (X2(0». Since (x)2/(x2) = 

k~/k2' the moment inequality is clearly preserved. 
F or higher-order moments we choose 

(
0 0 0) 

B = 0 bs b6 , 

o bs b9 

(50) 

since (Xo) is always taken to be unity. The nine param
eters are reduced to four and we proceed as above. 

CONCLUSION 

We have studied the solution of moment equations 
of a nonlinear stochastic system containing random 
parameters with small and large correlation time. For 
systems containing random parameters with large 
correlation time, we assume that the random term n(t) 
as a new state variable. It is, therefore, Gaussian 
and Markovian and governed by a stochastic differ
ential equation (20). In either case, an infinite system 
of moment equations is always obtained, and we have 
described three different ways by which these moment 
equations can be closed to a finite one. The method of 
Bellman and Richardson? is then used to preserve 
certain moment inequalities; for example, we have 
(x2) ~ (X)2, a consequence of the Schwarz inequality. 
The point, however, is that, no matter what type of 
approximation we use to close infinite system into 
finite one, the moment properties are always preserved. 
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The quasiparticle technique and formalism of an earlier paper is extended to describe general mixed 
configurations. The main features of the equivalent electron case are preserved, viz., a loss of spin 
quantum number and particle number, compensated by a rich classificatory scheme, and general operator
matrix-element evaluation without the use of coefficients of fractional parentage. 

I. INTRODUCTION 

Recently, there has been some interest among 
atomic spectroscopists in exploring the possibilities 
of applying the quasiparticle technique, well known 
in nuclear and superconducting physics, to problems 
in 'atomic spectroscopyl-3 following an initial paper 
by.Armstrong and Judd,2 

Shudeman4 has shown that the states of an atomic 
shell may be classified by considering the symmetrical 
product of a spin-up (all m. = +i) and a spin-down 
(all ms = -t) space. Group-theoretically, in the case 
of the I shell, this amounts to factorizing the group 
U2(1+2, by which all 24!+2 states of the I shell transform, 
into the chain of product groups 

t J. t t J. J. 
Rst+5 ........ R4!+3 X R4!+3 ........ (R2 X R2!+1) X (R2 X R21+1) 

t t J. J. ........ (R2 X R3) X (R2 X R3 ) ........ R2 X R3 , (1) 

where the arrow denotes whether the spin is "up" or 
"down" and the representations of RJ, R~, and R2 
label the states according to the quantum numbers 
M~, M1, and Ms = MJ + MJ. The quasiparticle 
method has the distinguishing feature of an alternative 
factorization of each of the groups R4!+3 into the 
product of two R 2Z+1 groups. This factorization is 
achieved first by defining operators 

1 (!) 2-i [ + (1)z-q ] IIq = ah + - ai-q , 

(!) -![ + ( )z-q ] ftq = 2 afq - -1 ai-q, 

'/J~Zl = T![a:!:iq + (-1)!-qa_!-q], 

~~Z) = T![a:!:!q - (-l)z-qa_!-q], 

(2) 

where the subscripts to the annihilation and creation 
operators a and a+ specify m. and mz for an electron, 
and then by showing that coupled tensor products of 
the form !(A(Z)A,(Z)i;f) for odd K form the generators 
of an R2!+l group. The relevant group chain for an 
atomic I shell was shown in our recent paperl (here-

after referred to as I) to be 

........ (R~!+1 X R~!+l)t X (R~!+l x R~I+l)J. 

........ (R~ x R~)J. ........ (R~ x RnJ. ........ R;l't x RivJ. 

(3) 

In I we define fermion quasiparticle creation and 
annihilation operators, directly related to the operators 
of Eq. (2), and suitable quasiparticle vacuum states, 
and are able to show that an antisymmetric quasi
particle state transforms according to the basic spin 
representation ~ of R4!+3 and as one of the conjugate 
spin representations 

or 

of R4!+2' Although the particle number is lost in this 
system, we were able to show that ~l is associated with 
an even number of particles (real particles or quasi
particles) while ~2 is associated with an odd number 
of particles. The states of the I shell transform accord
ing to the {I} vector representation5 of U241+. which 
decomposes under the group chain of Eq. (3) as (the 
R4 Z+ 3 groups are now suppressed) 

{1} ........ ~ ........ (~l + ~2)t X (~l + ~2)J. 
........ (~;. x 6.1') t x (6.g x 6..)J. 

........ (L;. x LI')t x (Lg x Lv)J. 

........ Lt x Ltv"""" L---+ ML · (4) 

We note that the spin quantum number S has been 
lost. 

1288 
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The quasiparticle scheme has the weakness of 
yielding eigenfunctions associated with neither a 
well-defined number of particles nor spin quantum 
numbers Sand Ms. We have in compensation, first, 
a remarkably rich classification scheme, since the 
spin representation of R2Z+l decomposes without 
duplication upon restriction of Ra for alII < 9, and, 
second, a method for calculating matrix elements 
without recourse to the usual fractional-parentage 
methods, since any state can be regarded as the 
vector coupling of four Ra - R2 states and, con
sequently, can be handled by the usual vector coupling 
methods.6 •7 Details of these methods have been 
discussed in I for the case of an atomic shell of 
equivalent 1 orbitals. 

To date, the application of quasiparticle methods 
to mixed configurations has been treated by only one 
author, Feneuille,8 who considered the case of 
(s + d)'v. In this paper we extend the methods and 
formalism of I to general mixed configurations. The 
relevant group structure becomes 

t ~ 
U 22P 

-- R4P+1 -- R2P X R2P 

-- (R; x R~)t x (R! x R;)~ 

-- (R~ x R~)t x (R~ x R~)~ __ R~/lt x Rlvt 

(5) 

where p = Li (2/i + 1) and the summation is taken 
over all orbitals characterizing the mixed configura
tions under study. Suitable linear combinations of 
fermion quasiparticle states are found forming bases 

[t(A!tB!a)~l), t( Cia DI')~2)] 

for the spin representations Al or A2 of R 2P and A or 
one of Al or A2 of Rp , as p is odd or even. This linear 
combination allows us to find the decomposition of 
the vector representation {I} of U22P under the group 
structure of Eq. (5) and also to separate, in a natural 
manner, certain multiplicities that arise at the Ra level 
if three or more orbitals are under consideration. 
Finally, the W(Kk)(ll') tensor operators are expressed 
in the quasiparticle scheme and their matrix elements, 
which are shown to be generally both real and 
imaginary, are evaluated, as in I, without the neces
sity of fractional-parentage coefficients. 

II. THE GROUP STRUCTURE 

In this section we establish the group structure 
specified in Eq. (5). This is achieved by forming 
quasiparticle operators A~Zl, etc., as in Eq. (2), where 
now the 1 quantum number can range over all the 
orbitals of the mixed configuration under considera
tion. The first two groups of the chain (U22P -- R4P+I ) 

exist as a result of a self-evident extension of the 
results of Judd5 and Feneuille9 on the ordinary 
creation and annihilation operators which may 
easilY,be retrieved from Eq. (2); e.g., 

(1)+ 2-i( 1 (z) (I) f ah = ILq + ftq), etc. [cf. Eq. (8) 0 I]. 

To prove the existence of the lower groups, we must 
consider coupled products of the form HAljBli)~), 
where A and B are one of A, ft, ~,and v. We note that, 
if A == B and Ii == I j , this coupled product exists only 
for odd k and k = O. These coupled products satisfy 
the commutation relations (alII's assumed integral) 

= taBoc5(12, la)c5(B, C) L (_1)!t+l4+Kl+K2+Ks-Q3[KI , K2, K3]i{KII 
Ks.Qs 4 

_ la 15(1 I )c5(A D) '" (_I)z,+z3-QS[K K K ]!{KI K2 Ka} (KI K2 K3) 1(CZ3DZ,)(K3) 
2 AD 1, 4 ,~ 1, 2, 3 I I I Q Q 2 Q3 

KS.Q3 3 2 1 1 2 -Q3 

where aXY is +1, if x= y=;. or~, or -1, if X= Y= ft or v. 
We now consider the operators like 
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where a = 2, if A = A or ~, or a = + I, if A = ft or'll, and similarly between band B; thus, we find the 
following commutation relation [we note that (-I )-!(aH ) can be imaginary]: 

[( _1)-!(aH){t(A /1Bh )(8;.1) - (_1)IA-1B+Kl!(BI2All)~1)}, (_ t)-!(C+d){!(C!8DI')h~2) _ (_1)IO-I.o+K~(Dl'CI8)~')}] 

= L (_1)Ks-Qs+h+l4[K1, K 2, Ka]-!(Kl K2 Ka) 
~~ ~ ~ -~ 

x (b(121a)b(BC)(_1)Kl+K2{:1 :2 ~2a}(-1)-!(a+d){t(A!lD!4)~~8) - (-1)h-!'+K.t(D!'Ah)~3'} 

+ b(l114)b(AD){~31 ~22 ~la}(-1)-!(b+c){t(B!2CI.)~~3) - (_1)11-13+K3t(C!IBIo)~.)} 

_ b(12/4)b(BD)(-1)Kl{~1 :2 ~a}(_l)-!(a+c)a(AhCI')~~I) _ (_1)h-/a+K3t(C/3A/1)~3'} 

- b(ll/a)b(AC)(-1)~2){:1 ~2 :a}(_1)-!(b+d'{t(BI'DI')~~3) - (_1)12-h+K3t(D!'Bh)~.)}). (7) 

This is, however, precisely the commutation relation 
of the 

V-(k)(1 1) - V(k'(1 I) - (_1)h-12+kV(k'(1 I) q 1, 2 - q 1, 2 q 2.' 1 

operators of Butler and Wybourne. lO Moreover, they 
have shown that the set of operators j7~k)(l;, Ii)' with 
odd allowed k and j7~k)(/i' I;) for alII; and I;, i < j, of 
a given configuration with all allowed k, form the 
infinitesimal operators for the group Rp. Hence, the 
set of operators 

(-It[HA!iA!;)~K' - (_l)I/-I;+KHAIIAI;)~K)], 

Ii :::;;; I;, 

form the infinitesimal operators for the group R: 
(taking K odd if Ii = I;), while this set, together with 

(-l)b[t(B!iB!')~' _ (_lyi-li+K!(B!IB!i)~K'], 

Ii :::;;; I;, 

where B is the other of the pair (A, ft) or (~, 'II), and 

(_l)-!(aH'[t(A!iB!I)~K' - (-l)!i-!'+Kt(B!IA!i)~'] 

form the infinitesimal operators of RJp if the pair is 
(A, ft) or R~p if the pair is (~, 'II). We note that this 
construction of Rp differs from Feneuille's treatment,S 
for he constructs this group in the two orbital case 
essentially from the coupled products (A!lA!l)~), 
(ftI2ftI2)<f>. and (Allftl.)~). The Rs part of the group 
chain follows immediately by limiting the tensor 
ranks to one and zero. 

III. THE WEYL SELF-COMMUTING 
OPERATORS 

At this stage we define quasiparticle creation and 
annihilation operators of the same form as in I, viz., 

(1)+ --!( + (l),-a ) P±lq = 2 a±-!a + - a±l-a 
== A~l) or ~~I), 

(pW+)+ pW 2--!( (l)!-q ) ±-!a = ±-!q = a±-!a + - a±!_q 
== ( -1 )!-qA~!l or (_l)!-a~~z), 

(1)+ 2--!( (l)!-a + ) Y ±-!a = a±-!a - - a±-!-a 
== -(-l)!-aft~~ or -(-l)!-q'll~~, 

( (1)+)+ (l) 2-i ( + (l)l-q ) Y ±-!a = Y ±-!a = a±-!a - - a±-!-a 
== ft~z) or 'II~!l, 

all with q > O. In analogy with I, the quasiparticle 
vacuum becomes 

N IT IT p~!l II II Y~z) 10) = 10), 
I a>O I q>O 

where N is a normalization constant suitably chosen 
such that (0 I 0) = I. This definition of the vacuum 
satisfies P~!) 10) for all I and q, as required. 

In order to find the representation by which a 
quasiparticle state transforms, we must first form the 
Weyl commuting operators ,11 hereafter referred to 
as the H operators, for the groups R2p and Rp. Let us 
designate a configuration by (/1 + 12 + ... + 12n)N 
for an even number of orbitals, or by (/1 + 12 + ... + 
12n+1)N for an odd number of orbitals, where I; and I; 
may be identical if they are associated with different 
principal quantum numbers. Butler and Wybourne10 

have shown, in terms of this notion, that, if W;~!; is 
defined as 

W!~!; = L (_l)!·-a[k]l( Ii k I;) 
k,a -a q b 

X [V~k'(/i' Ii) - ( _l)li-II+kV~k'(l;, I;)], (8) 

then the operators required for Rp are of the forms 
W;~i for all Ii' characterizing the configuration with 
all permissible a, and 

( _1)1(12i-1+lti+1'W ~~i-d2i, 

where i = I, ... , n. 



                                                                                                                                    

QUASIPARTICLE FORMALISM AND ATOMIC SHELL THEORY. II 1291 

In the quasiparticle scheme we find for R~ 

W!~ = l( _1)I-a[),~!l, A!.!~] = Up~!l+, p~!l] 
and 

(-1) lu:.-I-IV+1)W~~I. = H -1) i{l'+31V+1)[A~lz) , il~")] 

= l( - d{l..-lV+1) [p~lz), p~I.)], 

while for R~ 

W~~ = -H-l)'-a[!,~I),!,!.!~] = -Uy~I)+, y~l)] 
and 

( l)i{l'+I.+1)W'z" __ .1.( 1)!{I.+31.+1)[ (lz) 0.)] 
- 00- 2- 1'0,1'0 

__ 1 (_I)!o.,-'v+1) [y{lz) (I.)] 
- "2 0 ,Yo , 

where x = 2i - 1 and y = 2i in each case. 
The H operators for the group Rlp are identical 

to those for R~ and R~ except for the case of an odd 
number of orbitals when we must add the operator 

HAil = UA~!l, !,~!l] = H _1)I[P~!l, y~I)], 

where / == /2n+1' i.e., / is the single arbitrarily chosen 
unpaired orbital of the configuration. It now remains 
to find the eigenfunctions of the H operators. 

IV. REPRESENTATIONS 

A general eigenfunction for the H operators of R~ 
takes the form 

N{' .. } IT {[( _1)i(1-lz)p~'z) ±", (-I)!I.p~'.)] 
;=1 

n 
= { ... } lIMA 

±"'.±II' 
;=1 

(9) 

where { ... } denotes an arbitrary product of p quasi
particle creation operators with nonzero subscripts, 
apart from possibly p~2n+l if the number of orbitals 
is odd (see I), i is defined as in Sec. III, i.e., the product 
is being taken over pairs of orbitals, and the subscript 
to the ± signs means that signs with different sub
scripts are independent; as before, N is a suitable 

normalizing constant and 10) is the vacuum for the 
R; group and is 

ex:: IT IT f3~!l 10). 
I «>0 

The operation of W~! on the eigenfunctions of Eq. 
(9) yields eigenvalues of +t or -t, depending on 
whether p~l)+ is or is not present in { ... } (see I), 
while operating with 

( _l)!O.+Iv+1)W:;I. 

gives eigenvalues ±",i. The corresponding eigen
function for R~ is 

N{' .. } IT {[( _1)!(1-Iz)y~") ±", (-l)!I.y~I.)] 
i=1 

±i/ [T! T", (_I)!(1-I'+I')2!y~lz)y~I')J) 10) 
n 

= { ... } II M~",.±I" (10) 
i=1 

where now W~! yields eigenvalues -t or +t de
pending on whether y~!)+ is or is not present in { ... }, 
while 

( _1)!0'+'V+1)W~~" 

gives eigenvalues ±.,( _l)'z+l·t. 
It would appear that the quasiparticle states do 

indeed form a basis for a spin representation. How
ever, if p is odd, the dimension of the basic spin 
representation ~ of Rp is 

with n defined as in Sec. III, while the dimension of 
the conjugate spin representations of Rp for p even is 

:E 2n l/+n_1 2 i • 

It is clear from Eqs. (9) and (10) that the number of 
eigenstates for Rp is 

(for p even) or 

~2nl'+2n 2""/ • , 

(for p odd), i.e., 2n greater than the dimension of the 
corresponding spin representations. This apparent 
discrepancy arises since the weight vector can be 
obtained in any of 2n ways simply by allowing all 
combinations in the choice of sign labeled by y. To 
resolve this problem, we consider the group R 2P ' 

A general eigenfunction for this group is of the 
form 

n n 

N{' .. } II Mf±",.±i/) II Mf±",.±II) 10), 
;=1 i=1 

where { ... } is now a product of f3 and y quasiparticle 
creation operators, with the possible inclusion of 
p~12n+l) and y~12n+l). This is equal to 

n 

N { ... } II Mf±",.±II)Mi±o:.±lI) 10) 
;=0 

to within a phase since any two nonequivalent M's 
anticommute. We now look at a typical term M t ±",.±II) , 
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Mt±",.±II) which, expanded in full, is 

[-t ±"'II (_l)!U-I:.-l-I'){J~!x){J~/.) 

±"'l (_1)!U-I:.-l-I'){J~I'){J~lx) ±"'l ±"'lIt] 
±IIII r![( _1)iU-lx) (J~lx) T "'II (_l)i(2+lv) (J~l.) 

±"'l (_l)il'{J~I.) ±"'l ±"'/ _1)iu-lx) (J~lx)] 

±lIl ri[( _1)iu-lx) (J~/.) ±"'l (_1)!lv{J~I.) 

T "'II (-1) i(2+lv){J~I.) ±"'l ±"'/ -1) i(l-lx){J~lx)] 
± ± [1 T (_l)i(l-lx+lV){J<lx){J<lv) 

III 1111 2 "'II 0 0 

± (_l)!U-I:.-l-IV){JUx){J<lV) ± ± 1] 
"';' 0 0 "';' "'112' 

where, for instance, ±", ±", is plus if x, and x have 
;. II A II 

the same sign and minus if their sign is different. We 
justify replacement of any y~l) by (J~l) by noting that 

y~!l 10) = (N II II (J~!) II II y~!)) y~!l 10) 
I q>O I q>O 

= (N II II (J~!l II II y~!l) 2-i a~!l+ 10) 
I q>O I q>O 

= (N II II (J~!l II II y~!)) (J~!l 10) = (J~!l 10). 
1 q>O I ~>O 

Clearly, the above expression vanishes for certain 
sign choices, e.g., x;. = +I,y;' = +1, XII = +1, and 
Y

II 
= -1. In fact, if we choose X;. = +1 and Y.t = 

+ I, then the only ft sign choices compatible (i.e., 
giving nonvanishing states) are XII = + I, Y II = + 1 
and XII = -I, Y II = -I, which are in turn compatible 
only with the original choice, and Xl = -1, Y;. = -I. 
If we choose to start with a different sign choice, 
our compatible set of sign choices, although different, 
wiII give the same quasiparticle states, to within a 
phase. As a consequence, we see that at the Rp level 
we cannot make random choices in the sign labeled Y.t 
at the risk of throwing up a vanishing state at the R2p 
level. Restricting ourselves then to some compatible 
set of sign choices, we see that we have 

states for R 2p (as p even or odd), which is just the 
sum of the dimensions of ~l and ~2 of R2p , and 

states (p even) or 

{p odd) states at the Rp level, as required. 
Since the group operators, being coupled products 

of quasiparticle operators, connect only states 
differing by two or zero particles, we see by considering 

the action of the H operators. on a typical eigenstate 
that the set of eigenstates in the A space (and, simi
larly, for the ft space) form a basis for the spin 
representation ~;. or one of ~:, ~~ for the group R~ 
according as p is odd or even, i.e., whether there is an 
odd or even number of orbitals. Moreover, they also 
form a basis for either the ~i or ~~ spin representa
tions of RJp, where the parity of the particle number 
associated with ~i is the parity of n defined above and 
vice versa for ~J. For instance, this means that, for 
the one orbital case (n = 0), ~i is associated with an 
even number of particles and ~~ with an odd 
number, in agreement with I. The opposite is the case 
for two orbitals. 

V. BRANCHING RULES 

We now show that the spin representation ~ of 
R4P+1 decomposes as (~l + ~2)t X (~1 + ~2)~ under 
restriction to RJp x R~p and that, upon restriction to 
R~ x R~, ~i and ~J decompose to ~;. X ~II if p is 
odd (number of orbitals odd) or as ~ t -+~;. X m m 
~~ + ~~ X ~~, for p even where m' = 2 or 1 as 
m = 1 or 2. Further, upon restricting Rp to Ra, we 
show that we get a minimum multiplicity of 2n- 1 or 
2n

, depending on whether n is even or odd. These 
duplicated Ra representations can be separated in a 
natural manner. 

The first branching rule is a direct consequence of 
the analysis of Sec. IV, i.e., that the representations 
~l and ~2 (spin up or down) are associated as follows: 
one with all possible states containing an even number 
of particles and one with all possible states containing 
an odd number of particles. Restricting the H opera
tors to those of Rp clearly results in ~i and ~J de
composing to ~;. X ~II for p odd, but for p even a 
closer scrutiny is probably necessary. To this end, 
we consider a set of eigenfunctions 

111 of Rt 
T~';"orb p' 

where the subscript ~':n0r b defines the representation 
by which the 1p's transform, ~l if m = I, and ~2 if 
m = 2. Here tp!!.m" is defined as being that subset of 
1p ~m that has an even number of - t eigenvalues 
under the H operators of R~, i.e., a restricted set of 
the H operators of R~p. Similarly, 1p~mb is that subset 
having an odd number of -! eigenvalues under the 
H operators of R~. However, since the H operators 
of RJp for p even are just the H operators of R~ and 
R; (Sec. III), then the set of H operators of R; must 
give an even (odd) number of -t's if m = 1 em = 2) 
when acting on the set tp~m" and an odd (even) number 
of -t's if m = 1 (m = 2) when acting on the set 
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"Pl!.mb. Thus, "Pl!.ma must transform, by definition, as "Pa,). 
(the subscript to "P now refers to the R~ group) and as 
"Pl!.m/A under R~, i.e., as "P1!./."Pl!.m/J; "Pamb must transform 
as "PI!..'" by definition, and as "Pam,/J' i.e., "Pamb trans
forms as "P1!. ... "Pl!.rn'/J. Hence, the set of functions "Pam' 
being by definition "Pama U 'Ihmb, must transform as 

"Pt., X "Pt.m/J + "Pt..""Pt.m,/A; 

i.e., we have established the branching rule under 
Rt __ R" x R/J as ~t __ ~" x ~/J +~ .. X ~/J .. 

2P ,p P m 1 m 2 m 

It is interesting to note that for p even the RJp spin-
representation label becomes redundant in that this 
branching rule shows that the specification of the R~ 
and < R/J label determines it. This is implicit in 

< p 

Feneuille's work.s 

VI. DUPLICATED Ra REPRESENTATIONS 

Upon finally restricting Rp to Ra, we note that, 
since L oc ~l W(OI)(ll), we are restricting the set of 
transformations in such a manner that only the H's 
which do not mix the l's (i.e., the ;. H~!) remain (cf. I 
and Sec. V) since 

I 

Lo = L L a"H!~ for R~ . 
I a>O 

We now consider that subset of the eigenfunctions 
forming a basis for ~1 (or ~2) for R;, p even, such 
that any wavefunction belonging to the set has +t 
eigenvalues for H~~. On restriction to Ra , the eigen
value of Lo when acting upon any of these eigen
functions will take its maximum value equal to the 
maximum L = L.'I'I in the Rp -- R3 branching rule. 
In fact, 

I 

LM = L ~ ia = t L l(l + 1). 
I a>O I 

However, since we have n H's that mix the l's 
the eigenvalues of which, when acting on the above 
subset of wavefunctions, are unrestricted, we can see 
that this subset contains 2n

- 1 eigenfunctions. Conse
quently, under Rp -- Ra we have ~1 -- 2n

-
1 L.w + .... 

A similar analysis for p odd shows that 

~ -- 2nL ,l1 + .... 
Thus, the multiplicity of the L "~r representation 
of Ra is 2n- 1 , p even, or 2n , p odd, and the multiplicity 
for any smaller allowed L will be an integral multiple 
of 2n- 1 or 2n; e.g., for (s + p + d)N, under R9 -- Ra 
we have [t t t tJ -- 2P + 2D. 

Fortunately, in this case, we have available a 
natural separation of duplicated Ra representations 
amounting essentially to specifying, in addition to the 
Rp spin-representation label, an Rp weight label. A 
state will then be labeled by an R2p and Rp spin-

representation label, an R3 label, and an n-vector r 
specifying the eigenvalues of the state under the H's 
that mix the l's. Thus, for instance, the two D states 
of (s + P + d)N would be labeled as I~!r = ±tD> 
(there being no Rp label needed here since it adds no 
new information). 

VII. OPERATORS AND MATRIX ELEMENTS 

As for equivalent electrons, any interaction can be 
written as sums of products of the tensor operators 

N 
W(Kk)(lAlu) = ~ W~Kk)«(4l}J), 

i=1 
where 

Two-particle interactions will involve terms of the 
form 

= [W(Klkl)W(K'k2)](Kk)~ 
- 15(1 I )(_1)k+K+lA+ILJ+2S[K Kkk ].~ ]J,e 1'2,1'2 

x {k2 k kl}{K2 K Kl}(W(Kk)(lAID»~' 
IA In If) S S S 

Morrison12 has shown that W;~k)(/AIH) can be 
written in terms of coupled products of annihilation 
and creation operators as 

W(Kk)(1 I ) = _ (alA ta-I'lI)' (Kk) 
"Q AU "q , 

where 

We may then express W;~k)(,"l/H) in terms of our 
quasiparticle operators, as was done in T, giving 

W~~k)(lA.1B) 

= -t«s!s! I K7T>{(AI9B)~k) - ({lIAl/lI)~k) 

+ ({l19B)~k) - (A1A~IB)~k) + b(k, O)b(lA' IB)[IA]t} 

+ (s - tsil K7T>{(V1AV1B)~k) _ (~IA~IB)~k) 

+ (~19B)~k) - (V1A~IB)~k) + b(k, 0)15(1.1' IB)[lA]t} 

- (sis - t I K7T>{(A1AAI8)~k) - ({lIA{lIB)~k) 

+ ({lIAA1B)~k) - (J.1A{lIB)~k) + o(k, O)b(IAIB)[IA]~} 

- (s - is - t I /(7T>(V1AAIB)~k) - WA{lIB)~k) 

- (~IAA1B)~k) _ (V1A{lIB)~k) + b(k,O)o«(4. lu)[IA]t}). 

(11 ) 

For fA == /J], this formula splits into two disjoint 
parts for k even and k odd, as in I. 

It is clear that, as in I, any quasiparticle matrix 
element can be evaluated by standard methods of 
tensor operators and angularmomentumrecoupling,6.7 
requiring us to know only the reduced matrix elements 
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of the quasiparticle operators. These can be evaluated 
by expanding a particular component of the operator 
in question, say A.~, and the bra and ket in terms of 
quasiparticle or ordinary-particle creation and anni
hilation operators and then applying the Wigner
Eckart theorem. 

If the general expression for the eigenfunctions of H 
is written in its modified form (Sec. IV), viz., 

H{· .. } IT M/±x±1I' M~x±1IIO), 
i=1 

then it is clear that A~,p r6 2n + 1, A = A, fl, ~,v, 
acts only on that MA Mil product where x or y equals p. 
We write (r A)i as 

( _1)r+1+![1-C-1)a]<Z.+lx)l, 

i.e., ± ~ or ± (_l)l.+lx! if A = fl, v and r is an arbi
trary integer, and similarly for (I'll);, with t replacing 
r (A, B are a pair as defined in Sec. II); then we find 

A:t I (r .. t)i(r n)i) = ( -1 )~(r[1-C-l)P]+P+lp-[1-(-l)a]<Zp-r-t-1)} 

X 2-1 1-(r AMrJj)i), 

p r6 2n + 1, 

if the states are properly normalized. Other quantum 
numbers have been suppressed as unimportant. Since 
the rest of the r vector has remained unchanged, we 
have the selection rule that A~p acts only between 
l~lcP~t) and I~!!l)~t), which in turn implies that 
coupled products of the form HA1A1')lf) can act only 
between l~lcP~t~f) and ILl1C!)~t~~) while products 
of the form HAlBl')gO can act only between 

I ~ tcp ~A~B) and I~ tel) Ll~~1!) 
a be a be· 

As in I we can now write a general expression for 
the reduced matrix element for the particular case of 
maximum L = L.lf by noting under our separation 
of the duplicated L lIf that 

1(~~)(~~rALJI - L.l1), (Ll~rIlLJIL1l1» 
n 

present. In this case we find, as in I, 

(Ll~I)L.l1l1 AI 2n+lIILlm ,) 

= ( _1)l{[1+C-l)a]IOn+l+[1+C-l)m](12n+l+u)) 

[!(2LM - 12n+l)! (2LlIf + 12n+l + l)!)t 
x (13) 

(2LM)! 

We note that these matrix elements can be both 
real and imaginary so that the matrix element of a 
general operator will, in general, be complex. This 
perhaps unsatisfactory state of affairs is a natural 
consequence of the possible imaginary coefficients 
we have to take in order to form eigenfunctions of the 
H operators of the various groups. We consider two 
quasiparticle states IQP) = Ii ai Ii) and IQP), = 
Ik bk Ik), where the Ii) and Ik) are ordinary states and 
the Qi and bk can be both real and imaginary; thus, if 
W is any operator and 

W Ii) = I W;; IJ), 
i 

where Wi; is real, then 

(QPI W IQP) = L b:aiW;;(k I j) = L bja;W;;, 
Hk ij 

which is, in general, complex. It is not hard to see that, 
if W is Hermitian and IQP) = IQP)', then the expec
tation value of W is real. We find that W;~k)(Ii/i) has 
real matrix elements if (_1)i+1 = ( -I )1;+11. 

To conclude this section, we shall evaluate the 
diagonal matrix element of wcig2)(sd) of (s + d)N with 
the state I(LlD(Lli!A)(~r!Il)L = 3, ML = 3). The r 
quantum numbers are not used as they are unnecessary 
for two orbitals. The only part of wcig2)(sd) that we 
are interested in is 2-![(;'0;'2)~2) - (flOfl2)~2)], since the 
rest vanishes by the selection rules above. Since 

(Ll{Llitll ;'0 IILl2~~) = iJ2, 

(LlJ~all ;'2 IILliLli-i) = JI0, 

(LliLl~tlllIlLl2M) = iJ2, 
(LlJMlll fl2 IILlILlN;) = -JI0, 

(14) 

= N II M)..MIl 10), 
i then 

where the ~ and r are determined by the particular 
form of M. This gives us 

( "tc~)"A_(r)AL IIAlxIILlt(tlLlA(r)AL ) Urn' Un' z lU m n t .1.11 

) ']~ t(II+I.) [1(2L.lf - /,,)1 (2LlIf + 1" + 1 . 
= P(-I) (2L.lf)! ' 

P ~ 2n + 1, (12) 

where P = (_I)t1n[1-C-ll"]+m[l-(-ll
a
]) and m and n 

are used as before. For p odd the LlA label is not 

1(" )t(" )..;1.).. "1l.:1.J1)L - 3 M - 31 W(02J(sd) \ Ll.l Ll.12' Ll.12 -, L - 00 

x I(Llb(MlA,M¥)L = 3, ML = 3) 

= + _1 ( 3 2 3)7(J5){! ! ~) 
2J2 -3 ° 3 3 3 2 

[ 
(LliMtll ;'0 II LlJLla) <LllLl~lll ;'2 II~t~~l) ] 

x -(LltMlllflO lI~l~~l) <LllLl~lll fl2 II~tMl) 
= iJ 15

4. 
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VIII. CONCLUSIONS 

In this paper, we have examined the application 
of the quasiparticle formalism to mixed configurations. 
As would have been anticipated from the results of our 
earlier work,! we obtain a remarkably rich classifica
tion scheme that permits the matrix elements of 
interactions to be calculated without the usual re
course to coefficients of fractional parentage but 
rather by the more common vector coupling methods. 
Compared with the previously treated case of equiv
alent electron orbitals, there has been, however, a not 
unexpected increase in complexity. We cite, for in
stance, the care that must be taken over the precise 
form of the eigenfunctions of the Weyl operators 
(Sec. IV) and the complexity of the matrix elements 
(Sec. VI). Where many orbitals are involved, the 
problem of handling the duplications arising in the 
decomposition of the spin representations under 
Rp ---+ Rs will become increasingly severe, though, of 
course, the same holds for the conventional method. 

The quasiformalism gives further insight into the 
mathematical structure of atomic shell theory, and in 
this respect its study is valuable. The fact that the 
quasiparticle eigenfunctions involve linear combina
tions of eigenfunctions defined on different numbers 
of particles constitutes the fundamental weakness of 
the scheme from a physical viewpoint. In the case 
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course, be overcome by projecting out wavefunctions 
defined on a definite number of particles, but only with 
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light. At t = 0, the particle is at z = O. The particle is 
assumed to move in free flight, z = vt, 0 ~ z ~ L. 

The wake fields present in the cavity after the 
particle leaves are calculated. The energy in these 
modes gives a divergent sum. This singularity stems 
from the approximation that the particle leaves (as 
well as enters) the cavity through a point hole. When 
the particle reaches the far wall, there is an abrupt 
cancellation of charge. This gives rise to an infinite 
pulse of radiation. This pulse is trapped in the box. 
To obviate this fictitious result, the sum over radial 
k-vectors is cut off at some appropriate "hole"
wavelength. 

Similar problems have been considered in relation 
to the calculation of fields in accelerators.1

- 3 These 
investigations usually are concerned with pipes which 
are infinitely long, albeit both the motion of the par
ticle and nature of the walls are more complicated 
than in the present work. Our investigation is experi
mentally motivated by the Cornell relativistic beam. 
In this experiment a pulse of current "-' 100,000 A, at 
voltages "-' 300 KeV (f3 "-' 0.78), is propagated down a 
drift tube of diameter "-' 5t in. and length from 1 ft to 
60 ft. The pulse is of duration "-' 50 nsec. Fields are 
measured ahead of the beam in one of a number of 
techniques. 4 It is hoped that the beam width can be 
made small enough to approximate the configuration 
studies below. An externally supported B. field is 
contemplated to maintain the structure of the beam in 
vacuum. We hope to report on such measurements at 
a later time. 

2. OUTLINE 

The simplest technique for obtaining the fields of a 
relativistic particle is to Lorentz-transform the static 
Coulomb field in the frame of the particle to the "lab" 
frame. 5 When boundaries are present, such a technique 
is still possible if the static problem is soluble using the 
method of images. This idea was suggested by Ott and 
Shmoys6 in an investigation of a particle impinging 
on a dielectric half space. 

The static solution for a particle in a cylindrical box 
is solved with an infinite array of positive and negative 
images7 (owing to the infinite number of reflections in 
the two end plates). This, together with one other 
observation, permits solution in telms of Lorentz 
transformations of the positive and negative fields. 
This second observation is that when the positive 
source charge (in the box) moves to the right, all of the 
positive images rigidly move with it, while all the 
negative images rigidly move in the opposite direction. 
First we calculate the static field of the positive charges 
and then Lorentz-transform this field to the lab (box) 
frame. Then we calculate the static field of the negative 

charges (these are all image charges) and Lorentz
transform it to the lab frame. Addition of these two 
sets of fields gives the inhomogeneous part of the solu
tion to the problem. It contains the singularity at the 
particle position z = vt and r = 0, and satisfies the 
boundary condition that the tangential component of 
E vanishes at the walls. It does not satisfy the initial 
condition that the fields are zero in the whole box at 
t = o. (At t = 0, the positive and negative images 
cross. This current generates a magnetic field.) To 
insert this piece of data, we construct a homogeneous 
solution which cancels the inhomogeneous solution 
at t = o. The homogeneous solution is a superposi
tion of the TM modes of the cavity. (The inhomogene
ous solution is a TM wave.) 

The addition of the homogeneous solution also 
guarantees that the whole solution is causal so that all 
fields vani&h for z > ct. Furthermore, for times 
ct < L (the box is of length L) the fields are those of a 
semi-infinitely long (0 ~ z) cylinder. This must be the 
case, since the fields are not influenced by the far wall 
before t = Llc. 

The chief assumption in the analysis is that the 
particle moves in free flight. This assumption is used 
in the analysis to obviate a singularity in the energy of 
the wake fields. For an ultrarelativistic electron, it is 
found that free flight is maintained, provided the 
electron leaves the cavity through a hole of diameter 
greater than 10-13 cm (1 F). 

3. ANALYSIS 

A. The Inhomogeneous Component 

The static potential due to a point charge q on the 
axis at z = 0 interior to an infinitely long grounded 
cylinder, with perfectly reflecting walls, is 

2q 00 e-k;I.IJo(kjr) 
<I>(r, z) = "2 L 2 • (1) 

ro ;=1 k j[J1(k;ro)] 

The radius of the tube is ro. The zeroth- and first-order 
Bessel functions are Jo and J1 , respectively. The above 
expression contains the proper singularity at z = 0, 
through the t5-function representation 

_ ..! " Jo(kjr) 
b(r) - ,£., 2 2' 

7T ; ro[J l(kjro)] 
where 

It follows that 

27Tqt5(r) = - - -(
04)> 04><) 
oz oz .=0 

where ~ denotes z ~ 0, respectively. 
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FIG. I. Image locations for a particle in a 
cylindrical box. -3L -2L 
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For a closed cylindrical box with end plates at z = 
o and z = L and a test charge q at z = zo, an infinite 
array of image charges are induced exterior to the box 
along the axis. Their relative positions are depicted 
in Fig. 1. The static solution to this problem is 
obtained by replacing the exponential z-dependent 
part of the solution in (1) with the corresponding 
potential due to all the images. There are positive 
images at zn = 2nL + Zo and negative images at 
zn = 2nL - zo, where n is an integer running from 
- 00 to + 00. 

For the relativistic problem we must separate the 
field into that due to the positive images (plus source) 
and that due to the negative images. The z-dependent 
part of the solution due to the positive charges 
appears as 

00 00 

tp~+l = I e-k;(2nL-zo+zl + I e-k ;(2nL+zo-zl 

n=l n=l 

-kj'-'ol cosh k;(L - Iz - zol) + e] = . 
sinh k;L 

Similarly, the z-dependent part of the solution due to 
the negative charges appears as 

(-) cosh k;(L - Iz + zol) 
tp; = 

Superposition of the total solutions generated by tp(+l 

and tp(-l (as given by these latter two expressions) 
reproduces the static solution.7 

If the test charge is moving on the axis inside the 
box, all of the positive images move with it. Let the 
frame where these charges are at rest be 0'. At t = 0 
the source charge is at the origin of 0' and, further
more, at this time the 0' frame and the lab frame 0 
are coincident. 

The potential due to all the positive charges in 0' 
(where the source is always at the origin) is 

m(+l'c " 2q "" cosh k;(E - Iz'!) Jo(k,r) 
'¥ rZ)=-k --. 

r~ ; sinh k,E k,J~ 

-L 0 L 2L 3L 4L 
I ~ IZ• ~ I 

1 
I I I 

+q +q +q 

t:~ 2nL+ Z 0 

n = -", ... +". 

-L 0 L 2L 3L 4L 
I -~.~ ~ j I I 

j 

-q -q -q 

t;;b 2n L -Z 0 

n = -Qt •.• +-

In this latter formula and expressions to follow, Ji is 
written for l~(k;ro). 

The corresponding components of the electric field 
are 

(+l, _ 2q ~ sinh k;(E - Iz'l) JoCk;r) , 
E. - 2 k . , 2 sgn z , 

ro; smh kl·:' kjll 

E~+l' = 2q ~ cosh kj(E - Iz'!) Jl(k;r) . 

rg ; sinh k;E l~ 

Next we must write the rhs of the above expressions in 
terms of the coordinates of the lab frame o. The 
transformation for the positive chain is z' = y(z - vt) 
and z' = y(z + Vf) for the negative chain (see Fig. 2). 
The (proper) length between image charges in 0' is L' 
while the length between these same charges in a is L, 
so that L' = Y L. There results 

(+l, _ 2q ~ sinh yk;(L - Iz - vtl) Jo(k;r) 
~ - 2k 2 

ro sinh yk;L kill 

X sgn (z - vt), (2) 

(+l, _ 2q ~ cosh yk;(L - Iz - Vf!) ll(k;r) 
Er - 2 k. 2 ' 

ro smh yk;L 11 

Y == (1 - {J2rlj, (J == vic. 
When observed in the lab frame, these fields become 

E(+l = E(+l, E(+l = yE(+l, B(+l = y{JE(+l, (3) 
Z z'r r' q, r" 

In similar manner, we obtain for the fields of the 
negative charges, expressed in the coordinates of 0, 

E(-l, = _ 2q 2 sinh yk;(L - Iz + vtl) Jo(k;r) 

• r~ , sinh yk;L J~ 

x sgn (z - vt), 

E(-l, = _ 2q 2 cosh yk;(L - Iz + vtl) Jl(k,r) (4) 
r r~ ; sinh ykjL l~· 

Transforming these fields to the lab frame gives 

E (-l = E(-l, E(-l - E(-l, B(-l = - {JE(-l, (5) 
z .' r -yr' t/J Yr· 
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FIG. 2. Positive and negative image frames. 
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Superposing these fields with those of the positive 
chain, Eq. (3) gives the inhomogeneous component of 
the total solution 

Ei = 4q I Jo(k;r) sinh O;t cosh Kit - z/L) 

• r~; J~. sinh K j , 

(6a) 

for z > vt. (The superscript "i" denotes inhomo
geneous.) "Behind" the particle for z < vt, these fields 

o L 2L 

ct 

become 

Ei = _ 4q ~ Jo(kjr) sinh (Kjz/L) cosh (K j - Ojt) 
z 2 ""' J2 . h ' ro i 1 sm K; 

i _ 4qy" J 1(k j r) sinh (K;z/L) sinh (K j - njt) 
Er - 2 ""' 2 • , 

ro j J1 smhK; 

Bi = 4qyf3 ~ J1(k;r) cosh (Kjz/L) cosh (K; - O;t) 
'" 2 ""' 2 • • ro ; J1 smh Ki 

(6b) 

This solution is a segment of the periodic field present 
in the "extended lab frame." (See Fig. 3.) At any 
fixed position, the time period is 2L/v, while the length 
period is 2L. At the instant when the images cover one 

FIG. 3. The extended lab frame. 
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another (vt = nL) the electric field vanishes while the 
magnetic field is minimum midplane between images 
and maximum in the image planes. 

In Eq. (6), we have written 

0, == yk,v, Kj == ykjL. 

Since B does not vanish at t = 0, it follows that the 
solution constructed from images as outlined above, 
while satisfying boundary and singularity conditions, 
does not satisfy the initial data that E = B = ° for 
t ~ ° everywhere in the box. Insofar as the solution 
so constructed incorporates the presence of the source, 
it is a particular solution (viz., to the wave equations). 
The total solution to our initial-value problem is 
obtained by adding to this particular integral a solu
tion to the homogeneous wave equations. This final 
form gives E = B = 0 at t = ° and is singular on z = 
vt; Ell vanishes at the walls and is causal. It follows 
that it is the correct Green's solution to the stated 
problem. 

B. The Homogeneous and Total Green's Function 

Insofar as B. = ° in the inhomogeneous solution 
(6), it represents a TM wave. It follows that a super
position of TM waves must be added thereto to give 
the desired null effects. These are TMojp modes, j 
referring to wavenumber k j and p to z-harmonic 
dependence. The zero relates to Bessel-function order. 
The eigenfrequencies Wjp which accompany these 
modes are 

W~p = c2[k; + (p1TjL)2]. 

Superposition of these modes give the fields 

(f. = ! ~ €pjJo(kjr) cos (P1TZ) e-iOJp;t, 
p , L 

(fr = !~€Pi(P1T)Jl(kir)Sin (P1TZ)e-iOJP;t, (7) p, Lk, L 

lB - "" "" € . (iWpj) J (k .r) cos (P1TZ) e-iOJp;t '" - ~ 4- p, k 1, L . 
p J C j 

The coefficient €pi is to be determined. Both the real 
and imaginary components of these fields, respec
tively, are solutions to the homogeneous wave 
equations. At t = 0, 1m lB1> == B~ ("h" denotes 
homogeneous) appears as 

B~ = -! ~>Pi(WPj)Jl(kjr) cos (P1TZ). 
p i c~ L 

Comparison with Eq. (6) indicates that €pj must be 
chosen so that 

4qy{J cosh Kit - z/L) = "" € WP} cos prrz 
22 • h K ~ pi k . J 1rO SIll; pc; L 

To solve for €pj' we employ the Fourier decomposition 

cosh K(l - z/L) = I cos p1Tz/L 
K sinh K p=-oo (1Tp)2 + K2 

To validate this representation, we rewrite the summa
tion as an integral in the complex p plane: 

i co~h (1Tpz/L) 
P=-oo (1Tp)2 + K2 

= _1_ r cos (1Tpz/L) cot 1Tp dp == I. 
2rri Jo (1Tp)2 + K2 

The curve C encircles the real p axis as shown in Fig. 
4(a). Using the cosine addition law, we obtain 

1 r cos 1Tp(1 - zjL) dp 

I = 2rri JO[(1Tp)2 + K2] sin 1Tp 

__ 1_ r sin (1Tpz/L) dp . 

2rri Jo (1Tp)2 + K2 

Since the second integrand is an analytic function 
along the whole real axis, its integral vanishes. To 
evaluate the first integral, we distort the contour C 
into C1 and C2 as shown in Fig. 4(b). This gives the 
two residues from the poles at rrp = ±iKwhich add to 
yield the desired result. 

For €vi we then have 

Wp'€vi 4qy{JK j -- = ---=:;..;...'----'--

ck j Jir~[(1Tp)2 + K;]' 

where -00 ~p ~ +00. 

Substituting this value for €p, into Eq. (7), taking 
the imaginary part thereof, and adding the resultant 
fields to the inhomogeneous solution, Eq. (6), gives 

E. = 4; ~ Jo(kt) (Sinh Ojt c~sh Ki1 - z/L) 
ro ,=0 J1 smh K, 

_ i KjO, sin wPit cos 1TPZ/L) 
p=-oo wp ,[(rrp)2 + K~] 

4q Jo(kjr) > 
== 2' ! --2- Uj (z, t, v, L), 

ro , J1 

E = 4qy ~ J1(k,r) (Sinh Oit sinh Ki1 - z/L) 
r 2 ~ J2 . h K ro ,=1 1 SIll, 

~ 1TPO, sin wp;t sin 1TPZ/L) 
£. (Sa) 

p=-oo wp;[( 1Tp)2 + K~] 
4qy J1(kjr) > 

== -2 2 --2- V, (z, t, v, L), 
'0' J1 

B = 4qy{J ~ J1(k,') (COSh O,t cosh Ki1 - z/L) 
1> 2 ~ J2 . h K 

'0 ,=0 1 sm i 

_ i K, cos wP}t cos 1TPz/L) 
p=-oo [(rrp)2 + K~] 

4qy{J JICk,r) > 
== -2-! --2 - Wi (z, t, v, L). 

ro ; J1 
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c 
+00 

(a) 

The second identification in each case above serves to 
define the (z, I) dependent forms, U, V, and W. These 
are the fields for z > vI. 

For Z < vI, merely substitute the inhomogeneous 
terms in the above expressions with those given in Eq. 
(6b). The homogeneous component of the total solu
tion (for z ::;; L) is then continuous across the plane 
z = vt ,while the inhomogeneous component includes 
the singularity at the particle position. For z < vt, 
there results 

7TP= + iK 

7TP=- iK 

(b) 

FIG. 4. The contours 
C, C1 , and Ct. 

_ 4qyfJ ~ J1(k l r) (COSh (K;zjL) cosh (K; - nit) 
B", - 2 ~ 2 • h K ro i J1 sm i 

_ ! K j COS W'J)it COS 1TPZ/L) 
'J) [(1Tp)2 + K;] 

== 4qyfJ 1 J1(k j r) W<. (Bb) 
r~ ; J~ 

Equations (8) with q = 1 are the components of the 
relativistic Green's tensor field G",'(x, t) (this notation 
will be used below). The components of G are the 
values of the fields at x, t due to a point unit charge 
moving with v along the axis of a cylindrical grounded 
box, which was at z = 0 at I = O. 

C. Causality 

To show that the components of G as given by Eq. 
(8) are all causal, the summation over p is converted 
to a contour integration in the p plane (after multi
plying by cot 1Tp). The following addition formulas 
are used: 

cos 1Tp 1 - - = cos - cos 1Tp + sm - sm 1TP, ( Z) 1TPZ • 1TPZ • 
L L L 

sin 1TP( 1 - i) 
. 1TPZ 1TPZ . 

= -SIn - COS 1Tp + COS - sm 1Tp. 
L L 
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In each case it is found that U, W, and V vanish for z > ct. For z ~ ct, in the general case a simplifying 
contour distortion is not evident and we must work with the summations over p in their generic form. 

To illustrate the causal property of the solution (8), we consider B~. We wish to show that 

W= 0, z> ct, 
or equivalently (deleting the j index) 

cosh o.t cosh K(1 - z/L) = Y' cos w1Jt cos 1TpzjL = _1_ r dp cos w1Jt cos (1Tpz/L) cot 1TP == A, 
K sinh K 1J=-00 (1Tp)2 + K2 21Ti Jo (1Tp)2 + K2 

where the contour C is depicted in Fig. 4(a). From the cosine law the latter integral is decomposed into 

A = _1_ r cos w1Jt cot 1Tp(1 - z/L) dp __ 1_ r cos w1Jt sin 1Tpz/L . 
21Ti Jo (1Tp)2 + K2 21Ti Jo (1Tp)2 + K2 

The second integrand is regular in the domain enclosed by C so that only the first integral contributes to A. 
Expanding the integrand of this first integral gives 

A = _1_ r cos [w1Jt + 1Tp(l - z/L)] + cos [w1Jt - 1Tp(l - zjL)] dp 
41Ti Jo [(1Tp)2 + K2] sin 1TP 

1 i-==- Adp. 
41Ti 0 

In the limit that 1m p == p' - ± 00, we have that 
W 1J - C1Tp' / L and that 

1[(1Tp)2 + K2] AI 
- 2Ie-1U1J1{exp [-(1Tp'/L)(z - ct) + 1Tp'] 

+ exp [(1Tp'jL)(z - ct) - 1Tp'] 

+ exp [(1Tp'/L)(z + ct) - 1Tp'] 

+ exp [-(1Tp'/L)(z + ct) + 1Tp']} I. 
For p' - ± 00 the rhs of this latter expression goes to 
zero providing ct < z and 2L > z + ct. Both in
equalities are satisfied for ct < z < L. It follows that 
for these values of z and t the curve C may be distorted 
into C1 and C2 as depicted in Fig. 4(b). This picks up 
the two residues at K = ± i1TP to yield 

A = _1_ (cos w1Jt cos 1Tp(l - zjL) 
21Ti Jo [(1Tp)2 + K2] sinh 1Tp 

= 2~J501+ 50.) 
cosh o.t cosh K(1 - z/L) 

= 
K sinh K 

It follows that W = 0 for z > ct. Similar constructions 
hold for U and V. 

D. The Semi-Infinite and Completely Infinite Pipe 

The solution to the above problem as given by 
Eq. (8) reduces to a very simple form in the interval 
t < L/c. In this interval the pulse is not influenced by 
the forward wall at z = L and must reduce to that 
owing to a moving charged particle in a semi-infinite 
tube with walls at z = 0 and z = 00. 

In this limit as L - 00, the inhomogeneous contri
butions in U, V, and W become 

( ~) _ e-Ykz (:~:: ~:). 
W i cosh o.t 

In the homogeneous p-summations, the discrete vari
able p becomes the continuous variable ~ through the 
transformation 

There results 
1Tp/L -+~, 1T/L -+ d~. 

o.foo d~ sin wt cos ~z 
-00 w(e + y2k2

) 

vJoo ~ d~ sin wt sin ~z 
-00 W(~2 + y2k2) 

Joo d~ cos (ut cos ~z 

-00 ~2 + y 2k 2 

Rewriting the trigonometric products in exponential 
form and closing the integration along the real p axis 
with the upper or lower semicircle, depending on which 
of these the integrand vanishes, gives the following: 

Only the inhomogeneous solution survives in the 
limit L ---+ 00, and we obtain for vt < z ~ ct (ahead of 
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the particle) 

E 
4q ~ Jo(k;r) -ykz . h n = - k. -- e 'sm u·t 

z r~ J~ 3 ' 

(9a) 

For z > ct the fields vanish. Behind the particle 
(0 ::;; z < vt), we find 

E - _ 4q ~ Jo(k;r) -Oit • h k 
• - 2 k. 2 e sm y jZ, 

ro j J1 

E - 4qy ~ J1(k j r) -Ojt . h k 
r - 2 k. 2 e sm y jZ, 

ro; J1 

(9b) 

B = 4qyfJ ~ J1(kjr) -O;t cosh k.z 
4> 2 k. 2 e Y 3 • 

ro ; J1 

When the particle is very far removed from the after 
wall of the tube (which in the present case is the only 
wall of the tube) i.e., in the limit Ot » I and kz » I, 
one obtains the sharply peaked wave 

E
z 

= 4q ~ J o(k;r) e-ykjlz-vtl sgn (z - vt), 
r~ j J; 

B = 4qyfJ ~ J1(k;r) e-ykjl.-vtl. 
4> r2 ~ J2 o 3 1 

(to) 

These are the exact fields of a particle moving in a 
pipe which stretches from z = - 00 to z = + 00. 

They are very simply obtained through a single Lor
entz transformation of a particle in an infinite cylinder. 

4. APPLICATIONS 

A. The Wake Fields 

At vt = L, the particle leaves the cylindrical box. 
To obtain the fields in the box for vt > L, we do the 
following. The fields "behind" the particle (for vI ::;; L) 
are given by Eqs. (8b). Symbolically, we write these 
fields as 

where, as before, "i" denotes inhomogeneous and 
"h" denotes homogeneous. Let us construct a field 
G, which satisfies the following initial-value problem: 

02G = 0, for vt > L, 
and 

G(r, vt, z) = Gi(r, vt, z), at vI = L. 

It then follows that 

02[G + Gh] = 0, for vt > L 

(since Gh is a solution to the homogeneous equation 
for all time) and that 

- h _ i h 
[G + G ]vt~L - [G + G ]vt~L' 

We may conclude that the field G + Gh
, so constructed, 

satisfies the homogeneous wave equation and the 
"initial" conditions at vt = L, whence it is the desired 
solution for the wake domain. 

The field Gi is given by Eq. (6b) with vt = L. Only 
B~ survives: 

Bi = 4qyfJ ~ J1(k;r) cosh K;z/L 
4> 2k. 2· • ro ; J 1 smhK; 

From our previous Fourier decomposition, we have 

cosh K = L cos 7Tpz/L . 
K sinh K (7Tp)2 + L2 

[t follows that 

cosh Kz/L = ~ cos 7Tp(1 - z/L) 
K sinh K (7Tp)2 + K2 

= L (_)b cos 7Tpz/L. 
(7Tp)2 + K2 

We need only recall the following to obtain the 
desired result. If <I>(x, t) is a solution to the homo
geneous wave equation, so is <I>(x, t + a), where a is 
an arbitrary constant. It follows that, if Eq. (7) repre
sents a homogeneous solution, then so do these same 
expressions with t replaced by (t - L/v). The coeffi
cients €1'; which enter follow from the above Fourier 
decomposition: 

_ W1';€1'; = 4qyfJ( - )b K j 

ck; J;r~[(7Tp)2 + K~]' 
Combining these fields with Gil [the second terms in 
each of Eq. (8a)] gives the closed fields in the wake 
domain: 

= 4q ~ ~ K;O; cos 7Tpz/L Jo(k;r) 
E. 2 k. k. [()2 2 2 ro ; l' W1'; 7Tp + K j] J1 

X [-sin w1Jit + (_l)b sin w1'tCt - Llv)], 

= 4qy ~ ~ 7TpO; sin 7TpzlL J1(kjr) 
Er 2 ~ k. [()2 2] 2 ro ; l' W1'j 7Tp + K j J1 

x [-sinw1';t + (-1)Psinwp;(t - L/v)], (11) 

_ 4qyfJ ~ ~ K; cos 7TpzlL J1(k;r) 
B4> - 2 ~ k. [( )2 K2] J2 ro ; l' 7Tp +; 1 

X [-cos wp;t + (_)1' cos w1';(t - L/v)] 

== 4qyfJ I J1(k;r) Wi. 
r~ ; J~ 
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This latter identity serves to define the function Wi' 
to be used below. These fields given in Eq. (11) repre
sent the fields in the cavity at time I, due to a particle 
which was at the far wall at I = L/v. 

B. Wake Energy 

In this section we calculate the energy in the wake 
fields (II). Insofar as the energy in the cavity is 
conserved, the time average of the energy is the actual 
energy. If we call the time factors of Ez and E" S, and 
that of B</>, C, then 

2. Loo . 
(S2) = (C) = 1 - (-l)Pcos~. 

v 

Furthermore, the energy in the electric field equals 
the energy in the magnetic field: 

Since the cos (ooL/v) term does not exceed unity and 
enters in an oscillating series, it follows that the sum 
over the first term (unity) is greater than the sum over 
the cos term, whence 

U < 4L (QYfJ)2 2 2 K~ (13) 
ro P i Ji[(7Tp)2 + K~]2' 

The p summation may be evaluated as follows. 
Define 

+00 1 1 r cot 7Tp dp 

M == p~oo [(7Tp)2 + K2]2 = 27Ti Jc [(7Tp)2 + K2.]2 ' 

where the contour C is depicted in Fig. 4. Since 

lim Icot 7Tpl = 1, 
p-+±ioo 

the contour C may be distorted into C1 and C2 to 
yield 

M = 2 [1 + sinh K cosh KJ. 
(2K)27T sinh2 K K 

It follows that 

U < 2L(QYfJ)2 L 2 .12 (1 + sinh K; cosh K;). 
7T r 0 ; J 1 smh K i K; 

(14) 

In the limit as j -- C1') the second term in the summand 
goes to a constant and gives a divergent sum. This 

singularity [evident from Eq. (12)] stems from ideali
zation that the point particle q leaves (as well as enters) 
through a point hole. When the particle reaches the 
far wall, it coalesces with its (nearest) image and stops. 
The resulting singular pulse is trapped in the box. 
This conclusion is consistent with Ott's8 calculation 
for the transition radiation problem9 in which a par
ticle is incident on a grounded plane. After the particle 
passes through the plane, a hemispherical wave 
propagates away from the wall carrying zero field 
behind it and the previous field in front of it. The 
fields at the wave surface are singular. In the similar 
problems with a hole in the plane10•ll this singularity is 
obviated. Similarly, in the problem considered herein, 
if the series above, written in the form U < Li Ui , 

is cut off at rok; c:: 27Tro/d, then the sum is finite. This 
would be, roughly, the energy deposited in a finite 
cylindrical box with holes of diameter d in its end 
plates. 

The large-order zeros of Jo go as rOki c:: 7Tj so that 
there are j f'"-.I 2ro/d terms in the cut-off series of Eq. 
(12). It follows that an upper estimate of this series is 
given by 

Our assumption that the particle does not lose too 
much of its energy to the stimulated wake fields will 
be valid if 

U ----2«1. 
(y - l)moc 

For an electron with fJ c:: lone obtains 

ro » d» 10-13 cm, 

which is easily satisfied in most practical cases. The 
left inequality insures that the hole is, at most, a small 
perturbation in the included analysis. 

C. The Charged Line Segment 

In this section we consider a line charge of length 
b < L and charge q. There are four relevant epochs. 
(See Fig. 5.) In epoch (1), the segment is partially in 
the cavity (vt < b). In epoch (2), the segment is com
pletely in the cavity (b ~ vI ~ L). In epoch (3), the 
segment is leaving the cavity (L - b < vI - b < L). 
In epoch (4), the pulse has completely left the cavity 
(VI - b z L). 

In the first two epochs we only need the Green's 
fields given by Eq. (8). We recall that these fields 
(with q = 1) are those at (x, I) due to a point unit 
charge which entered the cavity at t = O. In epoch (1), 
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z < vt z >vt ,.--z_<v_t_-b __ -

3
v_t-_b_<Z-,,< L 

--::0( ~ ~ (-,-
z=[b-vt] z=O z=vt z=L z= vt-b z= vt 

EPOCH I 

z<vt-b vt-b<z<vt z>vt 

one obtains 

EPOCH 2 

qVft 
F llv = - Gil/X, t - 1J) d1J 

b 0 

EPOCH 3 

EPOCH 4 

qVit 

== - GIlV(x, 1') dr, t::;;; blv, 
b 0 

rs t - 'fJ. 

The Lagrangian variable 1J labels the time of entry into 
the can of distinct particles in the beam. More ex
plicitly, the B field is given by 

,'8(1) - "J1(k;r)lt W> d t < - k 2 ; 1', V z, 
, J1 0 

(ISa) 

ahead of the leading edge of the pulse, and 

,'8(l) = IJ1(~;r)( (T·W; dr +Jt W; dr), 
, J1 Jo T. 

z < vt, 

(ISb) 

behind the leading edge of the pulse. The factors W 
are given in Eq. (8), while ,'8 and Tz are defined 
through 

B", == (4qvyfJI br~),'8, 

Tz == z/v. 
In the second epoch there are three relevant do

mains: z ~ vt, ahead of the leading edge, z ::;;; vI - b, 
behind the leading edge, and vt - b < z < vI. There 
results 

,'8(2) = .2: J1(~;r) (t W~ dr, z ~ vt, (16a) 
; J1 Jt-Tb 

,'8(2) = .2: J1(~;r)( (t W; dr), z::;;; vt - b, (16b) 
; J1 Jt-Tb 

,'8(2) =.2: J 1(v;r) ( (T. w; dr +ft W; dr), 
j J~ Jt-'l'o T. 

vt - b < z < vt, (16c) 

Tb == blv. 

FIG. S. Relevant time intervals for the 
line charge problem. 

In the third epoch the pulse is leaving the cavity, 
i.e., L - b < vt - b < L; there are two relevant 
domains. In the domain ahead of the after edge of the 
pulse, 

,'8(3) = I JtC~;r) ( (T. w; dr + JTL W;< dr 
j J 1 Jt-Tb T. 

+ S;LW;(r)dr), (17a) 

h == Llv, TL = KID.· 

The wake factor Wit) is given by Eq. (11). 
In the domain behind the after edge of the pulse, 

,'8(3) = I J1(~r)( ('l'L w; dr +ft W;(r) dr), 
, J1 Jt-Tb TL 

z < vt - b. (17b) 

In the fourth epoch, vt - b ~ L, the solution is a 
superposition of homogeneous wake fields 

and all modes are harmonic. 
In addition to purely harmonic behavior, the time 

dependence of the fields in the first three epochs in
cludes the hyperbolic components 

f (C~Sh Or) 0 dr = (Sinh 01'). 
smh Or cosh Or 

More generally, all of the time integrations in Eqs. 
(11)-(15) are simply performed. 

In the extremely relativistic limit much of the seg
ment may enter the cavity before the fields are in
fluenced by the far wall. (See Fig. 7.) The fields are 
then most simply obtained by integrating the asymp
totic forms (9). Writing only the B fields, we have for 
vt < z < ct (and vt < b), in front of the leading edge 
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of the pulse, 

4qyv/3 '" J1(kjr) -ykjZ sinh Ojt 
Bq, = --2- k --2- e , 

b~ j ~ OJ 

and, behind the leading edge of the pulse, 

B 4qyv/3 '" J1(k j r) (1 -nit h k ) q, = --2- k -2 - - e cos y jZ • 

bro j J10 j 

For any of these pulse problems, if the total charge of 
the segment is q and fA is the beam current in amperes, 
then 

q = (lO/c)fATb esu. 

D. Return Current Point and Line Charge Segment 

The surface current at the wall of the perfectly con
ducting cylinder is given by 

Sz = (C/41T)Bq,(ro) (statamp/cm). 

From Eq. (8) one obtains, for the propagating point 
charge, 

where, as before, ( denotes Z ( vI. 
After the particle leaves the box, the surface current 

is obtained from the wake solution, Eq. (11). For the 
line pulse of charge, there are four distinct epochs 
(IX = I, ... ,4). The surface current during these 
intervals is given by 

s~a) = (qyc2/32/1Tbr~)$(a) 

with $(a) given in Eqs. (I5)-(18). The time behavior of 
S. follows $. 

5. CONCLUSIONS 

In this analysis we have studied the fields induced in 
a finite, closed, cylindrical cavity, with perfectly con-

FIG. 6. Space-time 
diagram for the point 
charge. 

cI 
LIB -

2L/I+8 

o D 

B 

ct 

EPOCH 4 

t-
I 

: EPOCH 3 
I 

-----1-
I EPOCH 2 

Z=L ____ _ 

EPOCH I 

~-~~--------------~D~~------ Z 
FIG. 7. Space-time diagram for the line charge. 

ducting walls, by a relativistically moving charged 
point particle. Referring to Fig. 6, we see that the 
fields conveniently divide into four distinct domains. 
In the region bounded by the triangle OAB the fields 
are those of a point charge moving in a semi-infinite 
tube. All events in this domain are not influenced by 
the forward wall (whose world-line is z = L). In the 
domain bounded by the triangle OAD all fields vanish 
since all events in this domain are not influenced by 
the particle. Above the line ct = -z + 2L, i.e., above 
the triangle OAB, the full solution, Eq. (8), comes 
into play. The wake fields, Eq. (11), come into play 
above the line t = TL , again, excluding the points in 
OAB. 

In calculating the energy in the wake fields, a sin
gularity enters owing to the idealization in our model 
that the point charge enters and leaves the cavity 
through point holes. This in turn necessitates that the 
point charge coalesce with its image and vanish in 
zero time. The infinite deceleration launches a singu
lar pulse back into the cavity. Any finite hole obviates 
this singularity. For an electron, it was found that a 
hole of diameter exceeding· one fermi insures that 
the initial energy of the particle is large compared to 
the energy excited in the wake fields. 

The point charge solution was used to obtain the 
fields of a line segment of charge. Here it was found 
that the time domain relevant to the problem divides 
into four epochs as depicted in Fig. 5. The space-time 
diagram for this problem is shown in Fig. 7. In the 
triangle OAB the fields are those of a finite segment 
propagating down a semi-infinite cylinder. Above the 
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line ct = -z + 2L the total solution as given by 
Eqs. (15)-(18) comes into play. 

The formalism introduced herein for obtaining the 
relativistic Green's solution may be easily extended to 
a variety of problems, provided one is able to formu
late the static solution in terms of images. Such prob
lems include motion in a cylinder of arbitrary cross 
section, the motion of any charge configuration which 
lies in a plane of constant z, and motion in a dielectric 
medium. The limitation of the theory is that it does 
not account for interaction between charges in a given 
configuration. 
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Consider a random walk of n steps on an infinite, simple cubic lattice. Let per) be the (symmetric) 
probability of a vector jump r, and let S" be the expected number of distinct lattice points visited in the 
course of the random walk. In the present paper we calculate asymptotic values for S" for the particular 
choice of jump probabilities per) = p( -r) = Ar-(l+al, where 2 ~ IX > 0, and p(rl , r2) = Ar-P, where 
r2 = r~ + r:, 2 ~ f3 > 1, and A denotes the normalizing constant. The results are, in 1D, (1) S,,""" An. 
1 > IX > 0, (2) S" ,...., Bn/ln n, IX = 1, (3) S" ,...., Cnl/l!·, 2 > oc > 1, (4) S" ,...., D(n In n)!, oc = 2, where A. B, 
C, and D are calculable constants, and, in 2D, (1) S,,""" An, 2 > f3 > 1, (2) S,,""" Bn/ln In n, f3 = 2. 

1. INTRODUCTION 

Dvoretzky and Erdos! were the first to study the 
statistics of the distinct number of sites visited in an 
n-step random walk on a lattice. Their results were 
subsequently rederived by Vineyard2 and later ex
tended by Montroll and Weiss3 to include random 
walks whose jump probabilities had a finite variance 
(cf. also Spitzer4). The results of Montroll and Weiss 
were derived through the use of Karamata's Tauberian 
theorem, a technique first introduced into the study of 
random walks by Darling and Kac5 and Kac. 6 Al
though all of the known results pertain to jump 
probabilities with finite variance, the use of Tauberian 
theorems allows one to extend the study to jump 
probabilities having infinite variance. If pen) is the 
probability of changing position by a vector n in a 
single step, then the variance (in one dimension) is 
defined by 

(Ll) 
n=-oo 

with analogous definitions in higher dimensions. In 
the present paper, we derive results for certain specific 
random walks in one and two dimensions for which 
the variance associated with jump probabilities is 
infinite. In three and higher dimensions, the problem 
is of lesser interest since, even in the case of a finite 
variance, the expected number of distinct sites visited 
in an n-step random walk is asymptotically An, where 
A is a calculable constant. Since the result can be at 
most n, the order of the asymptotic dependence on 
n cannot depend on whether the variance is finite or 
infinite, though the value of A, as well as correction 
terms, will depend on the variance. 

For random walks with finite variance, it is known 
that the expected number of distinct sites visited during 

an n-step random walk is as follows: 

in ID, 

(1.2) 

in 3D, 

where a1' a2, and a3 are constants. The change of 
variance from finite to infinite will be shown to lead 
to an increase in the order of magnitude of Sn in one 
and two dimensions for the specific models 

in ID, 

and certain extensions of these random walks. 

2. A I·DIMENSIONAL SET OF TRANSITION 
PROBABILITIES 

Let pen) denote the probability of a jump of n sites 
at a single step, when n = (n) in one dimension and 
n = (n1' n2) in two dimensions. We define the structure 
factor of the random walk by 

,1(6) = L pen) exp (in· 6), (2.1) 
n 

where 6 = (0) or 9 = (01 , ( 2), In k dimensions, we 
define the integral 

" 
1 f f d

k

6 P(z) = - ... . 
7T

k 1 - zA(6) 
o 

(2.2) 

Then it is known3 that the asymptotic value of Sn' the 
expected number of distinct sites visited on an n· 
step walk, is given by 

(2.3) 

1307 
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provided that P(1 - n-1) has the asymptotic form 

P(l - n-1
) '" nPL(n), (2.4) 

where L(n) is a slowly varying function, i.e., 

lim L(cn)!L(n) = 1, 

for all c > 0, as n -+ 00. 

In what follows we assume that pen) is symmetric 
in its indices. The specific form of pen) to be studied in 
one dimension will be 

pen) = p(-n) = B(n-<H«l + En), (2.5) 

where it is assumed that En is such that 

(2.6) 

and B is a normalization constant. The condition in 
Eq. (2.6) can be weakened somewhat, but we shall not 
pUJ::sue this generalization. 

Since we are interested in the case of infinite vari
ance, IX must satisfy 

2 ~ IX> O. (2.7) 

It follows from Eq. (2.2) that the singular behavior of 
P(z) near z = 1 must come from the behavior of the 
integrand in the neighborhood of the root of A( 0) = 1. 
For the cases of present interest, 0 = 0 will be the 
only such root.7 In order to calculate the behavior 
of P(l - n-1) for large n, we must find an expansion 
fod(O) valid for small 101. This requires analysis of the 
function 

It is easily verified directly that IG«(O) - g«(O)1 is of 
lower order than the terms retained. 

It is clear from (2.11) that, if 0 is set equal to zero in 
the integrand, the resulting integral 

100 t«e-t(1 + e-t) dt 

o (1 - e-t>y3 
. 

diverges because of the singularity at t = O. It follows 
that the behavior of the integral for small () depends 
only on the behavior of the integrand in a neighbor
hood of t = O. It is shown in Appendix A that the 
limiting behavior of gi()) can be found from the 
integral 

02 roo t«-le-t dt 
giO) ""' hiO) = r(1 + IX) Jo (t2 + ()2) 

= 
fr 100 x«-le-8

", dx . 

r(1 + IX) 0 1 + x2 
(2.12) 

We can now evaluate the limiting behavior of g.,(O) 
for small O. For IX < 2, 

h,,(O) 1 roo X«-l dx 

7""' r(1 + IX) Jo 1 + x2 

1T csc t1TO: 

2r(1 + 0:) 
(2.13) 

When 0: = 2, we must include the exponential term to 
insure convergence at t = 00. It follows that 

2hlO) _ -fooo xe-8
", dx 

-- (2.14) 
02 

0 1 + x2 • 

G (0) = ~ 1 - cos nO 
« k 1+« 

n=l n 
(2.8) We see that, for small 0, 

for smallO. 
We substitute 

i.(h2«(J») ,...., _ .1.. + 1.1T + 0(1) 
dO (J2 2e 4 

(2.15) 

_1_ = 1 roo t«e-nt dt 
n1+« r(1 + 0:) Jo 

(2.9) so that 

in (2.8) and perform the resulting summation. This 
leads to the exact representation 

G(O)- 1 
" - r(1 + 0:) 

foo t«e-t(l + e-t)(1 - cos () dt 
x . 

o (1 - e-t)[(1 - e-t)2 + 2e-,(1 - cos ()] 

(2.10) 

To study the behavior of this integral near 0 = 0, 
we approximate it by 

(J2 [00 tGte-t (1 + e-t
) dt 

giO) '" 2r(1 + IX) Jo (1 - e-t )[(l _ e-t)2 + (j2e-t ] • 

(2.11) 

(2.16) 

We now return to the evaluation of P(z) for z close 
to 1. For 0 < 0: < 1, we find 

P(z)",.!. r" dO , (2.17) 
1T Jo 1 - z + BzO" 

where B is the normalizing constant in Eq. (2.5). 
Hence, pel) is finite and it follows from Eq. (2.2) that 

Sn""" n/P(l). (2.18) 

For IX = 1, we have 

P(z),....,- ""' - -In(1 - z) + 0(1) 1 i" de 2 
1T 0 1 - z + iBe B 

(2.19) 
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so that 

s '"'"'~ 
n 21n n 

(2.20) 

It is interesting to notice that this resembles the result 
for a finite variance random walk in two dimensions.3 

When 2 > C/.. > 1, the integral is of the form shown in 
(2.17), but P(I) is no longer finite. For that case, we 
set f)rt = (1 - z)x so that 

1 ("/(1_z)l/,,, dx 

P(z) '"'"' 1T(1 _ Z)I-I/rt Jo (1 + Bxrt)Xl-l/rt 

1 f'" dx (2.21) 
'" 1T(1 - Z)I-I/rt Jo (1 + Bxrt)Xl-l/rt . 

This result implies that, for 2 > C/.. > 1, 

(2.22) 

where c is found from Eq. (2.21). 
Finally, when C/.. = 2, we must find the asymptotic 

behavior of the integral 

P(z) '"'"'! fa df) ,(2.23) 
1T Jo 1 - z + Bzf)2 1n f)-I 

where a can be any fixed constant which we choose 
less than 1 [SO that the singularity at f) = I, which is 
due to our choice of an approximate form for A(e), 
does not have to be discussed]. For simplicity, let us 
define the integral 

F(€) = fa de (2.24) 
Jo € + e2 In e-1 

so that 

limP(z) = _1 lim F(l - Z). (2.25) 
z->1 1TB .->1 B 

In this integral change variables by the transformation 

e2 In e-1 = y, (2.26) 

with a solution represented by 

e = f(y). (2.27) 

Then F(€) can be formally written 

F( €) = fb f'(y) dy, 
Jo y + € 

(2.28) 

where b = a 2 1n a-I. The integral for F(€) clearly di
verges at € = 0 because of the singularity at y = 0 in 
the integrand. The nature of the singularity can be 
determined by giving an accurate representation for 
f'(y) in the neighborhood of y = O. For this purpose 
set e = Jy u(y) in Eq. (2.26) so that u(y)is the solution 
to 

u2(y){t Iny-l + In [U(y)]-I} = 1. (2.29) 

Let us replace this equation by the iterative scheme 

2 2 
un+l(y) = 1n y-I + 21n [un(y)rl ' n = 1,2,"', 

uo(Y) = 1. (2.30) 

The first approximation to a solution is 

(2.31) 

and the second approximation is 

u2(y) = [2/0n y-l + In In y-l - In 2)]i. (2.32) 

This suggests that the general solution to Eq. (2.29) 
can be expressed in the form 

un(y) = {2j[ln y-l + 11n(Y)]}!, (2.33) 
where 

lim 11n(Y) = O. 
11->0 In y-l 

(2.34) 

An inductive argument serves to establish the validity 
of Eq. (2.33) and also the approximation 11iy) "" 
In Iny-I. 

With these results we have, finally, that for y in a 
neighborhood of zero 

fey) = ( 2
y
_ )![1 + 0 (In In ~-I)J (2.35) 

In y I In y 1 

so that F(€) behaves asymptotically as 

with the singular behavior of F(€) still determined by 
the behavior of the integrand at the origin. The second 
term in the brackets, (y In3 y-l)-!, can be neglected in 
comparison with (y In y-l)-t, as y --+ 0, so that 

1 lb' dy 1 F(€)",,- -- . J2 0 y + € Y In y-l 
(2.37) 

In this integral we make the substitution y = €x which 
leads to the representation 

F(€) '"'"' _1_ f'" ~ 1 , (2.38) 
(2€)t Jo 1 + x [x(ln X-I + In €-1)]! 

where the upper limit of integration has been replaced 
by 00 since the resulting integral is convergent. At this 
point we split the range of integration (0, 00) into 
(0, A€) and (A€, 00), where A is chosen so that A» 1 
and A€« 1. The first integral can be bounded as 
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follows: 

In the second range of integration, we can estimate 

We therefore see, by comparing the last two equations, 
that the dominant contribution comes from the second 
range of integration and that 

F(E) ~ 7T!(2E In c 1)!. (2.41) 

But, by (2.3), this implies that, for (l = 2, 

Sn ~ (2Bn In n)!. (2.42) 

When (l > 2, results in earlier references imply that 
Sn is asymptotically proportional to In. 

3. A 2-DIMENSIONAL SET OF TRANSITION 
PROBABILITIES 

We next consider a 2-dimensional generalization of 
the jump probabilities given in Eq. (2.5), 

pen, m) = B[(n2 + m2 + D2r P + Enm], (3.1) 

where we will assume that the Enm satisfy 

n,m n,m H·.1h 

The constant (J is chosen to satisfy 

2~{J>1, (3.3) 

which implies that the covariances associated with 
pen, m) are infinite. We notice that the inserted con
stant D2 implies that p(O, 0) ;= O. This is done to 
simplify the algebra. No loss of generality follows 
from the particular form of Eq. (3.1) since the asymp
totic dependence on n does not depend on D, although 
the coefficients may be functions of this parameter. 

In order to calculate the function pel - n-1), we 
must study the behavior of A(O) defined in Eq. (2.1), 

noting that ),(0) = 1. To do so, we invoke the 2-
dimensional form of the Poisson summation formula 

OC) OC) 

I I fen, m) 
n=-oo m=-oo 

00 

=r=~oo '=~OC) III(X, y) exp [27Ti(rx + sy)] dx dy, 
-00 

(3.4) 

where it is assumed that both sides of this equation 
exist. The contribution to A(O) that determines the 
asymptotic form of P(1 - n-1) comes from the sum 

i ! exp [i(nOl + m(2)] (3.5) 
n=-OC) m=-oo (n2 + m2 + D2)fJ ' 

evaluated near 0 = O. Let us therefore analyze the 
behavior of the function 

~A(6) = I I 1 - exp [i(nOl + m(2)] (3.6) 
B n=-oo -00 (n 2 + m2 + D2)P 

by applying the transformation (3.4). It is found that8 

~)'(6) = 2 1 i i {[27T(r2 + S2)!]P-l 
B 2fJ- 1r({J) DfJ-1 

r=-OC) 8=-00 

X K p_1(27T D(r2 + S2)!) 

_ {27T[ (r - ~~)2 + (s - ~:)2rr-l 

x KfJ_1 (27TD[ (r _ ~~)2 + (s - ~:)2r)}, 
(3.7) 

where Kp_1(x) is a modified Bessel function of the 
second kind. If (J < 2, we see that a possible branch
point singularity occurs in the term r = s = O. The 
exact nature of such a singularity can be determined 
from the identity8 

(3.8) 

for noninteger V, where fix) is a modified Bessel 
function of the first kind defined by the series 

00 1 
I (x) - '" (1X)v+2k 

v - k-=O k! rev + k + 1) ~ . 
(3.9) 

The relation (3.8) requires that V not be equal to an 
integer. It follows from (3.8) and (3.9) that 

( )

fJ-l 2P-l 

!~~ i Kp_1(E) = DP-1rC2 - (J) • (3.10) 

Hence, by considering the term r = s = 0 on the 
right-hand side of Eq. (3.7), we find that 

~A(6),...., a(O~ + O~)/l-\ (3.11) 
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where a is a constant. The asymptotic behavior of we find that, for x small, 
P(z) near z = 1, therefore, depends on the integral 

'IT 

1 If dOl d02 
P(z) """2 2 2 P-1' (3.12) 

7T 1 - z + a(Ol + (2) 
o 

Transforming to polar coordinates and setting z = 1, 
we see that the integral converges for f3 < 2, so that 

lim P(l - n-l
) = pel) (3.13) 

n-+OQ 

and, therefore, by Eq. (2.2), when 2 > f3 > 1, it 
follows that for large n 

Sn "" nIP(l), (3.14) 

where P(l) must be evaluated numerically. 
The case f3 = 2 is more difficult. For this case we 

note that, for smalls e, 

(3.15) 

Again we see from Eq. (3.7) that the singular behavior 
of ~A(O) near the origin is determined by the term 
r = s = O. If we use Eq. (3.15) to determine this 
behavior, we find that 

Thus, we must study the singular behavior of 

1 If dOl d02 

P(z) "" 7T2 1 _ z + b(O~ + OD In (0; + O~)-l ' 
C 

(3.17) 

in which b = t7TB and in which C can be chosen to be 
a circle in the (01 , ( 2) plane without changing the 
nature of the singularity at z = 1 (since only the be
havior at 0 = 0 determines the singularity). The form 
of the integral suggests a transformation to polar 
coordinates in which the angular integration is imme
diate. We are thus led to consider the integral 

R R' 
G(e) = r r dr = r dv ,(3.18) 

Jo e + r2 In r-l Jo 2e + v In V-I 

in terms of which we have 

lim P(z) = 2 lim G(l - Z) 
.-+1 7Tb .-1 b 

(3.19) 

and in which R2 is chosen less than 1 but is otherwise 
arbitrary. To determine the limiting behavior of G(e), 
we use the same device as for the analysis of the 
integral appearing in Eq. (2.24). Making the substitu
tion 

v In V-I = x, (3.20) 

so that 

x 
v""-

In X-I 

iRl dx 1 
G(e)"" ----. 

o 2e + x In X-I 

But we can write 

(3.21) 

(3.22) 

____ -----'=---_ + In x(x + 2e)-1 ,(3.23) 
In X-I In (x + 2er1 In x-lin (x + 2e)-1 

which, when substituted into Eq. (3.22), yields the 
estimate 

G(e) "'" In In c 1 + R(e), (3.24) 
where 

iRl dx In x(x + 2e)-1 
R(e) = . . (3.25) 

o 2e + x In x-lIn (x + 2er1 

It is shown in Appendix B that R( e) = 0(1) as e -+ 0 
so that asymptotically G(e) "'" In In cI, which implies 
that the asymptotic expected number of distinct sites 
visited is, for f3 = 2, 

(3.26) 

For f3 > 2, Sn is asymptotic to n/ln n, as is shown in 
Ref. 3. 

Finally, we note that it has been shown that the 
asymptotic expected number of points visited exactly 
once in an n-step random walk is 

Vn "'" n/P2(1 - n-1). (3.27) 

Since we have calculated the function P(l - n-1) 

for a number of cases, we only list the results. In one 
dimension, for the jump probabilities given by Eq. 
(2.5), we have 

Vn ,-.., n/p2(l), 1 > IX > 0, 

Vn ,-.., B2n/(4In2 n), IX = 1, 
V

n
,-.., C2n(2/")-1, 

Vn ,....., 2B In n, 

2>IX>1, 

IX = 2. 

(3.28) 

In two dimensions, for jump probabilities given by 
Eq. (3.1), we have 

Vn "'" nIP2(l), 2> f3 > 1, 

Vn ,....., 7TWn/(4In In2 n), fJ = 2. (3.29) 

For iX > 2 in one dimension and for fJ > 2 in two 
dimensions, results for Vn are given in Ref. 3. 

In concluding, we note that the methods of the 
present paper allow us to analyze results for the 2-
dimensional jump probabilities 
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where A and 0( are constants. It is quite possible that 
results can also be obtained for jump probabilities of 
the form that we have considered, but multiplied by a 
slowly varying function of its parameters. Such in
vestigations would involve analyses of the kind found 
in Zygmund9 and appear to be beyond the scope of any 
method based on Karamata's theorem. 

APPENDIX A: LIMITING PROPERTY OF ga(8) 

Let us write 

ga(O) = ha(O) + [ga(O) - hie)]. (AI) 

We will show that 

lim ga(O) - hiO) = 0, 
6-0 hiO) 

(A2) 

for 2 ~ 0( > O. The difference gaCO) - ha(O) can be 
written explicitly as, say, 

gi(J) - hiO) 

0
2 i OO 

ta -t 
= 2r(1 + O() 0 e 

X dt (
t(t2+£12)(1 +e-t)_ 2(I-e-t)[(I- e-t)2+ £1 2e-t]) 

t(l_e-t)(t2+02)[(I_e-t)2+(J2e-t] 

(J2 I«(J) (A3) 
2f(1 + O() • 

It is clear that, for any 0, the integrand is such that 
there is no trouble with convergence at the upper 
limit. The only possible difficulty can arise from the 
lower limit. If we approximate e- t by 1 - t near the 
origin, then the integrand is approximately 2/(t 2 + (J2) 
in the neighborhood of the origin. Hence, if /(0) 
diverges, the divergent behavior will be that of the 
integral 

J(O) = (00 tae-
t 

dt = (Ja-l (00 x"e-
6x 

dx. (A4) 
Jo t2 + (J2 Jo x2 + 1 

For 2 ~ 0( > 1, 

J(O) -+ J(O) = LX) ta- 2e- t dt = const, (AS) 

so that ga(O) - ha(O) = 0(02) for 0 -+ 0 and 

ga«(J) - hi(J) = 0«(J2-a). (A6) 
hi(J) 

For 0( = 1, 

i
oo xe-6x 

J(O) = -- dx ""' In O-I + 0(1) 
o 1 + x2 

(A7) 

by Eq. (A4) so that since hl(O) -+ const, the ratio in 
Eq. (A2) tends to 0 as 02 In (O-l). When 0( < 1, J(O) ,....., 
aOa-l, where a is a constant such that 

(A8) 

where b is a constant. Since hiO) is O(Oa), the ratio 
tends to 0 as (J -+ O. 

APPENDIX B: PROOF THAT R(€) IS 
BOUNDED AS € ~ 0 

The upper limit RI appearing in the definition of 
RI in Eq. (3.25) is strictly less than 1. Hence, € can 
always be chosen small enough to ensure that 
RI + 2€ < 1. Thus, we can write 

/R(€)/ = I (Rl~ In x(x + 2€)-l I 
Jo 2€ + x In x-lIn (x + €)-l 

< 1 I (Rl~ln_x I 
- In Rliin (RI + €rl Jo 2€ + X X + 2€ 

< 1 I roo~ln_Y I 
- In Rll In (Rl + €r l Jo y + 1 y + 1 . 

(Bl) 

The indicated integral converges, so that /R(€)/ is 
bounded as € -+ O. Indeed, a more careful analysis 
reveals that lim R( €) = 0 as € -+ O. 
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The generalized overlap amplitudes for "hole" states which appear in the one-particle Green's function 
are, in gen~ral, n?t line~r1y indep.endent. We show that canonical orthonormalization of them yields the 
natural spill-orbitals (eIgenfunctIOns of the first-order reduced density matrix). 

INTRODUCTION 

The eigenfunctions of the first-order density 
matrix, introduced by Lowdin as natural spin
orbitals ,1 are an essential tool for treating many
electron systems in stationary states. Their optimal 
convergence properties have been repeatedly em
phasized1•2 and exploited.3 They are the most suitable 
set of I-particle functions to use in discussing a 
quantum system, even though their direct deter
mination, without previous knowledge of the wave
function, is hindered by the N-representability 
problem.2 

The first-order density matrix can be considered 
as an initial value for the I-particle Green's func
tion of field theory, which is becoming common, 
even for the treatment of finite electron-systems.4 A 
certain set of I-particle functions, 5 the generalized 
overlap amplitudes, appears naturally in the spectral 
weight function of the Green's functions. These 
overlap amplitudes are characterized by 

rps(x) = gs(x) = (N, 01 '!p t (x) IN - I, s), fs < ft, 
= !sex) = (N, 01 '!p(x) IN + 1, s), fs > ft, 

and are associated with the elementary excitations 

Es = E(N, 0) - E(N - 1, s), Es < ft, 

(1) 

= E(N + 1, s) - E(N, 0), Es> ft, (2) 

where IN,O) denotes the ground state of the N
particle system, IN + 1, s) the sth excited state of the 
(N + I)-particle system, E(N, 0) and E(N + 1, s) 
the associated energies, ft the chemical potential, and 
'!p(x) the field operator in the Heisenberg representa
tion. The spectral weight function, given by 

A(x, x', E) = L P.(x)P:(X')r5(E - Es), (3) 
• 

is important in determining I-electron properties. 
The set {g. (x)} , for reasons that we will discuss 

later, induces the temptation of identifying it with 
the natural spin-orbitals.6 The g's have been assumed 

to be orthonormal,' but there is every indication that 
they are linearly dependent,8 whereas the natural 
spin orbitals are orthonormaU· 2 It has been stated 
that, except for independent particle models, there is 
no 1-to-l correspondence between those many-particle 
states for which the Ps(x) are different from zero and 
an orthonormal set.9 

To make clear the need for a clarification of the 
relation between the natural orbitals and the general
ized overlap amplitudes, we refer to the theory of 
"capture" and "ionization" processes, where the 
problem arises naturally and where attempts to 
establish a connection between the functions we are 
discussing fai1. 1o 

In this paper, we establish the connection and 
derive interrelationships between the gs(x), the !s(x) , 
and the natural spin-orbitals, which we will denote 
by Xi(X), In the process, we obtain a derivation of a 
well-known bound for the occupation numbers of the 
first-order density matrix. The tool employed is 
Lowdin's canonical orthonormalization procedure, 
which is specially devised to cope with linear depend
ences in a setH and which is of importance in the non
orthogonality problem.12 We briefly review the 
properties of canonical orthogonalization, density 
matrices, and field-theoretical Green's functions, then 
establish the desired connections and discuss the 
results. 

CANONICAL ORTHONORMALIZATION: 
AN APPLICATION 

In order to describe the method, we consider first 
a basis set, <p = {<Pk}' of n functions which spans a 
subspace Vp of order p, with n > p. The problem is to 
find a linearly independent basis cp for this subspace. 
The fact that <P is a linearly dependent set implies that 
the metric matrix 

(4) 

has p nonvanishing eigenvalues, which are positive 
since 

(5) 

1313 
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Let U be the unitary transformation that diagonalizes 
A: 

UtLlU=d=(fL 0) o 0 . (6) 

The diagonal matrix d has p nonvanishing eigen
values which can be considered to form a diagonal 
submatrix fL. From (6), it follows that 

LlU = Ud 
and 

AY = YfL, LlA = 0, 

where Y is a partition of U: 

U = (YA). 

(7) 

(8) 

(9) 

The matrix U is of order n X n, Y is a rectangular 
submatrix of order n x p, and A of order n X q with 
q = n - p. It easily follows12 that 

yty = 1p , ytLlY = fL, Ll = YfLyt, (10) 

where 1p is a unit matrix of order p. We introduce the 
set 

(11) 

which has the property 

lItll = fL-!ytAYfL-! = 1p. (12) 

This is the canonical orthonormalization proce
durell •12 ; it means that not only are (11) and (12) 
fulfilled, but also that in Vp we have 

1 = 1I11t = i l17i> <17il, (13) 
i~l 

i.e., the resolution of the identity. We also have 

<I> = lIfL!yt. (14) 

The transformations (II) and (14) are between two 
sets of different dimensionality, via rectangular 
matrices. It can be verified that fLNt is the explicit 
"generalized inverse" of YfL-!, which has no ordinary 
inverse since it is rectangular,l3 

We apply now the preceding results to a seemingly 
artificial problem in linear spaces which will turn out 
to be of importance in the next sections. Consider a 
linear space of dimension p. Assume that there are 
two sets g and f, each of them of dimension larger 
than p. We do not assume that either of them is 
linearly independent. In fact, the only assumptions 
made are that g contains a linear independent subset 
of order r S p and, what is crucial, that the relation 

1 = ggt + fft (15) 

is satisfied. It looks like the resolution of the identity 
(13), but notice that the analogy is superficial. The 

g's and the f's form a set with linear dependencies 
and, of course, with no orthogonality conditions 
whatsoever imposed on it. Yet, (15) leads to interest
ing consequences. Canonical orthonormalization of 
g leads to 

and, hence, 
(16) 

(17) 

The set X is orthonormal and of dimension r S p. 
Therefore, the resolution of the identity in the space 
considered is 

(18) 

where w is in the orthogonal complement to X, 

wtX = Xtw = O. (19) 

If P = r, (18) becomes simply 1 = xxt. From (15), 
(17), and (18) it follows that 

fft = X(lr - fL)X t + wwt . (20) 

Furthermore, on account of (19), 

(21) 

which means that the relation (15) imposes a bound 
on the nonvanishing eigenvalues of gtg: 

!tiS!, i=I,2,···,r. (22) 
Trivially, 

and 
(23) 

(24) 

Also, from (20), we conclude that, if fL = 1p, then 

fft = wwt (25) 

and conversely. !L is idempotent in such a case. 

FIRST-ORDER DENSITY MATRIX AND 
NATURAL ORBITALS 

The first-order density matrix is defined in terms of 
the ground-state wavefunction of the N-particle 
system: 

y(1l l ') = NI'¥(1, 2,"', N) 

X '¥*(l', 2, ... , N) dV2 ••• dVN, (26) 

where I denotes the spin-space coordinates of one 
particle.! The kernel y(l /1') is associated with a 
nonnegative Hermitian operator Yop of finite trace 
and, hence, is diagonalizablel.2.14.15: 

y(lil') = ~ ni Xi(1)x7(l'). (27) 
i 

The Xi are the natural spin-orbitals! and the eigen
values 11; are the usually called occupation numbers. 
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Since Tr y(lil') = N, it follows that 

~ni = N. 
i 

(28) 

The Hilbert-Schmidt theory of integral equationsI5 

implies that the spectrum of ni consists of a non
increasing sequence of positive numbers which can be 
finite or infinite. In the latter case, it tends to zero 
and the Xi form a complete set in L2 with optimal 
convergence properties in the expansion of 'Y.1.2 

An independent particle model is characterized by 
nl = n2 = ... = nN, in which case YoP is idempotent. 
Upper and lower bounds for the ni have been given by 
several authors. It is well known that1.2· l6 

(29) 

This result has been proven using an expansion of 
the wavefunction in terms of ordered configurations 
(Slater determinants)l or by using the Schmidt theoryI4 
of integral equations.2 Lower bounds have been 
given,17 but they involve restricting assumptions on 
the system. 

GREEN'S FUNCTIONS AND GENERALIZED 
OVERLAP AMPLITUDES 

The Green's function5 is defined by 

G(I, t; 1', t') = - ;(T{tp(I, t)tp t (1' , t')}). (30) 

T is the time -ordering operator and the brackets 
indicate an expectation value with respect to the exact 
ground state of the interacting system. Atomic units 
are employed. From (30) and the second quantization 
form of (26), one gets 

y(III') = (tpt(l)tp(I'», (31) 

and it follows that5.6.S.IS 

y(Ill') = -i lim G(l, 0; I', -b). (32) 
~ ... o+ 

From (30) one can obtain the spectral resolution 

G(l, t; I', t') = -i ~/.(1)f:(l')e-iE.(t-t'), t> t', 

= i ~ g.(l)g:(l')e-iE.<t'-tl, t' > t, 
(33) 

where the/., g., and E. are defined in (1) and (2). One 
gets (33) from (30) by inserting a resolution of the 
identity between the field operators, where appro
priate; this involves states of the (N + 1)- or the 
(N - I)-particle system. 

From (32) and (33) it readily follows thatS 

y(l/l') = ! g.(l)g;(1'). (34) 
• 

This last equation should be compared with (27). 
They are both diagonal sums and the temptation of 
identifying the Xi with the g. is great.6.10 If the g's 
were orthogonal, their norms would be the occupa
tion numbers. Yet we know that the g's are linearly 
dependent.s 

On the other hand, we know that, from the commu
tation relations of the field operators 

tp(1)tpt(l') + tpt(l')tp(I) = b(I - I'), (35) 

one can obtain a completeness relation for the overlap 
amplitudes: 

! 1.(1)1:(1') + ~ g.(1)g:(l') = b(l - 1'). (36) 
• 

It is clear from (27) and (34) that we cannot 
identify the g. with the Xi' but there is on the other 
hand a clue in (36): We have two sets of functions, 
the Is and the g., neither of which are necessarily 
linearly independent, but both of which satisfy the 
completeness relation (36). 

NATURAL ORBITALS AND GENERALIZED 
OVERLAP AMPLITUDES 

We notice that the density matrix is the kernel 
of a completely continuous transformationI9 and 
that the appearance of a continuum in the expansion 
(34) does not cause any formal trouble. In fact, this 
is an ordinary situation: If one formally expresses 
y(111') in terms of the eigenfunctions of a hydrogen
like operator with a continuum, diagonalization will 
lead to (27). This is not done in practice, just a con
ceptual possibility which can be justified. IS The 
novelty is not the appearance of the continuum in 
(34), but the linear dependences. 

At this stage we can employ the results which we 
derived previously with canonical orthonormalization. 
We assumed before that we dealt with a metric space 
of order p. Now we deal with an infinite-dimensional 
space where the completeness relation (36) holds. The 
set g = {gl' g2, ... } is, of course, infinite and not 
discrete, but since 

Tr y(Ill') = N, (37) 

from (34) we conclude that we can form the metric 
matrix associated to g, and that it has a finite trace, 
equal to N. 

Canonical orthonormalization of the g. leads to an 
orthonormal set, and with the preceding assumptions 
we see that (36) is an extension of (15) and that (17) 
expresses the interrelationship between (34) and (27). 
The natural orbitals are thus the canonically ortho
normalized overlap amplitudes g •. The eigenvalues 
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of the metric matrix associated with the g. are the 
occupation numbers of the first-order density matrix. 

There are a number of consequences of this con
nection. From (24) it follows that 

From (21) we have 

I <Xi I Is)<ls I Xi) = (1 - ni)bii · (39) 
s 

It should be noted that (22) implies (29) and that 
this derivation of a bound for the occupation numbers 
required the following prerequisites: 

(i) the anticommutation relation (35) in its form 
(36); 

(ii) the formal definition of the Green's function 
(30) and its connection with the density matrix (32); 

(iii) canonical orthonormalization of the set. 

The independent-particle model is fully charac
terized by (25). If the density matrix is idempotent, 
then gtf = 0, i.e., the f's are orthogonal to the g's. 
Furthermore, the f's are associated with the zero 
eigenvalue of the density operator and thus represent 
"empty" orbitals; the set {gs} spans the N-dimensional 
subspace of the Hilbert space associated with the 
"occupied" orbitals in an independent-particle model. 

We can gain further insight into the problem by 
examining in more detail the elements of the metric 
matrix f). = gt g: 

(40) 

Using the definition (1) and a first-quantization repre
sentation, we obtain 

A - Nf \UN-l*(2 ... N)'YN(l '" N) ~at - It, , 0' , 

x 'f't'(I, 2', .. " N')'f'~-1(2', ... ,N') dv dv' 

-f ueN- 1*(2 ... N)r(N-ll(2 '" N 12' ... N') -""It , , N,O , , , , 

X 'f's(2', ... ,N') dv dv' . 
dV l dv l , 

(41) 

Here 'f'~-l is the wavefunction of the sth excited state 
of the (N - I)-particle system and rw,.;-l) the 
(N - l)th-order reduced density matrix of the ground
state wavefunction of the N-particle system. There
fore, the diagonalization of f). is nothing but the 
diagonalization of rw,.;-ll when the latter is expressed 
in terms of the eigenfunctions of the (N - I)-particle 
Hamiltonian. Equation (41) confirms that the non
vanishing eigenvalues of f). are the occupation num-

bers of y(I II'). This follows from the fact that the 
nonvanishing eigenvalues of rw,.;-l) and of r}J~o == Y 
are identical according to the Carlson-Keller theo
rem. 2

,20 Canonical orthogonalization is required since 
the eigenvalue zero may occur in both rw'oll and 
r~~o and, what is worse, with different multiplicity in 
each case.20 

Except for a few, if any, bound states, the set f has 
a norm in the b-function sense, and the procedure 
which was used to obtain the natural orbitals from 
the g's cannot be used. This is most easily seen by 
considering the quantity analogous to (40); i.e., we 
study the metric of the f's (we examine the diagonal 
elements only): 

<Is 118) 

= f 1:(1)1.(1) dV l 

= f 'f't'*(1, ... ,N)r~L(1, ... , Nil', ... ,N') 

X 'f'o(1', ... ,N') dv dv' . (42) 

We see that the diagonal elements of the metric 
matrix associated with the f's are expectation values, 
with respect to the ground state of the N-particle 
system, of the Nth-order reduced density matrices of 
the sth excited states of the (N + I)-particle system. 
Since we are dealing with scattering states, the 
Schmidt theory does not apply in this case. 

DISCUSSION 

We have shown that the natural spin-orbitalsl 

which diagonalize the first-order reduced density 
matrix are related to the generalized overlap ampli
tudes of Green's function theory5-l0 by the canonical 
orthonormalization procedure of L6wdin.ll, 12 

This relation, which aroused interest in several 
contexts~· 7-10 is established and it leads to orthog
onality properties like (38) and (39) and other con
sequences which follow from (15)-(25). 

The natural orbitals provide a basis for expanding 
the Green's function, for [ < [I, in a natural way. 
For [ > [', we have no such simple property and a 
discussion of the zero eigenvalue of y(1 11') should 
precede any statement on this. 

The results obtained in this paper exploit a connec
tion between conceptual tools sometimes used in a 
mutually exclusive fashion. An immediate application 
is to the theory of "capture" and "ionization" 
processes. lO Applications to atomic and molecular 
physics are under way. In treating finite systems, 
the modifications of external fields (e.g., nuclear 
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framework, center of mass, etc.) upon changes in the 
number of particles must be properly treated. 

ACKNOWLEDGMENT 

We are grateful to Professor P.-O. Lowdin for 
generous support and stimulating interest. 

• Sponsored in part by the Swedish National Research Council 
and in part by the Air Force Office of Scientific Research (OSR) 
through the European Office of Aerospace Research (OAR), U.S. 
Air Force, under Grant EOOAR-69-0043. 

1 P.-O. Lowdin, Phys. Rev. 97, 1474 (1955); in Advances in 
Chemical Physics, I. Prigogine, Ed. (Interscience Publishers, New 
York, 1959), Vol. 2, p. 207. 

• For a review, see A. J. Coleman, Rev. Mod. Phys. 35, 668 
(1963). For updated references and discussions, see Reduced Density 
Matrices with Applications to Physical and Chemical Systems 
(Queen's Papers on Pure and Applied Mathematics, No. 11), 
A. J. Coleman and R. M. Erdahl, Eds. (Queen's University, 
Kingston, Ontario, 1968). 

3 P.-O. Lowdin and H. Shull, Phys. Rev. 101, A30 (1956). (This 
is the first "natural analysis" of a wavefunction and it has been 
followed by many others. See Ref. 2.) 

4 For a review, see J. Linderberg, Magy. Fiz. Foly6irat 16, 5 
(1968). See also J. Linderberg and Y. Ohm, J. Chern. Phys. 49, 
716 (1968), and references therein. See also L. Hedin, Phys. Rev. 
139, A796 (1965). 

JOURNAL OF MATHEMATICAL PHYSICS 

S They can be found in any textbook on the Green's function 
method, e.g., A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyalo
shinski, Quantum Field Theory in Statistical Physics (Prentice-Hall, 
Englewood Cliffs, N.J., 1963). 

• L. Hedin and S. Lundqvist, Uppsala University, Uppsala, 
Sweden, Quantum Chemistry Group, TIll, 1960 (unpublished). 

7 G. W. Pratt, Rev. Mod. Phys. 35, 502 (1963). 
8 L. Hedin, University of Uppsala, Uppsala, Sweden, Quantum 

Chemistry Group, TN 84, 1962 (unpublished). 
• L. Hedin, A. Johansson, B. I. Lundqvist, S. Lundqvist, and 

V. Samathiyakanit, Arkiv Fysik 39, 97 (1967). 
10 T. Berggren, Nucl. Phys. 72, 337 (1965); C. F. Clement, Phys. 

Letters 288, 395, 398 (1969). 
11 P.-O. Lowdin, Advan. Phys. 5, 1 (1956). See also P.-O. Lowdin, 

Ann. Rev. Phys. Chern. 11, 107 (1960). 
12 P.-O. Lowdin, University of Uppsala, Uppsala, Sweden, 

Quantum Chemistry Group, TN 213, 1968 (to be published); 
P.-O. Lowdin, Intern. J. Quantum Chern. IS, 811 (1967). 

13 E. H. Moore, General Analysis (American Philosophical 
Society, Philadelphia, 1935), Vol. I; R. Penrose, Proc. Cambridge 
Phil. Soc. 51, 406 (1955). 

14 E. Schmidt, Math. Ann. 63, 433 (1907). 
15 F. G. Tricomi, Integral Equations (Interscience Publishers, 

New York, 1957). 
16 F. Sasaki, Phys. Rev. 138, BI338 (1965). 
17 w. Kutzelnigg and V. H. Smith, J. Chern. Phys. 42, 2791 (1965). 
18 M. H. Stone, Linear Transformations in Hilbert Space (American 

Mathematical Society Colloquium Publications, New York, 1932), 
Vol. XV, Chap. VII. 

19 F. Riesz and B. Sz.-Nagy, Functional Analysis (F. Ungar 
Publishing Co., New York, 1955), p. 206. 

20 B. C. Carlson and J. M. Keller, Phys. Rev. 121, 659 (1961). 

VOLUME 11, NUMBER 4 APRIL 1970 

Some Simple Observations on Griffiths' Theorems 
for the Classical Heisenberg Model* 

ROBERT H. T. YEH 
Department of Physics and Astronomy, State University of New York 

Buffalo, New York 14214 

(Received 6 November 1969) 

We show that Griffiths' theorems are valid for any classical ferromagnetic Heisenberg model in the 
weak interaction limit. They are also valid for certain chain-type and ring-type models, regardless of 
interaction strength. 

Griffiths l has shown that, for an Ising ferromagnet 
in zero field, with arbitrary crystal structure and 
range of interaction, the spin correlation obeys two 
theorems. First, it is nonnegative (Griffiths' first 
theorem). Furthermore, it is a monotonic increasing 
function of the interactions (Griffiths' second theo
rem). These theorems are quite useful and have been 
generalized in various ways.2 Recently, it was pointed 
outS that Griffiths' second theorem does not hold for 
the (quantum) ferromagnetic Heisenberg model 
because of the existence of a counterexample. It is 
natural to ask, what is the reason for this difference 
between the Ising model and the Heisenberg model? 
Is it due to the quantum nature of spin operators 

which give rise to some uncertainties in the orienta
tion of each spin vector? Or is it due to the I-dimen
sional nature of spin vectors of the Ising model which 
plays an important role in previous proofs of Griffiths' 
second theorem? We do not have a complete answer 
to these questions. However, we show that Griffiths' 
theorems are valid for the classical ferromagnetic 
Heisenberg model under certain conditions. 

Let 

where J;i is the interaction parameter and B is the 
applied magnetic field. Since temperature is kept 



                                                                                                                                    

NATURAL SPIN-ORBITALS AND GENERALIZED OVERLAP AMPLITUDES 1317 

framework, center of mass, etc.) upon changes in the 
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We show that Griffiths' theorems are valid for any classical ferromagnetic Heisenberg model in the 
weak interaction limit. They are also valid for certain chain-type and ring-type models, regardless of 
interaction strength. 

Griffiths l has shown that, for an Ising ferromagnet 
in zero field, with arbitrary crystal structure and 
range of interaction, the spin correlation obeys two 
theorems. First, it is nonnegative (Griffiths' first 
theorem). Furthermore, it is a monotonic increasing 
function of the interactions (Griffiths' second theo
rem). These theorems are quite useful and have been 
generalized in various ways.2 Recently, it was pointed 
outS that Griffiths' second theorem does not hold for 
the (quantum) ferromagnetic Heisenberg model 
because of the existence of a counterexample. It is 
natural to ask, what is the reason for this difference 
between the Ising model and the Heisenberg model? 
Is it due to the quantum nature of spin operators 

which give rise to some uncertainties in the orienta
tion of each spin vector? Or is it due to the I-dimen
sional nature of spin vectors of the Ising model which 
plays an important role in previous proofs of Griffiths' 
second theorem? We do not have a complete answer 
to these questions. However, we show that Griffiths' 
theorems are valid for the classical ferromagnetic 
Heisenberg model under certain conditions. 

Let 

where J;i is the interaction parameter and B is the 
applied magnetic field. Since temperature is kept 
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constant in our calculation, we absorb the tempera
ture factor f3 into Jij and B. We note that, if all the 
interaction parameters are identical or Jij = J ~ 0, 
then the canonical ensemble average of Li>i 0i' OJ 
is a monotonic increasing function of J. This holds 
for arbitrary crystal structure and range of interaction, 
and ° may be either a classical spin vector or a 
quantum operator. Also, ° may be of any dimension 
or magnitude. 

The proof is as follows. It is obvious that Z = 
Tr e-1iH ~ 1 and 

so that 

From now on, we assume that B = O. Let us 
consider a classical Heisenberg model of arbitrary 
crystal structure and range of interaction. The 
partition function is 

2 = Tr (exPi~/ijOi • OJ), Jij ~ O. 

Tr indicates integration over all possible directions of 
o's. Let us classify all crystal structures by connecting 
all Jii ¢ 0 bonds. If there is at least one ring formed 
by these connected bonds, we call the model a ring 
type; otherwise, we call it a chain type. For the chain 
type, we can change integration variables so that all 
the Jii are decoupled and Z = IIi>;!(Jjj). [For 
example, if we have a linear chain of N spins with 
nearest-neighbor interactions, then 

2 = (217)N10(J12)10(J23) ... 10(1 N-1,N) 

for 2-dimensional spins and 

Z = (417)N!(J12)f(J23)" '!(IN- 1,N) 

for 3-dimensional spins. 10 is the modified Bessel 
function and I(J) = (sinhJ)/J.] It is clear that 
o210gZ/oJaoJb = 0 if Ja ¢ Jb. This is true, independent 
of the dimension of the spin vector. Furthermore, 
for 2- and 3-dimensional spins, it is easy to see that 

So both theorems of Griffiths are valid for chain-type 
models. 

Ring-type models are more complicated and we 
restrict our discussions to the weak-coupling limit 
(i.e., all the Jii -). 0). In this limit, we can expand 
log (Z/20) in powers of J, where 20 is the value of 2 
when all the Jii = O. For 2- or 3-dimensionat spins, 
we find that 

log (Z/Zo) = L1 + L2 + L3 + ... , (2) 

where L j is of the order Ji and 

L1 = 0, 

L2 = Z CiiJ;i , Cji ~ 0, (3) 
i> j 

It is clear that oL210Ja ~ 0 and 02L3/oJaoJb ~ 0; 
hence, both theorems of Griffiths are valid. If the 
smallest ring in the structure contains n bonds, then 
the first nonvanishing term of Zi 02L;!oJaoJb has 
i = n, and it is nonnegative. (For i < n, the system 
is essentially like chain type; hence, 02LJoJaoJb = 0 
for Ja ¢ Jb.) 

To illustrate these results, let us consider a concrete 
example of three 2-dimensional spins °1 , °2 , and °3 , 

They form a ring by the bonds J12 , J23 , J31 . The 
partition function 2 of the system is 

2 = (2" dOl (21T d0
2 

(2" d0
3 ./0 Jo Jo 

x exp [J12 cos (01 - ( 2) + J 23 cos (02 - ( 3) 

+ J31 cos (03 - ( 1)], (4) 

In the limit of small J's, we easily find that 

log (2/Zo) = HJ~2 + J~3 + J:1) + iJ12J23J31 , (5) 

where Zo = (217)3. 
Actually, Griffiths' second theorem is valid for the 

above model and some other models, regardless of 
interaction strength. Let us consider a lattice structure 
of 2-dimensional spins. We assume that there are 
three spins °1 , °2 , and °3 , in which 01 and 0 3 interact 
only with 02 and with each other, but 02 may interact 
with any number of spins. We also assume that J12 = 
J23 (= J), and we let J31 = J'. Then Griffiths' second 
theorem is valid for the three spins in this ring; that is, 
02 log ZloJoJ' ~ O. 

To prove this, we first make a variable transforma
tion from (Ol, ()2, ()3) to «()12' ()2, ()23) in the partition 
function Z, where 812 = 81 - 82 and 823 = 82 - 83 , 

Then Z = AZR , where ZR denotes the ring contribu
tion to the partition function and A is independent of J 



                                                                                                                                    

GRIFFITHS' THEOREMS FOR CLASSICAL HEISENBERG MODEL 1319 

andJ': 

fb f21T 
ZR = Jo dOn Jo d023 

X exp [J(cos 012 + COS ( 23) + J' COS (012 + (23)] 

fh 
= 81T Jo da.eJ' 0082«10(21 COS a.). (6) 

We note that 
1 a log Z 1 a log ZR 

(01 • ( 2) = (02 • ( 3) = - -- = - ~ 0, 
2 oj 2 oj 

) a log Z a log ZR 
(01 • 0 3 = -- = > o. 

oj' aJ'-
(7) 

From Eq. (6), we obtain 

0
2 

log Z = (fh dyeJ' 008211 (2J COS y»)-2 
oJ'oJ Jo 0 

X Lh da. Lh d{JeJ'(00S2«+0082{1) 

X 10(21 cos a.)Io(2J cos {J)(cos2 a. - cos2 (J) 

( 
11(21 cos a.) (JIl(2JCOS{J») 

X cos a. - cos . 
10(21 cos a.) 10(21 cos{J) 

(8) 

It is clear that 02 log ZlaJ' oj is nonnegative provided 
that 

Il(x) d 
- = -log Io(x) 
Io(x) dx 

is a monotonic increasing function of x, i.e., 

d2 

dx210g Io(x) ~ o. 

This is indeed the case, since 

d2 

-2 log Io(x) = 2[IO(X)]-2 
dx 

X L" dO f: dO' e"'(008 9+008 6')( cos 0 - cos 0')2 ~ o. 

(9) 

From this we conclude that both theorems of 
Griffiths' are valid for all Jii , for chain-type models of 
2-dimensional spins with three-spin rings of the above 
kind decorated at the tips. 

It is of interest to note that Griffiths' second theorem 
is also valid for a similar quantum Heisenberg ring 
model. Consider again a simple ring of three spins, 
with inter~ctions J12 = J23 = J and J3l = J'. The 
correlation function is obtained from a modified 
partition function3 

Z* = Tr [exp 2(JP12 + JP23 + J'P3l)], 

where PkZ = 1(1 + Ok' Oz) and Z* differs from Z 
only by a constant factor 

a log Z = a log Z* _ 1. 
aJkZ aJkl 

Eigenvalues of J(P12 + P23) + J IP3l are easily found 
to be 21 + J', 21 + JI, J - J' , and J' - J: each is 
doubly degenerate. So 

Z* = 4[e2(2J+J') + cosh 2(J - JI)]. (10) 

From this we obtain 

a2 10gZ , 
-~ = 4[e4J+2J + cosh2(J - J')r2(e6J - 1) ~ o. 
aJoJ' 

(11) 

Hence, Griffiths' second theorem is valid for this 
model for all values of positive J and J'. 
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H. R. Lewis's treatment of the time-dependent harmonic oscillator is extended to the general time
dependent nonlinear oscillator. A prescription is given for obtaining an adiabatic invariant as a power 
series in the amplitude and to any order in the time variation of the coefficients. An exact invariant of the 
same algebraic form as the adiabatic invariant is also derived. The exact invariant can be so chosen that, 
at any particular time, it is equal to the adiabatic invariant. Comparison of the adiabatic and exact in
variants permits a calculation of the nonadiabatic changes in the adiabatic invariant in the course of 
time. Applications to a linear and a nonlinear example are presented and the statistical distribution of the 
long time changes in the adiabatic invariants are determined in the two cases. 

I. INTRODUCTION 

In this paper, we propose to extend Lewis's treat
ment! of the slowly varying harmonic oscillator to the 
general case of a slowly varying Hamiltonian in one 
degree of freedom, which we suppose can be expanded 
in powers of the coordinate and momentum 

H(x,p, t) = H 2(x,p, t) + Ha(x, p, t) + .. " (1) 

where 

H 2(x, p, t) = !a(t)p2 + b(t)xp + ic(t)x2 (2) 

is a homogeneous quadratic function of the variables 
x and p with slowly varying coefficients, and where 
Ha, H4 , etc., are likewise polynomials of degrees 3, 
4, etc. It turns out that Lewis's treatment, when so 
extended, yields convenient practical procedures for 
calculating adiabatic invariants to at least the fourth 
power in the amplitudes of oscillation and to fairly 
high orders in the time derivatives of the coefficients 
in H(x, p, t), and, furthermore, yields practical 
methods for calculating the statistical distribution of 
the nonadiabatic changes for the adiabatic invariants 
over a period of time for any particular time variation 
of H(x, p, t). The method enables us to treat separately 
the nonlinearities and the time variations of the co
efficients. It also allows us to distinguish transient 
variations in the lower-order adiabatic invariants, 
which can be eliminated by calculating corrections to 
higher order in the time derivatives, from genuinely 
nonadiabatic changes, which can be calculated by 
comparing an exact invariant with the adiabatic 
invariant. 

Throughout this paper, the term "exact invariant" 
means a function J(x,p, t) which is either exactly 
constant, in the linear case, in virtue of the equations 
of motion derived from the Hamiltonian (2), or, in the 
nonlinear case, a function which is constant to some 
order in the amplitude of the motion and independ
ently of the time rates of change of the coefficients in 

the Hamiltonian (1). By "adiabatic invariant," we 
mean a function J(x, p, t) which is approximately con
stant when the coefficients in the Hamiltonian are 
slowly varying; more precisely, a function whose time 
derivative contains only terms higher than some partic
ular order in the time derivatives of the coefficients of 
the Hamiltonian. In addition, we require the adiabatic 
invariant J(x,p, t) at any time to be expressible in 
terms of the coefficients in the Hamiltonian H(x, p, t), 
and possibly their time derivatives, evaluated at the 
time t; this is in contrast with the exact invariant 
which in general depends on the entire history of the 
oscillator, that is, it involves integrals over t. 

We have omitted a linear term H l , so that x = 
p = 0 is a solution of the equations of motion. In the 
general case when a linear term is present, we may 
choose any solution of the equations of motion, which 
we may call the equilibrium solution or reference solu
tion, and the variables x, p in Eq. (1) are measured 
relative to the reference solution. A sufficiently small 
linear term H! may, however, be treated as a per
turbation, and introduced after the linear problem 
arising from H2 has been solved. 

We are interested only in the case in which the 
solutions given by the Hamiltonian (1) are oscillatory 
when the coefficients a, b, c, etc., are held constant. 
We further assume that the amplitudes are small 
enough so that expansions in powers of the variables 
are appropriate, and, in fact, we assume that suc
cessively higher-order terms are successively smaller 
in magnitude, except for an occasional term which 
may vanish. 

In Sec. II, we consider the solution of the linear 
problem given by the Hamiltonian H 2 • Lewis! has 
considered the special case in which the Hamiltonian 
has the form 

(3) 

He discovered an exact invariant of the equations of 

1320 
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motion which is very closely related to the adiabatic 
invariant for the oscillator (3). In fact, Lewis's method 
also gives a very convenient way of calculating the 
adiabatic invariant to any desired order. We derive 
essentially the same result in Sec. II by a somewhat 
different procedure for the more general Hamiltonian 
(2). We obtain the invariant by making a linear trans
formation to a set of variables X and P, such that the 
new Hamiltonian takes the form 

K2(X, P, t) = to(t)(X2 + P2). (4) 

The new equations of motion now yield the exact 
invariant 

(5) 

Note that the action J is also the adiabatic invariant 
for the Hamiltonian K2 ; we shall see that it is closely 
related to the adiabatic invariant for the Hamiltonian 
H 2 , of which J, when expressed in terms of the 
variables x and p, is an exact invariant. We may also 
transform to polar coordinates J, y in the X, P plane 
by means of a canonical transformation. 

The linear transformation of x, P to X, P or J, y is 
also made in the higher-order terms H a, etc. In Sec. 
III, we show how to construct a series of canonical 
transformations which transform away successively 
higher terms H a, H 4 , etc., except for certain terms 
which depend only upon the action J. Thus, to any 
order in x and p, we are able to reduce the Hamil
tonian (1) to the form 

K(J, t) = n(t)J + ik2(t)J2 + . . . . (6) 

The action J is, therefore, an exact invariant of the 
equations of motion to this order. The coefficients in 
the power series which expresses J in terms of x and p 
are functions which can be so chosen that at any 
particular time to, J is exactly equal to the adiabatic 
invariant at that time to. The transformation from x 

and p to J and y generally depends upon the history of 
the system between to and the later time t, that is, it 
depends upon the coefficients in the Hamiltonian 
during that time period. However, an approximate 
transformation can be derived to any order in x and 
p, and also to any order in the rates of change of the 
coefficients, which depends only upon the coefficients 
and their derivatives at a particular time t at whIch J 
is to be evaluated. The resulting J is the adiabatic in
variant and is approximately equal to the exact in
variant if the coefficients vary sufficiently slowly. 
Since the exact and adiabatic invariants are equal at 
to, the difference between them at any later time t is a 
measure of the change in the adiabatic invariant. 
Examples are given in Sec. IV. 

We note, in passing, that the frequency of the 
nonlinear oscillator at any particular time is given as 
a function of the amplitude J by the equation 

dy = oK = 0 + k 2J + . . . . (7) 
dt oj 

In constructing an invariant for the linear problem 
given by H2 , we make use of the phase-amplitude 
form of the solution of the equations of motion. The 
phase-amplitude solution was used in a similar way by 
Courant and Snyder2 to construct an invariant for the 
case when the coefficients in Eq. (2) are periodic 
functions of the time. Our method of attacking the 
nonlinear problem by a sequence of successive canoni
cal transformations is analogous to the method used 
by Birkhoffa in treating the corresponding dynamical 
problem when the coefficients are periodic functions 
of the time. Birkhoff's method was later extended by 
Moser4 to the case when there is a resonance between 
the oscillator frequency and the periodicity of the 
coefficients; this case, of course, does not occur in 
our problem, where the coefficients are all taken to be 
slowly varying functions of the time. The method 
could, however, be easily extended to the case of 
periodic coefficients with slowly varying amplitudes 
and phases. 

II. THE LINEAR PROBLEM 

The linear equations of motion which follow from 
the Hamiltonian H2 are 

x = ap + bx, 

p = -bp - ex. (8) 

We assume that periodic or approximately periodic 
solutions of these equations exist and that a particular 
complex solution x, p is given which we write in the 
form 

x = wei(c/>+n), p = ize i (4)+12), (9) 

where w, z, Xl' X2' and 4> are real functions, where 
w > 0 and z > 0, and we assume that the solution 
(9) is genuinely complex; that is, not both Xl and X2 
are constant. The complex-conjugate solution x* and 
p* is then an independent solution of Eqs. (8). The 
phase 4> is to be given by 

4> = J o.(t) dt, (10) 

where O(t) is a frequency which we may choose to 
suit our convenience; we intend that O(t) at least 
approximate the (varying) oscillator frequency so that 
w, z, Xl' and X2 are slowly varying under adiabatic or 
nearly adiabatic conditions. We agree to normalize the 
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solution (9) by setting the Wronskian of that solution 
with its complex conjugate equal to 2i: 

(x*p - xp*)/2i = wz cos (Xl - Xz) = 1. (11) 

The Wronskian is constant, as may readily be verified 
by direct substitution in the equations of motion (8). 

By substituting the solution (9) in the equations of 
motion and using the normalization (11), we can 
obtain the following differential equations for the 
functions w, z, and 4>: 

w - bw = az sin (Xl - Xz), (12) 

i + bz = -ew sin (Xl - Xz), (13) 

~ = n = a/2wz + e/2zz - Xl - Xz. (14) 

By squaring Eq. (12) and using Eq. (11), we can ex
press z as a function of wand its first derivative: 

ZZ = w-z + (w - bw)2a-z. (15) 

If we insert Eq. (15) in the left-hand side of Eq. (13) 
and use Eq. (12) to eliminate sin (Xl - Xz), we obtain 

IV - a-ldw + (ae - bZ - b + a-ldb)w = aZw-3• 

(16) 

The term involving w can be eliminated by defining a 
new variable a-1w (see Appendix). We assume that an 
exact or suitable approximate solution of Eq. (16) is 
available for the amplitude function w, and we use 
this function to construct the invariant J. In the case of 
the Hamiltonian (3), for which a = 1, b = 0, and 
e = w 2, Eq. (16) reduces to Lewis's Eq. (4)1 which is 
the same as Eq. (3.2) of Courant and Snyder.z 

If we multiply solution (9) by an arbitrary complex 
constant Aei8 and take the imaginary part, we obtain 
the most general real solution of Eq. (8), which we 
write in the form 

x = Aw cos Xl sin (rfo + ()) 
+ Aw sin Xl cos (rfo + 0), 

p = Az sin Xz sin (4) + ()) 
+ Az cos X2 cos (4) + 0). (17) 

We now make a linear transformation to variables X 
andP: 

x = Xw cos Xl + Pw sin Xl' 

P = Xz sin Xz +PzcosXz· (18) 

These equations may be solved for X and P, making 
use of Eq. (11) : 

X = xz cos Xz - pw sin Xl' 

P = -xz sin X2 + pw cos Xl. (19) 

Since the Poisson bracket (x,php is 1 by Eq. (11), 
the transformation (18) is canonical. We see from Eqs. 
(17) and (18) that 

X = A sin (4) + ()), P = A cos (rfo + 0), (20) 

which is the general solution of the equations of motion 
which follow from the Hamiltonian (4). It is not 
difficult to construct a generating function for the 
transformation (18) and to verify that it transforms 
the Hamiltonian Hz [Eq. (2)] into the Hamiltonian 
Kz [Eq. (4)]. 

We immediately see from Eq. (20) that the following 
quantity is a constant of the motion: 

J = HXz + PZ) = lzzxz - zwxp sin (Xl - Xz) 

+ lWZp2. (21) 

By using Eqs. (11) and (15), we can express J in terms 
of the single function wand its derivative 

J = tw-Zx2 + Hwp - (w - bw)a-lx]z. (22) 

In case a = 1, b = 0, this is the invariant obtained by 
Lewis. l If the coefficients a, b, and e are periodic 
functions of t, and we choose for w the periodic 
solution of Eq. (16), then J is the familiar invariant of 
the Hill equation. 2 

For any time-dependent coefficients a, b, and e, if 
w is a solution of Eq. (16), then J as given by Eq. (22) 
is a constant of the motion. If a, b, and e, are constant, 
Eq. (16) has the solution 

w = (~r (23) 

where 
(24) 

When the coefficients are slowly varying, Eq. (23) 
gives a solution for w which satisfies Eq. (16) to the 
zeroth order in the time derivatives. If this solution 
for w is substituted in Eq. (22) and w neglected, we 
obtain the familiar zero-order expression for the adia
batic invariant,6 J = Hz/w. Equation (16) can be 
solved in a straightforward way for w to any desired 
order in the time derivatives by successive approxi
mations starting with Eq. (23). If the resulting w is 
substituted in Eq. (22), we obtain a formula for the 
adiabatic invariant J to the corresponding order in the 
time derivatives. If at any time to, we start with initial 
values Wo and Wo given by Eq. (23) or by some higher
order adiabatic solution of Eq. (16), and then inte
grate Eq. (16) to find w at any later time t, then this w, 
when substituted in Eq. (22), gives an exact invariant 
J which is initially equal to the adiabatic invariant. 
The difference between the two at time t then gives 
the change in the adiabatic invariant. 
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We note that if the coefficients a, b, and c are con
stant, we can readily write down the general solution 
of Eqs. (8), and hence we can write down the general 
solution of the nonlinear Eq. (16) for w, which turns 
out to be 

w2 = (a2w-2 + A2 + B2)! + A cos 2wt 

+ B sin 2wt, (25) 

where w is given by Eq. (24) and A and B are arbitrary 
constants. If the constants A and B are zero, Eq. (25) 
yields the adiabatic solution (23). Thus, if we consider 
a case where the coefficients a, b, and c are constant, 
both initially and finally, then the solution w is given 
initially by Eq. (23) and finally by Eq. (25), where the 
constants A and B characterize the deviation from 
adiabaticity. We use this result in Sec. IV to study the 
nonadiabatic change in the adiabatic invariant for the 
linear oscillator. Equation (25), when A and Bare 
allowed to be slowly varying quantities, is also a 
convenient starting point for developing approximate 
nonadiabatic solutions to Eq. (16). (See Appendix.) 

Ill. THE NONLINEAR PROBLEM 

If we make the canonical transformation (18), the 
nonlinear Hamiltonian (1) becomes 

K = !O(X2 + P2) + Ka(X, P, t) + "', (26) 

where Ka, K 4 , etc., are obtained from H a, H 4 , etc., by 
simply substituting from Eq. (18). 

We may introduce polar coordinates J, Y in the 
phase plane for which X, P are rectangular coordi
nates by means of the following canonical transforma
tion: 

X = (21)! sin y, P = (2J)! cos y. (27) 

It is readily verified that this transformation satisfies 
the Poisson-bracket condition (X, Ph1 = 1. The 
Hamiltonian K(J, y) is obtained from the Hamiltonian 
K(X, P) by a simple substitution from Eq. (27) and we 
therefore use the same symbol K for the Hamiltonian 
in either case. If K is independent of y, then J is a 
constant of the motion and J and yare called action
angle variables.5 

If we make the substitution (27) in the Hamiltonian 
(26), we obtain 

K=OJ+Ka(J,y,t)+···. (28) 

Since Kn is a polynomial of degree n in X and P, it is 
evident that with a little trigonometric rearrangement 
we may write 

Kn(J, y, t) = ! Knl(t)(2J)in cos [ly + Pnl(t)], (29) 
I 

where the sum is over all integers lless than or equal 
to n and having the same parity (even or odd) as n. 
We now show how to construct a sequence of trans
formations which successively eliminate the y depend
ence from the terms Ka, K4 , etc. At any stage in this 
process, the transformed variables to nth order J(n) , 
YIn) may be thought of as polar coordinates in a phase 
space whose rectangular coordinates X(n) , PIn) are 
given by Eq. (27). 

Suppose that we have succeeded in transforming 
away the y dependence of all terms through K n_ I , and 
that the resulting canonical variables are J(n-I) and 
y(n-ll' The Hamiltonian then has the form 

K(n-I) = OJ(n_I) + (terms of order < n) 

+ ! Kn!(n_ll(t)(2J(n_ll)~n 
! 

x cos [lY(n-I) + Pn!(n-ll(t)] 

+ (terms of order> n). (30) 

We now transform to nth-order variables by means of 
the generating function 

S = J(n)y(n-I) + ! Sn!(t)(2J(n»ine i/1("-1) + C.c., (31) 
! 

which yields the transformation 

as 
J(n-I) =--

aY(n-ll 

- J + '" 'IS (2J )!n iI1(,,-1) + - (n) £., I nl (n) e c.c., 

as 
YIn) = aJ 

(n) 

! 
(32) 

- Y + '" nS (2J )!n-l i I 1("-1) + - (n-ll £., nl (n) e c.c., 
1 

as 
K(n) = K(n-I) + at 

- K + '"'- '" (2J )!n /11(,,-1) + - (n-I) £., .lnl (n) e c.c., 
! 

(33) 

(34) 

where "c.c." stands for "complex conjugate." If we 
substitute from Eqs. (30) and (32) in Eq. (34), we can 
see that we obtain 

K(n) = OJ(n) + (terms of order < n) 

+ ! (Snl + iiOSn, + t K nHn_I)eiP
"I("-1) 

! 

X (2J(n»inei!1("-1) + C.C. 

+ (terms of order> n). (35) 

The terms of order less than n in Eq. (35) are of 
precisely the same form as in Eq. (30) with J(n) sub
stituted for J(n-I) . The terms of order greater than n 
are in general modified by the substitution (32). If I 
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is not zero, we can eliminate the corresponding term 
from the sum in Eq. (35) by requiring that Snl satisfy 
the differential equation 

S + illlS = _1 K (t)eiPnl (n-1i(t) nl nl "2 nl(n-I) (36) 

We could also eliminate the terms with 1= 0, but the 
resulting transformation would contain secular terms 
increasing linearly with the time, even when the 
Hamiltonian is constant or slowly varying, a situation 
we prefer to avoid. Since I and n have the same parity, 
we see that the transformation (31) eliminates all 
terms of order n when n is odd, and eliminates all 
terms except that with I = 0 when n is even. To com
plete the transformation, Eq. (33) must be solved for 
Yen-I) by successive approximations to whatever order 
we wish to carry out the procedure. The result is then 
to be substituted in the terms of order n and higher to 
obtain the Hamiltonian K( n) in terms of nth order 
variables. The result is clearly of the form 

K(n) = llJ(n) + I 1 kn,(t)J(~) 
n' n' 

+ (terms of order> n), (37) 

where the sum is over integers n', for which 2 ::;; 
n'::;; tn, 

kn' = tn' K 2n',O.(2n'-I) , 

and we may take fJno = O. To any desired order n in 
the amplitude of the motion, we have now succeeded 
in reducing the Hamiltonian to the form (6) by means 
of a succession of canonical transformations. The 
final nth-order variables J(n) , Yen) are related to the 
original variables by a transformation of order n in 
the amplitude. The final action variable J(n) is a con
stant of the motion to this order. 

The solution of Eq. (36) is 

S - _1e-i,4>fK eil4>+iPnz<n-l) dt nZ - 2 nUn-I) , 

where c/> = S II dt. 

(38) 

If KeiP is slowly varying, then Eq. (36) can be solved 
in the adiabatic approximation by successive approxi
mations as 

S~~) = - Knl(n_OeiPnz<n-l)/2illl, 

S (m+l) _ S(O) _ c.(m)/·Zrl 
n! - n! ~n! I ;!,~. (39) 

If S~7) is substituted in the transformation equations 
(32) and (33), the resulting action variable Ji;::), when 
expressed in terms of the original variables, gives a 
formula for the adiabatic invariant constant to order n 
in the amplitudes of the motion and to order m in the 
time derivatives of the coefficients in the Hamiltonian. 
Note that two sequences of successive approximations 

are involved in calculating the adiabatic invariant, in 
powers of the amplitude, and in successive orders in 
the time derivatives of the coefficients. If we use the 
exact solution (38) for S, we can treat the time depend
ence exactly, to obtain an invariant exact to nth order 
in the amplitude. By properly choosing the constant of 
integration in Eq. (38), we can make the exact solution 
correspond initiaIly to the adiabatic solution (39). 
Any exact or nonadiabatic approximation to the 
integral in Eq. (38) (e.g., a saddle-point approxi
mation) then allows us to calculate or estimate the 
nonadiabatic changes in the value of the adiabatic 
invariant. 

Although the procedure we have outlined is 
straightforward in principle, in practice it is difficult 
to carry the procedure to an order n larger than about 
four without a prohibitive amount of labor, unless 
lower-order terms in the Hamiltonian happen to 
vanish. One can, however, use the method to estimate 
the effect of the time variation of any particular higher
order term in the Hamiltonian upon either the form of 
the adiabatic invariant or the nonadiabatic change in 
the adiabatic invariant. The successive orders of adia
batic approximation in the procedure indicated in Eq. 
(39) involve considerably less algebraic labor and can 
therefore be carried several orders beyond the lowest 
before the formulas become too unwieldy. 

A difficulty may arise in carrying the above pro
cedure to higher-order terms when the exact solution 
(38) is used in an earlier transformation. The exact 
solution (38) of Eq. (36) differs in general from the 
adiabatic solution (39) by terms which oscillate with 
frequency /0.. These transient terms can be present 
even during a period of time when K and fJ are con
stant or very slowly varying; they record the effects of 
past nonadiabatic behavior of the coefficients K and fJ. 
During a period when the Hamiltonian is constant, the 
phase points move on curves of constant Hamiltonian. 
However, if nonadiabatic changes have occurred pre
viously, then a group of phase points which initially 
lay on a curve of constant Hamiltonian no longer lie 
on such a curve, and consequently the curve on which 
they lie moves periodically in the phase space. The 
role of the terms of period III in S is to describe this 
behavior. If, now, the exact solution of Eq. (36) is used 
in the transformation (34), the new Hamiltonian con
tains higher-order terms which oscillate with fre
quencies III and higher harmonics. Such terms may 
lead to resonances in the solution of Eq. (36) for 
higher-order terms. These resonances lead to secular 
increases in the amplitude of the higher-order trans
formation coefficients, even during periods when the 
original Hamiltonian was constant. This difficulty is 
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presumably associated with the fact that, for a non
linear oscillator, the phase points traverse the phase 
trajectories with frequencies which depend upon the 
amplitude. Hence, even a simple closed curve which 
does not coincide with a phase trajectory becomes 
progressively more complicated as its various parts 
traverse phase trajectories with various frequencies. 
This difficulty is not serious when the above method is 
used for the purpose of obtaining practical estimates 
of the nonadiabatic changes of the adiabatic invariants. 
If the calculation is carried only to the first order in 
which such changes occur, the difficulty does not 
arise. Even in higher orders, the secular increase is very 
slow, so long as the nonadiabatic changes have been 
small; they therefore do not interfere with estimates of 
small nonadiabatic changes produced by variations in 
the Hamiltonian during a finite period of time. 

n should be noted that nonlinearities may not only 
modify the oscillator frequency and the shape of the 
phase trajectories, but that they may also change the 
topological character of those trajectories at large 
amplitudes. There are in general separatrices in the 
phase space which separate the regions in which the 
motion has a different topological character. Our 
treatment here is applicable only to small-amplitude 
motions. Successively higher-order terms in the am
plitude do not become successively smaller when the 
amplitude reaches the neighborhood of the smallest 
separatrix. Since the frequency of oscillation vanishes 
on a separatrix, formula (7) can be used to estimate 
the amplitude at which the separatrix occurs, although 
this is often obvious from inspection of the function H. 
If the motion beyond the separatrix is also periodic, 
it can often be treated approximately by methods 
similar to those outlined above. When a phase point 
crosses a separatrix due to the time variation of H, 
the adiabatic approximation is not valid. However, 
if the motion is periodic on both sides of the separa
trix, and if the adiabatic approximation is valid 
everywhere except near the separatrix, then the tran
sition across the separatrix is quasiadiabatic; that is, we 
can identify the value of the new adiabatic invariant 
corresponding to any given value of the original in
variant for all except a very small set of phase points. 
We do not discuss this question further here.6 

IV. APPLICATIONS 

A. The Linear Oscillator 

To avoid inessential algebraic complications, we 
consider in this example a linear oscillator described 
by a Hamiltonian of the form (3). Our discussion can 
be extended in a straightforward way to the more 
general case in which the Hamiltonian is given in the 

form (2). This problem has been studied by many 
authors.1.7-11 We therefore restrict our attention to 
results which are new or which illustrate particular 
features of the present method of attacking the prob
lem. We consider the case when the frequency W has 
initially the constant value wo, then changes in some 
fashion for a period of time, and finally becomes 
again constant equal to a final value WI. 

The invariant J is given by Eq. (22) which in the 
present case reduces to 

J = tw-2X2 + Hwp - WX)2, (40) 

where w is a solution of Eq. (16): 

(41) 

The adiabatic approximations to the solution of this 
equation are, to second order in the time derivatives, 

w(O) = W(l) = w-l, 

W(2) = w-l + tww-~ - T~6W2W-!. (42) 

If these approximations are substituted in Eq. (40), we 
obtain expressions for the adiabatic invariant, which 
are 

J(O) = twx2 + tw-1p2, 

J(1) = twx2 + tw-1(p + iWW-1X)2, (43) 

to zeroth and first orders, respectively. During periods 
when w is constant, all approximations to the adiabatic 
invariant reduce to J(O). Thus, initially the adiabatic 
invariant to any order is 

(44) 

Since we choose the exact solution of Eq. (41) which 
begins with the initial value w = w;l, Eq. (44) also 
represents the exact invariant during the initial period. 

Finally, when w = WI' the adiabatic invariant is 
given to any order by 

(45) 

During the final period, the exact solution of Eq. (41) 
has the form (25): 

w
2 = (w1"2 + C2)1 + C cos (2W1t + 0), (46) 

where the constants C and 0 depend upon the history 
of wet) during the time in which it was changing. We 
substitute in Eq. (40) to obtain the exact invariant, 
which of course still has its initial value Jo. Consider 
now a collection of oscillators whose phase points 
initially move on an ellipse (44) for some fixed value of 
Jo• Finally, these oscillators have phase points moving 
on an ellipse (40) for J = Jo. We see that the final 
ellipse changes its orientation and shape with time, 
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according to Eq. (46), twice per period. Each individ
ual phase point moves on a fixed ellipse (45), inter
sected by the moving ellipse (40). In order to find the 
distribution of final values of the adiabatic invariant 
J, let us choose a particular instant tl for which 
2wltl + () = 2nrr, so that W(tl) = O. The exact 
invariant (40) at tl then has its principal axes along 
x andp, 

Jo = iw1Q-2X2 + iw1l Q2l, (47) 

where 

Q2 = (1 + W~C2)! + wlC. (48) 

Each phase point (x, p) on the ellipse (47) lies also on 
an ellipse (45). We wish to determine the distribution 
of the values of J. In order to determine the statistical 
distribution of phase points around the ellipse (47), 
let us make the following transformation of variables: 

X = wtQ-Ix, P = wl!Qp. (49) 

The invariant then defines a circle in the new phase 
plane, 

(50) 

It is readily verified that the transformation (49) is 
canonical, so that the area of the circle (50) equals the 
area of the ellipse (47). Let us now imagine a set of 
phase points uniformly distributed in the annular area 
between two initial ellipses (Jo and Jo + dJo) given by 
Eq. (44). These phase points are then uniformly dis
tributed in the annulus between two circles (50) corre
sponding to the same values of Jo. It is now evident 
that all phases around the circle (50) are equally 
likely, so that if we let 

X = (2Jo)! sin <1>, P = (2Jo)! cos <1>, (51) 

then the phase variable <I> is uniformly distributed. 
We make the substitutions (49) and (51) in Eq. (45) 

to obtain the final values of the adiabatic invariant: 

J = JO(Q2 sin2 <I> + Q-2' cos2 <1» 

= Jo[(l + W~C2)! - wlC cos 2<1>]. (52) 

Thus the distribution in final values of J is entirely 
determined by the constant wlC, which is to be ob
tained by integrating Eq. (41). In particular, the mean 
and variance of J are given by 

(J) = Jo(1 + wiC2)!, (53) 

«I:!..J)2) = (J 2
) - (J)2 = tJ~WiC2. (54) 

Note that these results are exact, independent of the 
nature of the variation of wet), provided only that it is 
constant initially and finally. The maximum and 

minimum of J can also be read from Eq. (52): 

J:;~" = Jo[(l + W~C2)! ± wlC]. (55) 

If either Jrnax or Jrnin is known, the constant wlC may 
be determined, and the entire distribution in J is then 
determined. 

We show in the Appendix how to obtain an approx
imate solution to Eq. (41), when wlC« 1. The 
constant C is given in this approximation, according 
to Eq. (A23) by 

w l Cei6 = i: WW-1e2i
t/> dt, (56) 

where 

,p = fW(t) dt. (57) 

[Actually, in order for () in Eq. (56) to correspond to 
() in Eq. (46), WIt should be replaced by ,p.] 

The change in the adiabatic invariant J has been 
calculated for a particular function wet) by 
Howardll using the saddle-point method to evaluate 
an integral given by Vandervoort. lo Vandervoort 
obtains the approximate result 

1= 10 exp [-wIC cos () + HwlC cos ())2], (58) 

where wl Cei9 is given by formula (56). Note that Eq. 
(58) agrees to second order with our exact formula 
(52) if we identify () = 2<1>. Formula (58), however, 
contains the phase (), which, in turn, depends upon the 
phase ,po of the oscillator at a particular time t = 0 
during the period when w is changing. Since the prob
ability distribution of the phase ,po is not obvious, the 
probability distribution of I is not easy to determine, 
although we can read off its maximum and minimum 
excursions. Howard finds agreement with the maxi
mum and minimum values of J - Jo from numerical 
solutions of Eq. (3) within about 10%. Our formulas 
above give the complete distribution in J in terms of 
the amplitude C. 

B. A Nonlinear Case 

As a simple example of the application of the 
methods of Sec. III, we consider a nonlinear oscil
lator whose equation of motion is 

x + o.h + a(t)x2 = O. (59) 

The corresponding Hamiltonian is 

H = tp2 + lw2x2 + ia(t)x3
• (60) 

We assume, to simplify the problem, that w is constant, 
and we seek the effect of the time variation of the 
coefficient a. We further assume, to be specific, that 
the coefficient a(t) is zero both initially and finally, so 
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that we have a simple harmonic oscillator subject for 
a period of time to a nonlinear perturbing term. 

The transformation (18) is now trivial, and we have, 
after making the transformation (27), 

X = wix = (21(2»i sin Y(2) , 

P = w-ip = (2J(2»i cos Y(2), (61) 

K = WJ(2) + taw-i (21(2»i(sin y(2) - i sin 3Y(2». 

(62) 

We now make the third-order transformation (31), 
which in our case is 

S = J(S)Y(2) + 2S~1(21(3»i cos (Y(2) + 0"31) 

+ 2S~3(2J(3»i cos (3Y(2) + O"ss), (63) 
where 

and the coefficients are solutions of the equations 

SSl + iWSSl = liaw-i , 

S33 + 3iwS33 = - 214iaw-f. 

The transformation 
as 

J(2) =;--
UY(2) 

(65) 

leads to the following expression for the invariant, to 
third order in the amplitude: 

J(3) = J(2) + 2S~1(2J(2)f sin (Y(2) + 0"31) 

+ 6S~3(2J(2»i sin (3Y(2) + 0"3S). (66) 

The variables J(2) and y(2) can be replaced by x and p 
in a straightforward way by using Eq. (61). 

The adiabatic solutions to Eqs. (65) are easily 
written down to any desired order in the time deriva
tives according to the scheme (39). The first two orders 
are 

S (O) - law-! S(O) - ...Law-! 
31-8 ,33--72 , 

sW = taw-! + tidw-t, 
S(l) 1 -! l··-t 

33 = -TIaw - 2TIzaw . 

(67) 

(68) 

If Eq. (67) is substituted in Eq. (66), we obtain a 
formula for the adiabatic invariant correct to third 
order in the amplitude and to lowest order in the time 
derivatives: 

J~~i = !wx2 + tw-1
p2 + taw-1xS. (69) 

Initially and finally, the coefficient a is zero and 
the adiabatic invariant to any order is just the in
variant for the linear oscillator: 

(70) 

The initial and final values of J, however, are generally 
different because of the nonlinear term which appeared 
during the intervening time. Initially, we take S31 = 
S33 = 0 as the solutions of Eqs. (65) so that the exact 
invariant is also given by Eq. (70). Let us assume that 
the initial value is J = Jo. The final solution for S is to 
be obtained by integrating Eqs. (65) through the inter
vening time. During the final time when a = 0, the 
solutions of Eqs. (65) are given by 

where the constants are given by Eq. (37), 

A1e
i91 = tiw-i L:a(t)eiwt dt, 

AseSi9a = - 2
1
4 iw-i 1: a(t)e3iwt dt. (72) 

To be specific, let us take the coefficient aCt) to be of 
the form 

(73) 

The integrals in Eq. (72) are then readily evaluated 
and we find 

A l -I -WT A 1 -I -SWT 
1 = S 1TaOTW e , 3 = n1TaoTw e , 

01 = Os = i1T. (74) 

We substitute these results into Eq. (66) to obtain, for 
the exact invariant, to third order 

JO = (lwx2 + !W-1p2)[l + (2Al + 18A3) 

x (wix sin wt + w-ip cos wt)] 

- 24A3(wix sin wt + w-ip cos wt)3. (75) 

We see that the final exact invariant (75) is a cubic 
polynomial, in spite of the fact that the oscillator 
finally becomes again a simple harmonic oscillator. 
The phase points corresponding to a fixed value of Jo 
lie on the cubic curve (75), which changes periodically 
with time as each phase point on that curve traverses 
an ellipse (70). If we choose a particular time at which 
sin wt = 1, the invariant curve takes the simpler form 

Jo = !wx2 + iW-1p2 + t1TaoT(e-WT - 5e-3WT)xS
• (76) 

The probability distribution of the final adiabatic 
invariant J is most easily obtained directly from Eq. 
(66). First, we recognize that J(2) is the adiabatic in
variant J, and to third order J(3) = Jo• We also note 
that, since to third order the Y dependence has been 
tran~formed away in the Hamiltonian, the phase 
points move on circles of constant J(3). In Eq. (66), 
again to third order, we may let Y(2) = Y(S). By the 
same argument we gave in the last example, the vari
able Y(S) is uniformly distributed in probability. The 
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probability distribution of J is therefore determined by 
making these replacements in Eq. (66), so that 

J = Jo - 2A1(2JO)! sin <I> - 6A3(2JO}~ sin 3<1>, (77) 

where <I> = Y(3) - wt - tl7 is uniformly distributed 
at any instant t. We may readily read off the mean and 
variance of J: 

(J> = Jo, 

«J - Jol> = (16Ai + 48Ai)Jg 

= !172a~'T2w-3( e-2ror + le-6"'T)J~. (78) 

It is evident by inspection of Eq. (60) that there is a 
separatrix with a singular point at p = 0 and x = 
':""a/ w2

, beyond which the motion in this example is no 
longer oscillatory. The transformation (63) changes its 
character at amplitudes near and beyond the separa
trix, where the third-order terms dominate the lowest
order term. 
, We note finally that the transformation (63) which 

eiiminates the cubic terms from the Hamiltonian (62) 
leaves a higher-order residue 

LlK(3) = aw-![(2J(2»! - (2J(3»!] 

X (! sin Y(2) - 112 sin 3Y(2»' (79) 

The fourth-order terms may be readily calculated 
from the above expression. The y-dependent fourth
order terms could then be transformed away by the 
method given in Sec. III and an expression for the 
invariant to fourth order in the amplitude could be 
obtained. We content ourselves here with noting that 
the remaining y-independent fourth-order term in the 
Hamiltonian is 

K40(2J(4)2 = G)aw-!(2J(4)2 

x (S;3 cos 0'33 - S~1 cos 0'31)' (80) 

The Hamiltonian in fourth order therefore reduces to 
the form (6). Ifwe substitute the lowest-order adiabatic 
expressions (67), the coefficient k2 takes the simple 
form 

(81) 

which, according to Eq. (7), gives the amplitude 
dependence of the frequency. This result is not new, at 
least when a is constant, and can be obtained by al
most any method of solving the nonlinear equation 
(59). OUf treatment shows that the result gives cor
rectly, to second order in the amplitude and to lowest 
order in the time variation, the time rate of change 
of the phase as given by Eq. (7), even when the coeffi
cient a is changing with time. Higher-order accuracy 
in the time variation may of course be obtained by 
substituting more accurate expressions for Sin Eq. (80). 
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APPENDIX 

We wish to solve Eq. (16) in the general case when 
the coefficients a, b, and c are functions of time by 
using a method of variation of the constants A and 
B in the solution (25). To simplify the form ofEq. (16), 
we let 

W = a-!w, (AI) 

0 2 = ac - b2 - b + da-1b + taa-1 - !d2a-Z• (A2) 

Equation (A2) gives a convenient choice for the fre
quency O. The equation to be solved is then 

(A3) 

We try a solution in the form12 

OW2 = Q + A cos 21> + B sin 21>, (A4) 
where 

1> = f 0 dt, (AS) 

Q = (1 + A2 + B2)!. (A6) 

If A, B, and n are constant, then Eq. (A4) is a solu
tion to Eq. (A3). We differentiate Eq. (A4) to obtain, 
after omitting a factor 20, 

WW = -A sin 21> + B cos 21> 

+ to-1(A cos 21> + B sin 21> + Q - nW2). (A7) 

We require that the quantity in parenthesis vanish. 
Differentiating again, we obtain 

W2 + WW = -20A cos 21> - 20B sin 21> 

- (A sin 21> - B cos 21». (A8) 

We again require that the quantity in parenthesis 
vanish. It is then a matter of straightforward algebra 
to verify that, when Eqs. (A 7) and (A8) are substituted 
in Eq. (A3), the latter equation is satisfied. We have 
then two first-order differential equations to solve for 
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the quantities A and E, which we write in the form where 

A = (nW2 - Q) cos 2rp, 

iJ = (n W2 - Q) sin 2rp. (A9) 

We now introduce the complex variable 

Z = A + iB. (AIO) 

If we use as independent variable the phase rp defined 
by Eq. (AS), which is a monotonic function of the 
original independent variable t, Eqs. (A9) can be 
written in the simple form 

(All) 

where a prime denotes differentiation with respect to 
rp,and 

R = -Q' + O'O-l(Q + A cos2rp + Bsin2rp). 
(AI2) 

The coefficient R depends on Z as well as on rp, but it 
depends on Z only through the combination ZZ* and 
its derivative, since we may rewrite Eq. (A6) in the 
form 

Q = (I + ZZ*)*, (AI3) 

and Eqs. (All) and (AI2) then imply that R is a solu
tion of the equation 

R = O'O-lQ - Q' + to'O-IR-l(ZZ*),. (AI4) 

We seek an approximate nonadiabatic solution of 
Eq. (All), valid at least in the case when 0 is a slowly 
varying function of t (and therefore of rp). If we write 
O(Erp) for the functional dependence of 0 on rp, then 
we expect the over-all change in the coefficients A and 
B during a long time, which represent the nonadiabatic 
changes in the solution of Eq. (A13), to go to zero 
faster than any power of E as E approaches zero. Dur
ing times when 0 is changing, we see from Eqs. (All) 
and (AI2) that the coefficients A and B contain trans
ient parts of order E which oscillate with frequency 
20. Therefore, it is important, in deriving an expres
sion for the long-time nonadiabatic changes, to make 
sure that terms which are neglected do not contribute 
more to the final result than terms which are retained.13 

We first derive an adiabatic solution of Eq. (All). 
We integrate both sides of Eq. (All) with respect to 
rp and carry out (n + 2) integrations by parts, where 
n is an even number, to obtain 

z = J Re2i
t/> dcp 

_ [! _ .E....Je2it/> _1_ Je2it/> d
n
+2R dcp 

- 2i (2i)2 + (2i)n+2 dcpn+2' 

(AIS) 

(A16) 

We note that since R is real and only even powers of 
2i appear in Eq. (AI6), the quantity K is therefore 
also real. Since the quantity R turns out to be slowly 
varying, each of the indicated derivatives in Eqs. 
(AIS) and (AI6) represents an additional power in the 
quantity E, the smallness parameter for the time 
variation of O. The first term in Eq. (AIS) is the 
transient adiabatic solution to order (n + 2) in E; as 
we see, it oscillates with frequency 20. The last term 
contains higher-order parts of the transient solution 
together with any long term secular changes in the 
coefficients A and B. We are interested in a solution 
which corresponds initially to the adiabatic solution 
of Eq. (A4). If Q is initially constant, then Z = 0 
initially. If 0 is not initially constant, then Z should 
be taken initially to be the adiabatic solution, which 
to any order (n + 2) is given by neglecting the last 
term in Eq. (AIS). The adiabatic solution at any later 
time to order n + 2 is then again given by the first 
term in Eq. (AIS). We have, therefore, for the adia
batic solution to order (n + 2), 

Z = (lK sin 2rp + !K' cos 2rp) 

+ i( -tK cos 2cp + tK' sin 2rp). (AI?) 

Ifwe substitute this result in Eqs. (A13) and (AI4), we 
obtain the approximate values 

Q = (l + iK2 + T1SK'2)!, (AI8) 

R = Q'O-IQ - Q' + to'O-IK'. (AI9) 

To first order in E we have, therefore, 

R(1) = 0'/0. (A20) 

By an iterative process involving repeated substitutions 
of R into Eqs. (AI6), (AI8), and (A19), we may obtain 
successive approximations R(3), R(S), etc., to any 
desired order in E. The final result R(n) to any order n 
is then given as an explicit function of 0 and its deriv
atives. We may then write an approximate solution 
for Z in the form 

Z = J R(n)e
2i

t/> drp. (A21) 

The integral in Eq. (A21), evaluated between the 
initial and final times, gives the final values of the 
coefficients A and B, which represent the nonadiabatic 
effects due to changes in 0 during the intervening 
time. If the time variation of 0 is slow, the integral in 
Eq. (A21) can be evaluated to a good approximation 
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by the saddle-point method. If at the upper limit of 
integration Of = 0, the result is of the form 

(A22) 

where the coefficient T(n) is a polynomial of order n 
in E which depends upon the coefficient R(n) and upon 
the functional form of n, and where the coefficient k 
in the exponent depends only on the form of the 
function O( EcP), and not on the coefficient R(n). We see, 
therefore, that higher-order terms in R do not give 
rise to terms in the final value of Z which are larger 
than those contributed by lower-order terms. For 
most purposes an entirely adequate approximation 
for the nonadiabatic effects is obtained by using only 
the first-order expression (A20) for R. If we do so and 
return to the independent variable t, we have the final 
result 

(A23) 
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The usual definition of a homogeneous field in general relativity implies a space with R jkZm = 0, thus 
admitting a group of motions isomorphic to the Poincare group. After discussing the symmetry group 
of the homogeneous field in Newtonian space, we point out that there exists no space with Rik = 0, 
which is a "true" field, i.e., Rikhn ;c 0, and which admits an analogous relativistic group. We then study 
fields, solutions of R jk = 0, which define spaces that admit a 4-parameter group of motions locally iso
morphic to the groups T1 @ [Ta 0.0(2)] and T1 @ [T. 0.0(1,1)1. We compare the motion of a test 
particle in these fields with the motion in the usual homogeneous field. 

I. INTRODUCTION 
If, by definition, a homogeneous gravitational 

field in general relativity (GR) is a field that can be 
transformed away not only locally but over all space, 
it defines a space with Rik!m = ° and is only an 
apparent field. [In this paper, Latin indices take the 
values 0, 1, 2, 3 and Greek indices, 0, 1, 2, or as 
specified. A comma means ordinary differentiation 
and a semicolon, covariant differentiation. Coordi
nates are also written as XO = t, Xl = x, x2 = y, and 
x3 = z. The signature of gik is (+ - - -), Gr stands 
for an r-parameter group and Tr for an Abelian group, 
and ®. means semidirect product.] 

So far, interest in a so-called homogeneous field 
in GR has been mainly in connection with the twin 

paradox and the equivalence principle; see, e.g., 
Refs. I and 2. These fields can always be obtained by 
a suitable coordinate transformation from a pseudo
Euclidean metric. Besides the condition Rik!m = 0, 
they have to fulfill supplementary conditions in order 
to be static, have the right nonrelativistic limit, etc. 
Since for such fields space is fiat, they admit a ten
parameter group of motions isomorphic to the 
Poincare group. Just as in Newtonian theory, how
ever, the symmetry of the field-free space is reduced 
in GR by the presence of "true" fields (with 
Rik1m ~ 0). 

Thus, our aim is to find a field which is an exact 
solution of Einstein's empty space equation Rik = 0, 
but with Rik1m ~ 0 and with a relativistic symmetry 
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analogous to Newtonian space with a homogeneous 
field. 

In Sec. II, we summarize the symmetry of Newto
nian space-time and recall that the ten-parameter 
Galilean group of the field free space is reduced to a 
6-parameter subgroup when there is a homogeneous 
field present. Then we turn to Einstein's space-time. 
As with the Newtonian homogeneous field, we require 
that the space should admit a subgroup isomorphic 
to a Poincare subgroup by the restriction that a 
certain spacelike coordinate is invariant, i.e., a 
group of motions locally isomorphic to the group 
Tg ®s 0(2, 1).3 Fields defined by space admitting this 
group of motions would be analogous to the homo
geneous field of Newtonian space-time. However, 
no space exists which is a true-field solution of the 
empty-space equation and which has the required 
6-parameter symmetry group. Since the above sym
metry group gives only flat-space solutions, we require 
from physical considerations that our space should 
admit a 4-parameter group acting transitively on a 
timelike hypersurface and having a 3-parameter 
Abelian subgroup. There are two nonisomorphic 
groups with the structures TI @ [T2 ®s 0(2)] and 
T I @ [T2 ®s 0(1, 1)]. 

In Sec. III, this leads us directly to I-dimensional 
static gravitational fields. Corresponding to each 
group there is a solution of the field equations. The 
Riemann tensor for these solutions has an essentially 
singular timelike hypersurface. 

In Sec. IV, we investigate the nonrelativistic limit 
of these fields and compare it to the field given by 
M011er.1 It turns out that in this limit the gravitational 
potential is ~,....., pgz, with the value of the constant p 
determined by the solutions. We thus have a homo
geneous field giving a constant acceleration for a 
geodesically moving particle in the nonrelativistic 
limit. 

In the last section, we discuss the trajectory of a 
freely moving particle. We show that the motion in a 
field which admits a symmetry group of the local 
structure TI @ [T2 ®s 0(1, 1)] is similar to that 
given in Ref. 1. 

II. HIGH SYMMETRY FIELDS 

Newtonian space-time can be described by a 
4-dimensional differential manifold with a flat sym
metric affine connection. The group of motions 
admitted by the manifold is obtained from the objects 
defining it and is the ten-parameter inhomogeneous 
Galilean group.4.S 

In the classical theory the gravitational field is 
introduced as a new absolute object. Since with the 

presence of a field there are more objects defining the 
space, its symmetry is reduced by the further condi
tion b~ = 0, where ~ is the gravitational potential 
and 6 denotes the Lie derivative. 

If we take for ~ a homogeneous field which in a 
suitable coordinate system is defined as 

~ = a + hz, 

with z a space coordinate, then the symmetry group 
is reduced to the 6-parameter subgroup of the Galilean 
group which leaves z invariant. This group contains 
the 3-parameter Abelian group of translations along 
x, y and t, two pure Galilean transformations leaving 
z unchanged, and the rotation about z. 

From this we see that Newtonian space-time with 
a homogeneous field which everywhere satisfies the 
empty-space equation 6.~ = ° admits a 6-parameter 
group of motions acting transitively on the hyper
surfaces z = const. 

In GR the space-time manifold is Riemannian, 
described by the affine connection r~l and the metric 
tensor gik' To see the possible symmetries of the 
manifold, we must first look not only to empty space 
but also to a space with no true gravitational field 
present, i.e., with R~lm = O. It then follows that r~l 
is the flat affinity and the symmetry group is obtained 
from 

(1) 

where the second condition gives the Killing equation 
- I I I 
Ogik = gil~.k + glk~.i + gik.!~ = O. (2) 

It is well known that for the above case the conditions 
(2) lead to a ten-parameter group with the structure 
of the Poincare group. 

We now turn to Rik1m ¢ ° with Rik = 0, i.e., empty 
but not field-free space. We have seen that the 
Galilean symmetry group is reduced to a 6-parameter 
subgroup if a homogeneous field is present. Similarly, 
we require that the empty space should allow a 
symmetry group isomorphic to a Poincare subgroup. 
The subgroup analogous to the reduced Galilean 
group which leaves a spacelike coordinate invariant 
has a structure isomorphic to Ta ®. 0(2, 1), which 
in terms of the infinitesimal generators is given by 

[X~, Xp] = 0, :x,j1=1,2,3, 

[Xl' X41 = 0, [X2 , X4) = Xa, 

[Xl' Xs] = Xz, [X2' Xs] = Xl' (3) 

[Xl' Xs] = X g , [X2' Xs] = 0, 

[Xa, X,] = -X2' [X4, Xs] = -Xs, 

[Xa, Xs] = 0, [X4' Xs] = X5 , 

[Xa,X6 ] = -Xl' [Xs, XG] = X4 • 
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We have so far not chosen a coordinate system and 
have not given physical meaning to the generators. 
We only demand that the space should admit a group 
of motions with the structure given above and that 
the generators act on a timelike hypersurface. 

Since the group is multiply transitive on 3-dimen
sional submanifold, it contains a nondiscrete isotropy 
group. From this it follows by a theorem of Ehlers 
and Kundt,6 that the Riemann tensor of the manifold 
must be of degenerate Petrov type,? i.e., D or N. 

N-type terms are pure radiation fields and can be 
excluded because the group is required to act on a 
timelike hypersurface. So only D-type is possible. 

Because a G4, is the maximal group for aD-type 
space, it cannot admit a G6 • We conclude that in GR 
there is no space with a symmetry group analogous 
to the group of Newtonian space with a homogeneous 
field. 

We proceed to investigate D-type spaces which 
admit a G4 and contain a Ta. This group has to be a 
subgroup of Ta ®s 0(2, 1). Although exact vacuum 
solutions of this type are the best known ones,s we 
start, for reasons to become clear in Sec. IV, with a 
space admitting a Ta. As in the Newtonian case, this 
group should act transitively on a timelike hyper
surface. It follows then that these surfaces are geo
desically parallel, and it is possible to introduce a 
coordinate system such that the equation for the 
hypersurface is z = const.9 The metric takes the form 

ds 2 = gap dxa dxP - dz 2
, IX, f3 = 0, 1,2. 

The rank of the matrix formed by the Killing 
vectors CA~)' where A denotes independent vectors, 
is 3, and we can choose the vectors as 

From Eq. (2) we have for the gjk 

gaP = g«p(z), IX, f3 = 0, 1, 2. 

If we now require a 4-parameter group by adding 
one generator from (3) to the Abelian group, we get 
groups with the structures, IX, (J = I, 2, 3: 

[Xa, Xp] = 0, [Xl' X4] = 0, 

[X2 , X4 ] = -Xa, [Xa, X4 ] = X2 , (4a) 

[XIX' Xp] = 0, 
[X2 , X4] = Xa, 

[Xl' X4 ] = 0, 

[XS , X4] = X2 • (4b) 

Group (4a) is isomorphic to the group Tl ® [T2 (8). 
0(2)], while (4b) has the structure of Tl ® [T2 (8). 
0(1, 1)J. For each group the fourth independent 
Killing vector satisfying the commutation relations 

(4a) and (4b), respectively, is given by 

4~i = b~X2 - bix\ 4~i = OJXl + o~xo. 
Using the Killing Eq. (2) with these vectors, we reduce 
the metric to diagonal form: for (4a), 

ds2 = goo(z) dt 2 + gllCz)(dx2 + dy2) - dz2 (5a) 

and, for (4b), 

ds2 = goo(z)(dt 2 - dx2) + g22(Z) dy2 - dz2 , (5b) 

or x and y interchanged. 
ff we try to enhance the groups (4) to the 6-

parameter group given in (3), we find, from the Killing 
equation, the metric 

ds2 = goo(z)(dz2 - dx2 - dy2) - dz2 , 

which is only a solution of Rik = 0 if goo(z) ,......, const 
so that R~lm = 0. From the above, we see that requiring 
the space to admit a 3-parameter Abelian group 
leads to I-dimensional fields, and the groups given by 
(4) reduce these to special types of static fields. 

III. THE KASNER SOLUTION 

A special solution admitting a 3-parameter Abelian 
group of motions was found by Kasner,lo with the 
line element given by 

ds2 = Z2P dt 2 - z2Q dx2 - z2r df - dz2, (6) 

where p, q, and, satisfy the relations 

p + q + , = 1, p2 + q2 + ,2 = 1. (7) 

Since the hypersurfaces z = const have indefinite 
metrics, other solutions with the same symmetry 
group also exist, but only the above solution will admit 
by further specification a 4-parameter group with the 
required structures [Eqs. (4)J. 

From a theorem given by Taubll it is clear that we 
cannot expect solutions with the above group structure 
to have everywhere a finite Riemann tensor. The 
metric (6) has singularities for z = ° and z ~ ± 00. 

It is shown in Ref. 12 that physical singularities are 
those occurring in the canonical form of the Riemann 
tensor (as given by Petrov). For the Kasner solution, 
the space has an essentially singular hypersurface 
z = 0 (which can be transformed to any z = const, 
but not completely away), showing that there the 
space is strongly curved, presumably corresponding 
to the presence of matter. This is similar to the exterior 
Schwarzschild solution, which has an essential singu
larity for r = O. 

From the metric (6) we get the following r :F 0: 

rgo = pz21>-\ 

r~3 = pjz, 

r~l = _ qz2q-\ 
na = qjz, 

r:2 = - rz2r
-\ 

ria = rjz; 
(8) 
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TABLE I. How space and group structure varies with the parameters p, q, and r. We use the symbols 
D for the degenerate type I with two equal eigenvalues and 0 for three equal eigenvalues. 

Values of q=-Lp=r=s' 
parameters or (p, q, r) 

p,q,r p ¢q ¢ r p=-Lq=r=i r=-Lp=q=·~ = (1,0,0) 

Type of 
space D D 0 

Gr G3 G. G. G10 

Structure T3 T1 @ [TI (8),0(2)] T1 @ [T. (8),0(1,1)] Poincare 

and from this the nonvanishing components of the 
Riemann tensor: 

R1212 = +qrz-2P , R131S = Z2(Q-l)q(q - 1), 

RIOlO = _pqz-2', R2323 = z2(r-1)r(r - 1), (9) 

R2020 = -prz-2Q , R0303 = _Z2(P-llp(p - 1). 

For the metric (6) to take one of the forms (5), it is 
necessary that two of the parameters (p, q, r) be equal; 
e.g.? for p ~ q = r, one gets (5a). There are only two 
possible values of the triplet (p, q, r), which are found 
from Eq. (7) to be (1,0,0) and (-i, t, t) and their 
permutations. But from Eqs. (9) we see that for 
(1,0,0) all components of the Riemann tensor vanish, 
so that space is flat. 

From the eigenvalue equation of the Riemann 
tensor in the induced 6-dimensional bivector space 
(see, for example, Ref. 6) 

IRab - Agabl = 0, a, b = 1, 2, ... , 6 

with Rik1m -+ Rab and gikglm - gagkm -+ gab' one ob
tains the type classification for the Kasner solution. 
The results are given in Table I (see Refs. 13 and 14). 

J n what follows we discuss some physical aspects 
of the D-type spaces, but actually we shall work with 
the Kasner solution (6), keep p, q, and r arbitrary, 
and remember that for (-i, t, i) and its permutations 
the space has the right symmetry, while for (1,0,0) 
the space is flat. 

IV. THE NONRELATIVISTIC LIMIT 

I n discussing the clock paradox, Moller has,defined 
a homogeneous field by the metric 

ds2 = (l + gZ)2 dt2 - dx2 - dy 2 - dz2 (lO) 

with the following properties: (a) Rik!m = 0, space is 
flat and the field is due to the choice of the coordinate 
system ; (b) it is static ; (c) it has the right nonrela
tivistic limit goo ~ 1 + 2CPNR = 1 + 2gz; (d) it leads 
to hyperbolic motion of the z = const surfaces as seen 
from a geodesicaUy moving observer (note that this 

has no absolute meaning because the space admits a 
GIO acting on the whole 4-dimensional manifold). 

We should like to compare our solutions with the 
metric (lO). But before we go on to this, we must say 
something about the physical meaning of the co
ordinate system as given by Eq. (6). 

On the hypersurfaces z = const we have introduced 
Gaussian coordinates so that the z lines are geodesics. 
Because the group G4 acts only on these hypersurfaces, 
this has a covariant meaning. Second, our space is 
static and, therefore, precisely one G1 exists with time
like hypersurface orthogonal congruence.6 If we 
choose the t lines along the congruence and Fermi
transport the spacelike coordinates along them, we 
have a preferred coordinate system (t lines are not 
geodesic). The metric then satisfies the conditions 

gO! = g02 = goa = g13 = g23 = 0, gsa = -1, 

and the coordinate system is fixed up to trans
formations of the form 

[= at + b, .X = !1(X,y), 

i = z + d, ji =j;(x,y). 

Ifwe now make use of this freedom for the coordinates 
and transform according to 

t = [gP, x = xgP, Y = jig', 

z = (I + gi)!g, g = const, (11) 

the line element (6) becomes 

ds2 = (I + gZ)2P d[2 - (1 + gZ)2Q dx2 

- (1 + gi)2' dP - dz2 ; (12) 

for p = I and q = r = 0, we have exactly the metric 
(10). 

The unit tangent vector to the static congruence 
of (12) is 

ui = (1 + girp!5~. 
Then, the 4-force exerted on a particle with unit mass 
is Fermi-propagated along the t lines and is given by 

bu
i 

= ~ !5!. 
?Js 1 + gz 
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Since ouijos is invariant under the groups G4 and 
(IJjIJS)(Ui;k - Uk) = 0, one can define a scalar 
potential cP by 

bu· 
~ = - CP.;, so that cP = pIn (1 + gz). (13) 
os 

Over regions where gz« I the nonrelativistic limit 
leads to 

CPNR = pgz, 

which is the classical homogeneous field. 

The 3-acceleration of a freely moving particle in 
this limit is obtained from 

d2 -11. 

~ ~ 1'11. = -pg(1 + gZ)2P-1bl% di 2 00 3 

,...." - pgb~ = - cP KIt. 11. , IX = 1,2,3. (14) 

Only goo contributes to CP:-m, although the deriva
tions from the Euclidean values of the spatial com
ponents are of the same order. In this limit the 
acceleration of a freely moving particle, as well as 
the force acting on a particle at rest, is constant. The 
difference between the fields given in (12) for p = 1 
and p =;6 1 appears in higher orders of gz and, of 
course, in the constant p. For the solution with 
p = -t, the field has the opposite direction and the 
motion of the particle is reversed (see Sec. V). 

V. TIMELIKE GEODESICS 

We now proceed to investigate how a freely falling, 
i.e., a geodesically moving, particle is seen by an 
observer at rest in a coordinate system where the 
singular hypersurface is at rest. We solve the geodesic 
equation in the system given by the metric (6) and 
this solution can then be transformed to (12). From 
the r"s given in (8) the equations for the geodesics are 
found to be 

with 

.. 2p 
t + - it = 0, 

z 

.. + 2q.. ° x -xz = , 
z 

2r 
Y + - .lit = 0, 

z 

'i d i() X = -x s. 
ds 

(15) 

We are only interested in timelike geodesics and to 
simplify the solution we take the initial values such 

that the particle is at rest when s = 0; i.e., for the 
4-velocity we have 

xi(O) = o~z-P satisfying xigi~k = 1. 

From the geodesic equations it then follows that 
_reO) = 0 and yeO) = 0, so that these components of 
the velocity will remain zero if they were zero initially. 
We need then only the z-t dependence of Eqs. (15). 
One immediately gets an integral of the first equation 

(16) 

where the integration constant is chosen so as to 
fulfill the initial condition. Introducing this into the 
last Eq. (15), with only the t-z dependence, gives 

£(s) + pZ(0)2PZ(S)-(2PH) = ° 
and a first integral 

t(s) = ±{[z(O)jZ(S)]2P + C}~, (17) 

where C must be equal to -1 and the over-all sign 
must be chosen from physical considerations. For 
1(s) to be real, 

[Z(0)jZ(S)]2P ;;::: I. 
It follows that 

z(O)~ z(s) for p~ 0, 

so that in Eq. (17) we have 

1= for p~ O. 

The 3-velocity can be calculated from (16) and (17): 

dz = =r=zP(S)[l _ (Z(S»)2"]t, for p ~ 0. 
dt z(O) 

If we plot dzjdt against z, we can roughly deduce 
from this the trajectory of the freely moving particle 
(see Fig. 1). Here one should remember that, although 
these trajectories are not generally covariant, they 

cg 
dt 

r--------- ... _-

p=£ 
3 

z (0) 

FIG. 1. Schematic velocity-space dependence for a geodesical\y 
moving particle in fields with p = I, p =5. and p = --,\. 
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are given in the preferred coordinate system owing 
to the symmetry of the manifold (Sec. IV) and the 
z lines are geodesics. 

p = 1: For s = 0, the particle is at rest at the point 
z = z(O). It is then accelerated towards the singular 
plane z = O. After a certain time its velocity decreases 
and, finally, the particle comes to rest at z = 0 for 
t ---+ + 00. 

o < p < 1: Here again the particle is accelerated 
towards the z = 0 plane but reaches this after a finite 
time; the velocity has then decreased to zero. 

p < 0: For this value of p the motion is reversed. 
The particle is accelerated from the initial point 
z = z(O) in the opposite direction, i.e., from the 
singular plane away. Again, after a certain time the 
velocity decreases and will tend to zero for z ---+ + 00. 

The transformation (11) to the coordinate system 
defined by (12) does not change the main features of 
the trajectory, but the singular surface is shifted to 
z = -l/g. We see from this that the field with p = i, 
i.e., a space with group structure (4b),has features 
similar to the field for p = 1. 

VI. CONCLUSION 

We have seen that in GR, from the point of view 
of symmetries, a homogeneous field as in the Newto
nian theory does not exist. On the other hand, we were 
led only by symmetry requirements to static fields 
with nonvanishing Riemann tensor having the right 
nonrelativistic limit. Moreover, the motion of a free 
particle in a field admitting a group of the structure 
(4b) reflects properties of the motion in the usual 
defined homogeneous field, for which space is actually 
flat. 

Because our spaces have essentially singular time
like hypersurfaces, one could try to find a complete 
solution of the Einstein field equations with a corre
sponding distribution of matter as source term, so 
that the Riemann tensor is regular everywhere. 
Physically meaningful solutions can only be expected 
for spaces with p > 0, since p < 0 would have the 
effect of antigravitation. 
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The stability of time-dependent particlelike solutions of the form 11' = rp(r)e-irol is examined for the 
nonlinear field \121p - C-2021p/ot2 = K21p - It21p1p*'ljJ. It is found that such solutions are unstable for all ro. 

1. INTRODUCTION 

In this paper, we investigate the stability of time
dependent particlelike solutions of the nonlinear field 
equation 

2 -2 a2tp 2 2 * 1) V tp - C -2 = K tp - fJ, tptp tp, ( 
at 

where K and fJ, are real parameters. We are interested 
in a nonlinear field, since with such a field it may be 
possible to describe an elementary particle without 
some of the difficulties of conventional field theory. Tn a 
nonlinear field, one does not have to represent particles 
as point singularities, but can consider them as local 
concentrations of some suitable quantity, usually the 
energy density. Once the field has been specified, one 
can determine the interaction between particles and 
what happens to a particle when it is disturbed. Does 
its energy remain localized or does it dissipate? The 
question of particle interaction has been studied by a 
large number of authors,! beginning with Born and 
Infeld. In particular, Rosen and Rosenstockl have 
shown that the interaction between two particles at 
large distances in the above field is governed by the 
Yukawa potential. Work has also been done on the 
stability of I-particle solutions. Hobart and one of us 
(G. H. D.)2 have shown independently that time
independent solutions to a large class of nonlinear 
Lorentz-invariant field equations are unstable, and 
Rosen3 has investigated a solvable time-independent 
field. Little, so far, has been done on the stability of 
time-dependent particlelike solutions, which forms the 
subject of the present investigation. The treatment 
given here is purely classical. 

1. PARTICLELIKE SOLUTIONS OF (1) 

Equation (1) may be derived from the variation 
principle 6 S k d3r dt = 0, with the Lagrangian density4 

-21 atp 12 IV 12 21 12 + 1 21 14 (2) k = C at - tp - K tp 2fJ, tp . 

The energy density corresponding to (2) is 

& = c-2 j ~; r+ IVtp/2 + K21tpl2 - lfJ,2 ItpI4, (3) 

while the charge and current densities 

p = -icr( tp a:r* - tp* ~~), (4) 

j = - icrc2
( tp*V tp - tpV tp*) (5) 

satisfy the continuity equation V • j + ap/at = O. The 
constant cr is arbitrary but is fixed when we specify 
how the field tp interacts with the electromagnetic 
field A Y

• Adopting the standard prescription, 

V -+ V - !!. A and E. -+ ~ + !.!: AO, 
lie at at Ii 

yields cr = e / nc2• 

We shall restrict ourselves to time-dependent solu
tions of the form 

tp = r(r)e-i(Ot, (6) 

where w is a real parameter and r(r) is real and spheri
cally symmetric. Then, (1) reduces to 

d
2

r + ~ ar = (K2 _ ~2) r _ fJ,2 r 3. 

dr2 r ar c2 
(7) 

We seek solutions with finite energy, and for which 
r and all its Cartesian-space derivatives exist every
where. This implies (dr/dr)r=o = 0, r -+ 0 as r -+ 00, 

K2 - W 2/C2 > o. 
Making the transformations 

r' = r(K2 - W2/C2)t, 

r' = fJ,r(K 2 - W2/C2)-!, (8) 

cp' is found to satisfy 

d
2
r' ~ dr ' _ I _ m/3. 

dr'2 + r' dr' - r 'r 
(9) 

This equation has been extensively studied.5 There is 
an infinity of solutions, the simplest having no nodes, 
the next simplest one node, etc. The three solutions of 
lowest order are shown in Fig. 1. The energy E = 
S & d3r can be reduced to 

E = 2K,u-2(1 - w'2)-!I, (10) 

1336 



                                                                                                                                    

STABILITY OF TIME-DEPENDENT PAR TlCLELIKE SOLUTIONS 1337 

FIG. 1. The 
three lowest-order 
solutions to (9). 
rp' is plotted 
against r' for 

30 

20 

the so I utions of 10 
(9) having 0, I, 
2 nodes, respec
tively. 

where (1)' = W/KC, 1= 41T S rp'2r'2 dr'. Since w' is an 
arbitrary parameter in the range -1 < w' < I, this 
gives a continuous spectrum of allowed energy values. 
The values of the integral .f rp'2r'2 dr' for the three 
lowest-order solutions are, respectively, 1.502, 9.63, 
29.18. Using (6) and (8), we can reduce (3) to 

K4 [ 1 + (0'2 0 ')2 
E = ---:- (L - W'2)2 (. ) rp,2 + (..5!.... - lrp'4]. 

fl2 1 - (0,2 or' 

The teduced energy density is defined as E' = efl2/K 4. 

When w' = 0, 

Tn Fig. 2 the lowest-order solution to (9) is shown in 
more detail than in Fig. I, and in Fig. 3 the reduced 
energy density is plotted for this solution when 
w' = O. The field is perhaps unsatisfactory in one 
respect: the energy density is negative in a certain 
region of space. It would be preferable to have E 
everywhere positive, especially if one wants to think 
of a particle as a local concentration of energy. How-

FIG. 2. Graph 
of rp' and Z = r'rp' 
for the lowest
order solution of 
(9). Z can be seen 
to have a maxi
mum value of 1.2. 

rp' 

20 t 
o~ __ ~ ____ ~~== ____ ~ ________ ~r~' 

f-----+---- R ----4) 

-80 

-160 

FIG. 3. Reduced energy density &' for the lowest-order solution 
to (9) when w' = O. The particle radius R is marked. For r' > R, 
I;' is negligible. For r' < 0.4, I;' is negative. 

ever, the total integrated energy is, in fact, positive for 
solutions of type (6), for which we have 

E - V • (rpVrp) = (W2/C2 + K2)rp2 - rpV2rp - lfl2rp4 

= 2w2c-2rp2 + lfl2rp4 > O. 

On integrating over all space, the divergence on the 
left-hand side disappears, yielding a positive total 
energy. The size of a "particle" is not a well-defined 
quantity, but could be taken as the distance denoted 
by R in Fig. 3. For r' > R, E' is negligible. R is ::>:::! 2 
units of r'. From Fig. 2 we see that rp' is also small for 
r' > 2. 

3. STABILITY BY FIRST-ORDER 
PERTURBATION THEORY 

A. The First-Order Perturbation Equations 

Let us denote by 1Jlo = 9'o(r)e-irot the unperturbed 
state and by 1pl(r, t) the disturbance, assumed small, 
at least initially. We shall concentrate on the case 
where rpo(r) is the lowest-order solution of (7). 
Putting 1p = 1po + 1pl in (1) and keeping only up to 
first order in 1pl gives 

2 * -2 021p{ 2 2 * * 2 *2 
V 1pl - C ot2 = (K - 2ft 1po 1pO)1pl - ft 1po 1pl' 

(11) 
~ r' Let us try a solution to (11) of the form 

L-------~------~2--===~ 
(12) 
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where 0 = Or + iOi is a complex constant. Then, 
defining 0' = 0; + iO; = o./KC and using (7) and 
(8), we can reduce (11) to 

(
V'2 + (0' + W,)2 - 1 + 2(m')2)<n = _(m')2 

(1 _ W,2) y'O'/ '/ () X, 

(V'2 + (O~; _W:~:2~ 1 + 2(cp~)2)X = _(cp~)2rJ, 
-1 < w' < 1, (13) 

where cp~ is the lowest-order solution to (9) (Fig. 2) 
and the boundary conditions are 'Y/, X, both finite at 
r' = 0 and 'Y/, X -0 as r' - 00. If (w', 0.', 'Yj, X) is a 
solution to (13), then so are (w', -0.', x, 'Yj), (w', 
0'*, 'Yj*,X*), and (-w', -0.', 'Yj,X). Hence, there is 
no loss of generality in taking 0 < w' < I, 0; > 0, 
0; > O. If 0 is not purely real, then riOt = riOrteOit 

will build up with time and destroy the solution "po. 

Thus, o.i1 gives a measure of the lifetime of 11'0' 

B. Numerical Solutions of (13) 

Equation (13) is a type of eigenvalue problem. For 
a given w', it is necessary to find eigenvalues 0.' and 
eigenfunctions ('Yj, X) which satisfy (13). If 0.' is real, 
the particle will be stable, while, if 0' has an imaginary 
part, it will be unstable. An intensive search for 
solutions to (13) has been made numerically. cp~(r') 
is the lowest-order solution to (9) which is not known 
analytically. Thus, it is necessary to feed into (13) the 
numerical solution cp~, derived from (9), and solve (13) 
numerically. 

Let us examine first the case where 'Yj, X are spheri
cally symmetric. Instead of the quantities 'Yj, X, it is 
more convenient numerically to deal with g = r' 'Yj, 
f = r' X. Then, the boundary condition at r' = 0 is 
g = f = O. The asymptotic form of (13) can easily be 
found, and our numerical method was based on it. 
Knowing the asymptotic form for large r', we inte
grated in to r' = 0, where we evaluated g and f If g 
andfwere not both 0 at r' = 0, we corrected the eigen
values and tried again until the boundary conditions 
were satisfied. No solutions existed if 0; was not 
zero. For 0; = 0, we found only one value of 0.; for a 
given w', and Fig. 4 shows this eigenvalue n; as a 
function of w'. (We disregard the trivial solution 
0.' = 0, 'Yj = -X, corresponding to no perturbation.) 

It has previously been stated that we expected to 
find eigenvalues 0' for a given w', and this is indeed 
confirmed. But there remains the possibility that addi
tional special solutions to (13) may exist for certain 
particular w'. An intensive search for such solutions 
was made, but none was found. Figure 4 thus shows 
all the known eigenvalues for the spherically sym
metric solutions to (13). 

2 

'" . ": ...... 
" . " . 

'':', ... , . , , ... 
, '. 
, '. 

\ '. 
\ . 

\ . 
\ '. 

\ '. 
\ . 
\ '. 
\ . 
\ '. 

\ . 
\ 

FIG. 4. Eigen
values of (13). 
The eigenvalue n; 
is shown plotted 
against w' for the 
nontrivial solu
tions to (13). The 
dashed curve in
dicates results ob
tained by the 
numerical method 
(Sec. 3B), and the 
solid curve results 
by the variational 
method (Sec. 3C). 
The dotted curve 
limits the region 
within which the 
eigenvalues must 
lie (Appendix: 

O~~~'2~~~'4~~'~6--~~'8~~ 

W 

A). Note that 
this limiting curve 
gives a good up
per bound to the 
values of n; de
rived from Sees. 
3B and 3C. 

We now turn to nonspherically symmetric solutions 
to (13). The equation can be separated in spherical 
polar coordinates by assuming that the angular 
dependence of 'Yj and X is given by the spherical 
harmonics Y;". One solution of this type is known for 
I = I corresponding to the translational invariance of 
(1), viz., 

n' __ 0, acp~ m 
U 'Yj =x= - Y 1 • 

ar' 

We sought this solution numerically and found it, 
but could find no other nonspherically symmetric 
solutions to (13). In Appendix A, it is proved that no 
unstable solutions can exist for I > 1. 

C. Variational Solutions of (13) 

If (13) is rewritten in the form 

~) 
~) ] G ~~) = 0 (l4) 

and WB' H, B, and ~ are defined as follows, 
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then (14) can be rewritten 

(w~I - 2WBB - H)~ = 0, (16) 

which is now in a form examined by Barston.6 Hand 
B are Hermitian, but, since WB can be complex, 
TI = (w'1i- 2WBB - H) is not. However, by dou
bling the dimensions of the vector space we can con
struct the Hermitian operator 

L = (~t ~). 
Then, it is sensible to ask for the real eigenvalues of 
L, i.e., solutions of the problem Lt = At: 

(~t ~) C) = A(~)' 
where 

and v and u are 2-component vectors. Since TIt = TI *, 
there is no loss in generality in taking v = u*. Thus, 
we have 

yielding the variation principle ~ [A] = ° for arbitrary 
variations ~u, where 

f uu* dar 

(1'1) 

The eigenvalue A is a function of WB and w;, and the 
problem is to find those values of WB for which A 
vanishes. A suitable trial wavefunction is 

(18) 

where <x, P, and yare complex parameters <X = <Xr + i<xi , 

etc. Because the system is homogeneous, anyone of Yr' 
Yi' Pr, and Pi can be normalized to unity. If one seeks 
the case 'rJ = - X, .0' = 0 for any w', then one will 
obviously normalize Pr or Pi' while if one seeks solu
tions more closely resembling rJ = + X, either Y r or "i would be normalized. (The case rJ = + X occurs 
when w' = 0.) It must still be decided what would be 
a suitable choice for rp~. As previously mentioned, no 
analytic solution for rp~ is known, but variational 

TABLE I. Values of n; calculated from numerical and variational 
methods. 

w' n; (numerical) n; (variational) 

0 3.95 3.96 
0.1 3.93 3.94 
0.2 3.85 3.86 
0.3 3.73 3.74 
0.4 3.54 3.56 
0.5 3.29 3.32 
0.6 2.97 2.99 
0.7 2.51 2.57 
0.8 1.89 2.00 
0.9 0.92 1.18 

solutions to (9) have been found by Betts et al. 5 The 
simplest, and in some ways most suitable, form for 
rp~ is rp~ = 4 x 2! exp (-3!r '). With the trial function 
(18) and with rp~ of the above form, [A] was evaluated. 
We then sought solutions to the problem 

[A] = 0 orA] = 0 
'OflA ' 

(a) when flA = Yi' Pr' Pi> <Xr' lXi (Yr = 1), for fixed 
(w', a;), in terms of the six unknowns a;, Yi' Pr' Pi' 
rl.r , (Xi' 

(b) when flA = Yr' Yi' Pr' IXT' <Xi (Pi = 1), for fixed 
(w' , a;), in terms of the six unknowns a; , Y r' "i' Pr , 
IXT , lXi · 

In both (a) and (b), solutions were found only if 
a; was zero. In (a), only one a; was found for a given 
w', the values of which are given in Table I. In (b), we 
found the expected trivial case a' = 0, rJ = -X = 
const X rp~. In addition to (a) and (b), we tried other 
types of solution. As pointed out in Sec. 3B, special 
solutions might exist for certain discrete w'. Thus, 
w' must be allowed to vary in order to let it converge 
on such a solution. A random search was made for 
solutions to the set of equations 

[A] = 0 orA] = ° 
'0 ' flA 

(c) when flA = Yi' Pr' Pi' <XT' lXi ("T = 1), solving 
for the unknowns a;, a;, w', Yi' p" Pi' IX,., <Xi' 

(d) when flA = Yr' Yi' Pr' IX" <Xi (Pi = 1), solving 
for the unknowns n;, n; , w', Yr' Yi' PT' <XT' lX i . 

Solutions to (c) were only found for a; = ° and 
(.0; , w') lying on the curve obtained from (a). Solu
tions to (d) were only found for a; = 0, and a; = 0, 
i.e., the trivial case. 

D. Comparison of Results 

For the trivial solution, the variational results give 
.0' = 0, rJ = -X = const X exp (-3tr'), i.e., apart 
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from the arbitrary normalizing constant, we get the 
variational solution for IP~' with .0' equal to zero. In 
the numerical case, we do not expect to get .0' = 0 
exactly nor to get 'f} = - X oc IP~ exactly, since there 
will always be some numerical error involved. What is 
found in practice is that .0' is very small and r; = 
- X ~ const X IP~. In neither method do we find 
solutions for nonzero .0;. In both methods we find 
solutions for n; = 0, n: =;6 O. The values of n; for the 
two methods are given in Table I and graphs of n; v w' 
for the two methods shown in Fig. 4. It is interesting 
to note the good agreement obtained. Figure 4 also 
shows the limiting curve7 Q' (w') = 3.95 (l - W'2)t 
inside which the eigenvalues .0; must lie. Note that it 
gives a good upper bound to n; . 

4. STABILITY BY DIRECT-PERTURBATION 
METHOD 

Section 3 gives a useful indication of what might 
happen to "Po when it is disturbed. In particular, it 
gives a measure of how long the state "Po will live after 
being disturbed. But the main method we used to 
investigate the stability of "Po was to disturb it and 
follow its time development from (1). The "particle" is 
deemed stable if & remains everywhere finite and 
localized, but unstable if its energy is dissipated. Let 
P = d, 'Y = flK-1"P, T = Ket. Then (I) reduces to 

V2'Y _ oZ'Y = 'Y _ 'Y'Y*'Y 
P OT2 . (19) 

The reduced energy density &' = &fl2/K 4 can be found 

e 

FIG. 5. Example of the singular mode of decay for w' = O. The 
reduced energy density &' is plotted against the reduced radial dis
tance p at a sequence or reduced times 'T = 0, I, \,25, \.5. One sees 
how rapidly the energy density at the origin becomes large and 
negative. For 'T "'" \.5, the energy density goes singular. When this 
occurs, we no longer consider &' to be partic1elike. 

12' 40 G 

-j80 

FIG. 6. Example of the dissipative mode of decay for w' = O. 
The reduced energy density &' is plotted against p at a sequence of 
reduced 'T values 0, I, 2, 3. This shows how &' rapidly changes in 
shape and how the energy is pushed away from the origin. For 
'T = 3, f;' is not visibly different from zero anywhere. 

from (3) to be 

&' = 1 ~~ 12 + IVp'Ji'12 + 1'Y12 - t 1'Y14. (20) 

Let us denote by subscript 0 the undisturbed state, 
i.e., 

'Yo = flK-l1po = flK-11P0e-i«fi = (1 - w'2}~·IP~e-i«f·r, 

p = r'(l - w,2r!. (21) 

As in Sec. 3, IP~ is taken to be the zero-node solution of 
(9) (see Fig. 2). We disturb 'Yo to'Y and follow its time 
development from (19). We shall examine initially the 
case w' = 0, when 'Yo = IP~ and p = r'. 

The undistrubed state 'Yo has a reduced energy 
density shown in Fig. 3, When 'Yo is disturbed, it is 
found that it decays in one of two distinct ways, which 
may be designated the singular or dissipative mode. 
Only spherically symmetric disturbances were used. 
Examples of the singular and dissipative modes are 
shown in Figs. 5 and 6, respectively. ('YO)T=O and 
(o'YO/OT)T=O were disturbed by a random-number 
generator operating in the ranges -0.02 to +0.02, and 
-0.4 to +0.4, respectively. 

One drawback of a field which permits & to be 
negative is that singular decays are possible. In this 
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mode of decay the particle draws more and more 
negative energy into a decreasing region around the 
origin and compensates by increasing the positive 
bump. This decay is probably not physically sensible, 
but the dissipative one seems reasonable. Although it 
is easy to classify the decay modes, it is not so easy to 
say what the decay time is. When shall we consider 
the particle to have ceased to exist? If we look at Fig. 
6, we see that, after 3 units of T, the energy density 
corresponding to the state 'Y is not visibly different 
from zero anywhere; so it would be reasonable to 
take this as some measure of the decay time. Examina
tion of Fig. 5 reveals that after R:> 1.5 units of T, &' is 
becoming rapidly more singular. Indeed, the plot of 
&:llillVT in Fig. 7 shows how marked this effect is 
(&:Uill is the minimum value of &'). In the singular 
mode of decay it would thus be reasonable to take a 
lifetime of around 1.5 units of T.1t is stressed, however, 
that these definitions are arbitrary and are given only 
as a measure of the decay period. Let us take for the 
sake of comparison an average figure of R:> 2 units of 
T for the decay time. This compares quite favorably 
with the estimate from first-order perturbation theory 
in Sec. 3, which gave 0.; = 3.95 and, hence, an esti
mated lifetime of {4KC)-I units of t, or i units of T 

(i.e., the same to within an order of magnitude). 
Figures 8-10 show further examples of decay for the 
w' = 0 case. When one puts w' = 0 in (12) and (13), 
one obtains 

"PI = 2'f]{r) exp (0.;T), 

where 'f] is a solution to 

[!f. + ~ !!... - n? - 1 + 3rp~2J'f] = O. (22) 
dr,2 r'dr' 

·5 I. 1·5 "t 
O.-----r----.----~-----.----

-400 

-800 

-1200 

FIG. 7. Plot of E:ninVT for the disturbance shown in Fig. 5. This 
shows how rapidly 6' goes singular at T = 1.5. 

-100 

FIG. 8. Singular mode for w' = O. The disturbance (23) with 
()( = 3.5 is applied at T = O. We see that at T = 0.5, E' is trying to 
return to the undisturbed state (Fig. 3), i.e., 71 is still decaying. 
However, by T = 1,71 has ceased its exponential decay and t;' is 
rapidly going singular. Compare with Fig. 5. 

This equation has solution for 0.; = ±E, where E was 
found numerically to be 3.95 in Sec. 3B (see Table I). 
Let us consider the disturbance 'Pdr =0 = const x 1j(r) 
and (0"Pl/0T)r=0 = -const X E'f]{r). Then, "Po should 
be stable to such a disturbance "PI' since "PI decays 
exponentially with time. Because "PI starts small and 
gets smaller with increasing time, the results of first
order perturbation theory should hold good and be 
consistent with direct-perturbation methods. U n
fortunately, one can never hope to get the decaying 
solution exactly in numerical direct methods based on 
(19), since there will always be some numerical error 
and the effect of this is to couple in some random 
disturbance which will build up and wreck the solu
tion. Although it is not possible to obtain "PI exactly, 
it is still possible to partially verify the results. Let us 
consider the disturbance 

T l]r=O = a~(p), - = -art.~{p), W O'YIJ 
aT r~O 

(23) 

where a is a constant, arbitrary other than that 'Y1 

should be small, ~(p) is the solution 'f]{r') of (22) 
appropriately transformed {according to p = Kr, 
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20 gl 

-200 

FIG.9. Further example of dissipative mode for w' = O. The applied 
disturbance is (23) with IX = 5. Compare with Fig. 6 . . 

'Y1 = p,'1Pl/K), and (l is a real constant. If Hp) and IX 

were exactly correct (IX = E) and (19) could be solved 
exactly, then 'Yo would be stable to (23). In Figs. 8 
and 9, we show the destruction of '¥ 0 by the distur
bance (23) for IX = 3.5 and 5.0, respectively. 

We find that, as we apply the disturbance (23) with 
IX approaching E from above and below, the time,of 
decay increases as expected. We also find that for 
IX < E, decay is always by the singular mode, while 
for IX > E it is always by the dissipative mode, where for 
this method we find E to be around 4.1 compared with 
the value 3.95 from Sec. 3. It would thus appear that 
(23), for IX = E, plays a more fundamental role than 
being merely a stable disturbance. It is, in some sense, 
the separating curve between the two types of decay. 
This result cannot be predicted from first-order 
perturbation theory. 

Figure 10 shows a time sequence of events with the 
following disturbance: 

'YdT=O = 0, O;IJ = 0, for p < 3.5, 
UT T=O 

5 10
8 (p - 3.5) -5p 

'YdT=O = 2. X X e , 
p 

In Fig. 10 we plot the positive section of the reduced 
energy density versus the reduced radial distance p. 
Curve a of Fig. 10 shows 6' immediately after the 
disturbance has been applied. Note that the disturb
ance is well outside the particle radius R. Curve b of 
Fig. 10 shows the situation 0.5T units later. The 
disturbance is moving in on the particle. Curves b, c, 
and d show oscillations forming on the disturbance 
and travelling inwards. Outgoing oscillations do also 
occur, but are very small and are not visible on this 
scale. So far the particle has not been greatly affected, 
most of the action taking place outside its radius. At 
e the disturbance is beginning to enter the particle 
radius and oscillations are building up. Curves f, g, 
h of Fig. 10 show the violent interaction when the 
disturbance really hits the particle. In less than 0.2 

h 

9 

e 

d 

c 

b 

a 

FIG. 10. Time sequence of events leading to a singular decay for 
w' = O. This series of diagrams shows the time development of a 
disturbance applied to the particlelike solution well outside the 
particle radius (curve a). The positive part of &' is plotted against 
p for the series of reduced times T = 0,0.5, 1.0, 1.5,2.0, 2.5, 3.0, 
3.5. It can be seen how the disturbance propagates in a wavelike 
motion. Until the disturbance crosses the particle radius, the inter
action is gentle, but once the disturbance starts interacting within 
R (curve e), the reaction becomes more drastic as can be seen in 
curves e, f, g, h. Indeed, in h the initial configuration is unrecogniz
able. Within 0.2 units after h the particle has decayed by the singular 
mode (adopting the definition of singular decay given in Sec. 4). If 
we do not consider interaction with the particle to start until the 
disturbance is within a distance R, then the time of decay is about 
1. 7T units. Note that the disturbance appears to travel with velocity 
c, travelling from p = 3.5 to p = 0.0 in a time T = 3.5. The scale is 
the same for all the curves (a-h), viz. , 

&':0-+11, p:0-+4. 

Oo/lJ = 1 X 108 X (p - 3.5) e-5p
, for p > 3.5. The time interval is 0.5T units. The horizontal axis is displaced 

OT T=O P vertically for different times fo the sake of clarity. 
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units of T after h, the particle decays by the singular 
mode (using the definition of singular given previously). 
In this type of interaction we should not start mea
suring decay time until the disturbance starts crossing 
the particle radius, since it is not until this time that 
the particle really feels the disturbance. Adopting this 
convention, the decay time of the above disturbance 
is about 1.7 units of T. A dissipative sequence would be 
similar to the above, but decay this time would occur 
by the dissipative mode rather than by the singular. 
Figures 5-10 show the effects of various types of 
disturbance on the particlelike solution when w' = O. 
For all the disturbances shown in this paper, the decay 
time for a given mode is more or less the same: 1.5 
units of T for a singular decay, 3 units of T for a dis
sipative decay. Indeed, for all disturbances we have 
applied, we find that singular decay times lie in the 
range 1 to 2.5 units of T and dissipative ones between 
2 and 4 units of T, except if we apply the disturbance 
(23) with IX ---+ E when it takes longer for decay to set 
in. 

We now examine the time-dependent case (w' =;f:. 0). 
The same two decay modes were found to exist, but 
no others. In general, 'If decays more slowly as w' in
creases, in agreement with results from Sec. 3, where 
n; decreases as w' increases. Figures 11 and 12 show 
singular and dissipative decays for the case w' = 0.8, 

20 g' 

-90 

FIG. 11. Singular decay for w' = 0.8. The behavior is similar to 
that of the w' = 0 case (Figs. 5, 8) but the decay-time, about 2.8T, is 
longer. Notice that &' is less negative in the higher w' case. 

6 { 

3 e 

-10 

FIG. 12. Dissipative decay for w' = 0.8. The same form of decay 
as for the w' = 0 case is apparent, but the time of decay is longer. 
It is not until T = 7 that E' is not visibly different from zero. 

which we take as being typical. The disturbances are 
applied by a random-number generator similar to that 
used for the w' = 0 case. The singular decay of Fig. 11 
is very similar to those shown for the w' = 0 case, but 
the decay time is longer. Figure 13, which shows 
&:UinVT for this disturbance, closely resembles Fig. 
7 for the w' = 0 case, but the value of T at which &' 
goes singular is different (2.8 compared with 1.5). 
Figure 12 shows a dissipative decay. Again note the 
close resemblance to Fig. 6, but this time it is not 

-100 

-200 

FIG. 13. &;"inVT for the singular decay of Fig. 11. 
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until T = 7 that f;' is not visibly different from 0, com
pared with T = 3 for Fig. 6. 

Conclusion: Both time-dependent and time-inde
pendent solutions of the form (6) are unstable for the 
field investigated. 

5. ASSIGNMENT OF PARAMETERS 

Energy, charge, lifetime, and size are four of the 
physical quantities which can be given some signifi
cance in terms of this theory. The energy and charge 
are' respectively, 

For a neutral particle, w' = 0 and E reduces to 
2 Kfl-2I. The values of I for the three lowest~order 
particlelike solutions are 1.5, 9.6, and 29, so that the 
theory predicts neutral particles with masses in the 
ratios 1.5:9.6:29:···. We consider only the particle 
of lowest energy. The lifetime in the w' = 0 case is 
about 2(KC)-1 sec if one takes the estimates of Sec. 4 
and about (4KC)-1 sec if one takes the perturbation 
estimates of Sec. 3. From Fig. 3 the size of the particle 
R is of the order of 2 units of r'. This means that the 
ratio (lifetime/size) is of the order of l/c, a constant 
independent of the field parameters K and fl. The 
value of this ratio (!':::> 10-9 sec/cm) is far removed from 
that of the metastable mesons, but of the correct 
order of magnitude for the highly unstable mesons if 
we assume the size of such particles to be of the order 
of 1 Fermi. In the time-dependent case, a good 
approximation to the values of 0; is given by Barston's 
limiting curve (see Appendix A) for which 

0; oc (1 - W'2)!. 

The size of the particle R is about 2 units of r', but 
since r' = r(l - W'2)+!, then R is proportional to 
(1 - W'2)-!. Thus, the lifetime/size ratio remains 
approximately l/c, independent of w'. 

So far no attempt has been made to impose charge 
quantization. If we postulate Q = ±e, 0, then we 
obtain the relation 

2w'! = ±l 0 
Iicp,2(1 - W'2)! ' , 

which determines w' to be 

w' = ± [1 + (2I/IiCfl2)2]-t or 0, 

yielding 

E = [/iCK)2 + (2KI/p,2)2]t or (2KI/p,2). 

The mass of the charged particle is thus always 
greater than that of the neutral particle, but approaches 
the neutral mass in the limit (2KI/p,2)2» (IiCK)2. This 
is consistent with experiment, when it is found that the 
mass of the charged particles in an isotriplet is greater 
than the neutral member, characteristically by a few 
per cent. 

Although the field chosen is too simple to be con
sidered as a serious model of a meson, it does exhibit 
some attractive features, and at least does not dis
courage further study of such fields. 
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APPENDIX A: BOUNDS ON AND NONEXIST
ENcE OF EIGENVALUES TO (13) 

Equation (13) can be recast into the form (14), (15), 
and (16), the latter equation being of a form examined 
by Barston. 6 Applying his results, we find that, 
provided the imaginary part of WB is not zero, 

Iwnl2 S -[lowest eigenvalue of H) 

= - [lowest eigenvalue of (-\7,2 + 1 - 3T~2)], 

[Re W n ]2 = (~, B~)2/(~, ~)2 S (~, ~)(B~, B~)/(~, ~)2 
= (B~, B~)/(~, $) = W,2/(1 - W,2). 

The latter yields immediately 

(0;)2 S W,2. (AI) 

Let us now consider spherically symmetric solutions. 
Then 

Iwnl2 S -lowest eigenvalue of the operator 

- - - -- + 1 - 3T~2 . 
( 

d2 2 d ) 
dr,2 r'dr' 

This operator was numerically found to have a lowest 
eigenvalue -15.6. Thus, 

(n;2 + n~2)/(1 - W,2) ~ 15.6. (A2) 

Because there is no loss in generality in taking 0;, 0; 
both positive, (AI) and (A2) bound the real and 
imaginary parts of the eigenvalue 0' as follows: 

O~ ~ 3.95(1 - W'2)t, n; S 3.95(1 - W'2)t, 

n; S w', provided n; ¥ 0. 

We can thus restrict the n~ space to that lying between 
the axes and the dotted curve in Fig. 4, the equation 
of this curve being given by n; = 3.95(1 - W'2)t. 
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We now want to examine nonspherically sym
metric solutions to (13). The most general solution to 
(13) is an expansion of 'YJ, X in terms of the spherical 
harmonics Y[". If we so expand 'YI, X, then there is no 
coupling between different I values, the "radial" 
wavefunctions 'YJt(r') and Xt(r') being determined by 
1= 0,1,2, ... : 

[ 
d2 2 d 1(1 + 1) (n' + W')2 - 1 + 2 '2J 

dr,2 + ;; dr' - r,2 + (1 _ W,2) fPo 'YIz 

= _fP~2Xp 

[ 
d2 2 d 1(1 + 1) (n' - W')2 - 1 + 2 '2J 

dr,2 + ;; dr' - r,2 + (1 _ W,2) fPo Xl 

= _fP~2'Y11' (A3) 

'YI1' Xl-- ° as r' -- 00, 

'YI1' Xl IX rll as r' -- O. 

Barston's inequality now becomes 

n;; + n;~ 
(1 - (1)'2) 

[ ( 
d,2 2 d 

< - lowest eigenvalue of - -2 - -
- dr' r'dr' 

+ l(l + 1) + 1 - 3 '2)J ,2 fPo, 
r 

where the dependence of n;, n; on I is indicated by 
n;z' n;/. We will show that the operator 

l-1 == - - - - - + + 1 - 3fPo ( 
d,2 2 d 1(1 + 1) '2) 
dr,2 r' dr' r,2 

can have (square integrable) eigenfunctions only for 
1= 0, / = 1. We have already discussed the / = 0 case 
when 0 has the lowest eigenvalue, -IS.6. We want to 
solve 0z = Az when I is not zero. A must be real 
since 0 is Hermitian, and there is no loss in generality 
in taking z real. Writing y = r'z, we must solve 

(~ _ 1(1 + 1) _ 1 + A + 3 ,2) = 0 
d 
,2,2 fPo Y , 

r r 

Y = 0 at r' = 0, 

Y -- 0 as r' -- 00. (A4) 

It will now be shown that (A4) can have solutions 
only for I = 0, 1. For large r', (A4) reduces to 

d2y 2 - - I' Y = 0, where 1'2 = 1 - A. dr,2 

[It is necessary that (1 - A) be positive for square
integrable solutions.] y has the asymptotic form 
y = e-yr' and must also have the value zero at r' = 0. 

FIG. 14. The two 
simplest forms of 
solution to (A4), 
with no nodes and 
one node, curves a 
and b, respectively. 
There must be at 
least one point of 
inflexion (at A) at 
which the function 
is nonzero. 

r' 

The simplest form of solution for y is shown in Fig. 
14, curve a. This solution must have at least one point 
of inflexion at A at which d2y/dr'2 = 0, y ¥= 0. Thus, 
we require 

( 
1(1 + 1) 2 + 3 ,2) - 0 - - I' fPo-

r'2 
at A. 

This can be rewritten as 

Now 1'2 must be ~ 0. Hence, at a point A we must 
have 

3Z2 - l(l + 1) ~ O. (AS) 

A plot of Z'IIr' is shown in Fig. 2, from which it can 
be seen that Z has a maximum value of 1.2. The 
condition (AS) can, therefore, be satisfied for I = ° or 
1, but not for I = 2 or higher. Thus, a solution of the 
form of curve a of Fig. 14 cannot exist for I > 1. The 
next simplest form of solution (with one node) is 
shown in curve b of Fig. 14. It must have at least one 
point of inflexion satisfying the same conditions as for 
the nodeless solution. Similarly, for the next simplest 
(2 nodes), and so on. Thus, any solution for y must 
have at least one point of inflexion at which y is not 
zero. The condition for such a point is (AS) which can 
be satisfied only for I = 0, 1. Hence, (A4) can have no 
solutions for I> 1, implying that (13) can have no 
nontrivial solutions for I > 1. The only solution found 
to (13) for I = 1 was the solution Q' = 0, 'YJ = X = 
const x (afP~/ar') Y;'. The solutions for I = ° have 
been discussed in the text. 
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The fully relativistic expressions for the density, pressure, and energy density of the ideal quantum 
gases are solved exactly for the fugacity. This allows the exact, fully relativistic equations of state to be 
obtained for the ideal Fermi and Bose gases. All these expressions are studied in detail, including a 
discussion of physical implications and variolls limiting cases. 

I. INTRODUCTION 

The most familiar results of quantum-statistical 
mechanics are the expressions for the density n, 
pressure P, and energy density E of the ideal Fermi 
and Bose gases in terms of the chemical potential ft, 
or, equivalently, the fugacity 

(1) 
They are 

g 100 p2 dp 
n = h2h3 0 exp [(& - {l)/kT] ± 1 

+ { +0 } + V-1z(1 - Z)-1 ' 
(2) 

g (00 0& p3 dp 

P = 61T2h3 Jo op exp [(& - ft)/kT] ± 1 

+ { +0 }, 
-kTV-1ln (1 - z) 

(3) 

g leo &p2 dp E---
- 21T2h3 

0 exp [(& - {l)jkT] ± 1 ' 
(4) 

where the upper (lower) sign is for Fermi (Bose) 
particles, g is the statistical weight (2S + 1 for 
massive particles), and & is the kinetic energy of a 

particle: 
(5) 

For Bose particles, the last terms on the right-hand 
side in Eqs. (2) and (3) are important only if a finite 
fraction of the total number of particles (N) is in the 
p = 0 state.1 This would represent a Bose-Einstein 
condensation into the ground state. 

Over many decades, it has been thought desirable 
to solve Eqs. (2)-(4) for z, and hence to be able to 
find exact equations of state for the ideal gases. 
Unfortunately, although equations of state were long 
ago found in limiting cases,2 until recently no exact 
equations of state were ever obtained. 

The key to the solution was found by Leonard,3 
who very cleverly succeeded in inverting the non
relativistic limit of Eq. (2) with complex variable 
theory. Using a modification of Leonard's method, 
we recently inverted Eqs. (2)-(4) and, by combining 
the results, obtained the exact relativistic equations 
of state for the ideal Fermi and Bose gases for the 
first time. 4 

In this paper, we give a more detailed discussion 
of our earlier note. 4 In the next section, the Fermi 
equations (2)-(4) are inverted, yielding the exact 
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I. INTRODUCTION 

The most familiar results of quantum-statistical 
mechanics are the expressions for the density n, 
pressure P, and energy density E of the ideal Fermi 
and Bose gases in terms of the chemical potential ft, 
or, equivalently, the fugacity 

(1) 
They are 
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(4) 

where the upper (lower) sign is for Fermi (Bose) 
particles, g is the statistical weight (2S + 1 for 
massive particles), and & is the kinetic energy of a 

particle: 
(5) 

For Bose particles, the last terms on the right-hand 
side in Eqs. (2) and (3) are important only if a finite 
fraction of the total number of particles (N) is in the 
p = 0 state.1 This would represent a Bose-Einstein 
condensation into the ground state. 

Over many decades, it has been thought desirable 
to solve Eqs. (2)-(4) for z, and hence to be able to 
find exact equations of state for the ideal gases. 
Unfortunately, although equations of state were long 
ago found in limiting cases,2 until recently no exact 
equations of state were ever obtained. 

The key to the solution was found by Leonard,3 
who very cleverly succeeded in inverting the non
relativistic limit of Eq. (2) with complex variable 
theory. Using a modification of Leonard's method, 
we recently inverted Eqs. (2)-(4) and, by combining 
the results, obtained the exact relativistic equations 
of state for the ideal Fermi and Bose gases for the 
first time. 4 

In this paper, we give a more detailed discussion 
of our earlier note. 4 In the next section, the Fermi 
equations (2)-(4) are inverted, yielding the exact 
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equation of state for Fermi particles. This is followed 
in Sec. III by a similar discussion of Bose particles. 
The fourth section presents a discussion that includes 
an investigation of various limiting properties. 

II. IDEAL FERMI GAS 

By changing variables to y = exp (f,jkT), the 
Fermi equation (1) can be written as 

n == - YFnU) 

== _ jY (<Xl dy(ln y + M)[ln y(ln y + 2M)]! 

J1 y(y - j) 

== _jY (<Xl dyfn(Y) , (6) 
J1 y(y - j) 

where 

gA-3 == Y == 2gTT2(k/jTc)3, M == (m
kT

c
2
) , j == -z. 

+1 
b L+ 

-1 
L_ e 

-I 

FIG. I. The complex s plane, with the cut [1,00). The contour 

(7) L is divided into four parts L<Xl' L_, L o, and L+. Lo travels from the 
point f through the point a to point b, on a half·circle of radius € 

"A" is what we will call the optical wavelength, since 
it is equal to the wavelength of a photon with energy 
(4TT)lkT. Note also that M is the ratio of the rest-mass 
energy to the thermal energy kT. 

In addition to the functions fn(t) and Fn(t) defined 
in (6), we also define 

fpCt) = [l~ t(ln t + 2M)]!, F pet) = t (<Xl dyfp(y) , 
. J1 y(y - t) 

(8) 

fE(t) = (In t)!(In t + M)(In t + 2M)!, 

F E(t) = t (<Xl dY/E(Y) . (9) 
J1 y(y - t) 

Note that, as t goes from I to 00, fn(t), fp(t), and 
fE(t) are monotonically increasing functions that go 
from 0 to 00, and the principal values of Fn(t), 
Fp(t) , and FE(t) are monotonically decreasing func
tions that go from a positive constant to - 00. 

Now consider the function .N' of a complex variable 
s, defined by 

.N'(s) = 1 + YFn(s)jn. (10) 

.N'(s) has a cut on the real axis [1, (0). Just by the 
definition of Fn(s) in (6), it also has a zero at s = j. 
This is the only zero or pole of .N' since n is a real 
monotonic function of a real variable j. (This point 
can also be seen more rigorously by using the principle 
of the argument, I) as Leonard did and which we do in 
Appendix A.) 

By using6 

1 . = p{_1_} T iTTO(a), (11) 
x - a ± IE x - a 

centered at s = I. 

we see that the limiting values of .N' above and below 
the cut (see Fig. 1) are7 

.N'±(s) = I + (Yjn)P{Fn(s)} ± i(TTjn)Y/n(s), (12) 

so that 

.N'+(s)j.N'""(s) = exp [i20n(s)], 

Ones) = tan-1 ( TT Yfn(s)jn ). 
YFn(s)jn + 1 

(13) 

(14) 

As s goes from 1 to 00, the argument of tan-1 in (14) 
goes from 0 to - 00, is discontinuous to + 00, and 
then goes to O. By taking the branch of tan-1 such 
that One (0) = 0, we have 

limOn(s) = -TT+, 
8-+1+ 

lim OneS) = 0_. (15) 
S"""oo-

This means that arg [.N'(s)] increases by 7T as .N' 
traverses L+, which agrees with Appendix A. 

By now defining 

.N'o(s) = .N'(s)j(s - j), (16) 

we have a function which is analytic everywhere 
except on the cut and which also satisfies the same 
limiting ratio (13). Finding the solution for j = -z 
of a function of the form of (16) is the Hilbert 
problem.s This solution is obtained by first realizing 
that the use of Eq. (11) implies that the function 

G(s) = exp res) = exp _ n (
s 100 dtO (t») 
7T 1 t(t - s) 

(17) 
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satisfies the ratio condition (13) on the cut. However, 
r(s) has a logarithmic singularity at s = 1, which can 
be exhibited explicitly by writing 

r(s) =.3. [", [On(t) + 1Tl dt _ ~ ['" 1T dt 
1T Jl t(t - s) 1T Jl t(t - s) 

= ~ ['" [On(t) + 1Tl dt + In (1 _ s). (18) 
1T 11 t(t - s) 

This means G(s) has a zero at s = 1 and has no other 
zeros or poles. Thus, we can write 

.N'(s)/(s - j) = KG(s)/(1 - s), (19) 

where K is a constant. This is so because both sides 
of (19) satisfy the ratio condition (13) on the cut and 
have no other singularities. 

By evaluating both sides of (19) at s = 0, we get 
K =: -1/j = l/z. Then, taking the derivative with 
respect to s of (19) and evaluating at s = 0, we find 
that 

YIn == ! ['" dyin(Y) = .l + 1 + 1. r'" dtOn(t) . 
n n Jl l Z F 1T J 1 t

2 

(20) 

The integral [n(M) on the left-hand side of (20) can 
be done exactly in terms of Kn(M) , the modified 
Bessel functions of the second kind. 9 (This is done in 
Appendix B.) Inserting Eq. (B13) of Appendix B into 
(20), we end with the result 

Similarly, we obtain 

~ = YkT M2eM[K2(M)] _ 1 _ 1. [", dtO~(t) , 
zIt' P .."Jl t 

(22) 

l = YkT M 2eM [MK1(M) + (3 - M)KlM)] 
ZF E 

Op(t) = tan-1 ( 1TYkTjp(t)/3P), (24) 
YkTF p(t)/3P + 1 

BE(t) = tan-1 ( 1TYkTfE(t)/E). (25) 
YkTF E(t)/E + 1 

The 0P.E(t) have the same limits at t = 1, 00 as 0n(t). 

Now, combining (21) and (22), we have the exact 
Fermi equation of state 

Y M 2eM K
2
(M)(! _ kT) = 1. ['" dt[On(t) - Op(t)] . 

n P 1T J1 t2 

(26a) 

If one prefers, one can obtain the T-P-E Fermi 
equation of state by combining (22) and (23): 

III. IDEAL BOSE GAS 

For the Bose case we start in a similar manner, 
except that, since we have Bose integrals10 to begin 
with, we do not have to use the intermediate step of 
taking j = -z. To invert the Bose equation (2), we 
consider the function .N'Ji(s) defined by 

.N'B(S) = 1 _ YFn(s) __ 1 _s_. (27) 
n nV 1 - s 

As before, .N' n(s) has a zero at s = z and a branch 
cut on the real axis [I, (0). However, from the last 
term, this time .N' B(S) also has a pole at s = 1, and 
so finding this solution presents a new complication. 
The limits of .N'Ji(s) above and below the cut arell 

~(>±. ) Y { } 1 S 1T v, n(s = 1 - - P Fn(s) - - -- =t= i - YinCs) , 
It nVI-s n 

(28) 
so that 

.N';(s)/.N'~(S) = exp [i2cI>,,(s»), (29) 

,y,. ( ) _ t -1 ( 1TYjn(S)/n ) 
'l'n S - an . 

YFn(s)/n - (l/nV)s/Cs - 1) - 1 

(30) 
At s = I and s = 00, the limits of cI>n are 

For 1 < s < 00, cI>n first decreases to some angle cp, 
-1T < cp < 0, and then returns to zero. Also, there 
is the limit 

lim cI>n(1 + ~) = -1T+ , (3Ib) 
V-+", 
d-+O 

which means that <l>n behaves similarly to 0 .. when 
Bose-Einstein condensation is unimportant. (The 
detailed behavior of <l>n is discussed in Appendix A.) 
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The solution to this pn;)blem is obtained by con~ 
sidering 

J~\(s) = [(1 - s)/(s - z)].N' B(S) (32) 

and 

KBGB(S) == KBexp (!.. f<Xl dt<IJn(t»). 
7T J1 t(t - s) 

(33) 

Since both Eqs. (32) and (33) satisfy the ratio condi~ 
tion (29) and have no singularities other than the cut, 

(34) 

is our solution equation. 
Note that the appearance of the Bose-Einstein 

pole 1/(1 - s) in .N' B(S) caused the disappearance of 
the (l - s) zero in GB(s), but that in the limit V --- 00 

the situation would revert to the same singularity 
structure as in the Fermi case. In either event, the 
solution equation (34) is the same form as the Fermi 
solution equation (19). 

We now can complete the solution as in the Fermi 
case. Matching both sides of Eq. (33) at s = 0 deter~ 
mines KB = liz. Matching the derivatives of (33) at 
s = ° and performing the necessary Bessel function 
integrations gives us the final solution 

...!.. = .! M2eM[K2(M)] + 1 + _1 +! foo dt<IJ;(t) . 
ZB n nV 7TJ1 t 

(35) 

Going now to the Bose equation (3), we see that 
there is also a complication here due to a condensa~ 
tion term. This condensation term does not imply an 
extra zero or pole, but rather a second cut. However, 
the branch cut of In (I - z) is also [1, 00), so that, 
conveniently, this only implies a second contribution 
to our first cut. 

The solution then proceeds as in the Fermi case. 
We consider 

(r(S) = 1 - YkTFp(s) + kT In (I - s), (36) 
3P PV 

which has a single zero at s = z. The limits of :res) on 
the cut are 

YkT .7TYkT 
:r±(s) = 1 - - P{Fp(s)} T 1-- fl'(S) 

3P 3P . 

kT .kT + -In Is - II - 1- arg (s - I), (37) 
PV PV 

so that 

(38) 

-1 ( 7TYkTfi.,(s)/3P + kT arg (s - 1)!PV ) = tan . 
YkTF p(s)/3P - 1 - kT In Is - 11/PV 

(39) 

Even with the condensation term, the limits of <lJp(s) 
are the same as in the Fermi case (see Appendix A), 
so that 

lim<IJ1.(s) = -7T+, 
8-+1+ 

(40) 

Due to the limit <lJp(1) = -7T, our matching 
function Gp(s) will have a zero at S = I, as in the 
Fermi case. The solution obviously then proceeds in 
the same manner, yielding 

Finally, we observe that, since the Bose equation 
(4) has no condensation term, it is inverted the same 
as in the Fermi case (except, of course, for not using 
j = -z). The result is 

1 1 1<Xl dt<IJE(t) + +- 2' 
7T 1 t 

(42) 

'l'/<; t - an , m. () _ t. -1 ( YkTf]iJ(t)/E ) 
YkTF1<:(t)!E - 1 

(43) 

where the same limits exist on <lJ/.;(t): 

<lJ1<:(I+) = -7T+. <1>1<:(00_) = 0_. (44) 

Combining (35) and (41). we finally obtain the 
exact relativistic equation of state for an ideal Bose 
gas: 

YM2e.llK2(M)(~ _ k;) 
= _(-.l _ kT) _.! r<Xl dt[<I>,,(t):- <I>/,(t)]. (45a) 

nV PV 7T J t2 

Again, if one prefers, the T-P-E Bose equation 
of state can be obtained, from Eqs. (41) and (42): 

kTY M2e-11K (M)[l -l(3 - M) + MK1(M»)] 
2 P E K

2
(M) 

= _ kT _.!.. roo dt[<I>l'(t) - <l>E(t)]. (45b) 
PV 7T J t2 
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IV. DISCUSSION 

In this section we discuss some of the clearest 
physical implications and limiting cases of our 
results. With the equations we have obtained, these 
points are seen from a new and general viewpoint. 

A. Effect of Statistics 

Our solutions clearly show where the differences in 
behavior between Fermi and Bose gases manifest 
themselves. First, of course, there is the obvious 
effect caused by the Bose-Einstein condensation terms. 
But in addition to this, the solutions for the fugacity 
show that there are three other dissimilarities. Re
ferring, for example, to Eqs. (23) and (42), the differ
ences between the Fermi and Bose fugacities are found 
in three places on the right-hand sides: (a) the ±l; 
(b) the =F J dttp(t)/t 2, where tp is, respectively, 91<J or 
<l>E; and (c) within the definitions of the above angles 
as being of the form tan-l bet), the functions bet) 
have a change of ± 1 in the denominator. 

These three (±) signs and the condensation terms 
are the exact manifestations of the difference in 
fugacities (and the equations of state) of the ideal 
Fermi and Bose gases. 

B. Ranges of Chemical Potential 

One also trivially sees the ranges of chemical 
potential for the two gases. Obviously, from Eqs. (21) 
and (35) we have 

. 1 I' 1 hm - = 1m - = 00. (46) 

But, from (14) and (30), 

lim On = -7'1', lim <l>n = 0, (47) 
rt-+ 00 n--+oo 

so that 

lim 1- = 0, lim 1. = 1. (48) 
n 4 00 Zll' n--+oo zB 

Since nand Z are monotonic functions of each other, 
this yields 

0:::;; ZF :::;; 00, 0:::;; ZB ::; 1, (49) 

-00:::;; f.1.1<':::;; 00, -00:::;; f.1.lJ:::;; O. (50) 

C. Perfect Gas Law 

In the low-density limit, we easily obtain the 
perfect gas law (Boyle's law) for both Fermi and Bose 
gases. Referring to the equations of state (26a) and 
(45a), we see that the angle terms on the right are 
bounded by ± 1. When n becomes small, the first term 
on the left-hand side is large. Then, to first order, it 

is balanced by the second term on the left, so that 

P = nkT (Boyle's law). (51) 

From this discussion we also see that 

are expressions which give exact measures of the 
deviations of the ideal quantum gases from the 
perfect-gas law. 

D. Nonrelativistic and Relativistic Limits 

We now look at the relationship between the 
pressure and the energy density in the nonrelativistic 
and relativistic limits. Using Appendix Band Eq. (21), 
we have for a Fermi gas in the nonrelativistic limit 
(M» 1) 

lim ~ = g~T _ 1 _.!. (00 dtOr,2
R

(t) , (53) 
M--+ooZF AP 7'1'Jl t 

Or,R( t) 

= tan , -1 ( 47'1'lgkTOn t)l/3PA
3 

) 

(4gkT/37'1't PA3)t 100 
dy(In y)~/y(y - t) + t 

(54) 

A == (7'1'1i2/mkT)t. (55) 

But by taking the same limit for the E equation (22), 
we get exactly the same result as if each time there 
were a P in (54) and in (55) we substituted 

P = iE (nonrelativistic limit, M» 1). (56) 

Thus, this is the relation of the pressure to the energy 
density of an ideal Fermi gas in the nonrelativistic 
limit. 

The expression A is interesting in itself. It is called 
the thermal wavelength. l2 A is the same size as the 
de Broglie wavelength of a nonrelativistic particle with 
kinetic energy 7'1'kT. In the relativistic limit (M « I), 
Eq. (21) becomes 

lim ~ = 2YkT _ 1 _1 (00 dtO~(t) , (57) 
JlI--+OZF P 7'1'J1 t2 

(J~(t) = tan-1 ( 7'1'YkT(ln t)3/3P ). 

(YkTJ3P)t f"dY(ln y)3Jy(y - t) + 1 

(58) 
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Again we get the same form from Eq. (22) if 

P = lE (relativistic limit, M « 1). (59) 

This is the relativistic pressure energy density rela
tion. If we can ignore Bose-Einstein condensation 
effects, the Bose and Fermi equations are the same 
except for consistent changes in (±) signs. It is 
obvious that then Eqs. (56) and (59) would hold for 
a Bose gas, also. 

For completeness, we also give the Fermi-density 
limiting cases 

lim ~ = ~ l_ 1 _ 1. [<Xl dt(}~:(t) , (60) 
M .... <XlZF nA.a TTJl t 

which is Leonard's result,s and 

lim ~ = 2Y _ 1 _1. [<Xl dt(}~(t) , (62) 
M .... OZF n TTJl t 

(}R(t) = tan-l ( TTY(ln t)2/n ). 

n (Yt/n) i<XldY(ln y)2/y(y _ t) + 1 

(63) 

All of the above limits can trivially be converted 
to the Bose limits by changing the three appropriate 
(±) signs and, if desired, inserting the condensation 
terms. 

E. Bose-Einstein Condensation 

Following the discussion of Huang,l the Bose 
equation (2) can be written as 

!_z_ == (no) = n _ YFn(z). (64) 
Vl-z V 

The condition for the existence of Bose condensation 
can be stated as being that the left-hand side of Eq. 
(64) is greater than zero, or alternatively, 

n ;> YFn(I). (65) 

Fn(l) is evaluated in Appendix B, yielding the 
condensation condition 

n ;> no == Y MS i etM K 2(tM) 
t=l tM 

We call Am the mass wavelength, it being the wave
length ofa photon with energy (4TT)lmc2• The limiting 
cases of condition (66) are (see Appendix B) 

lim no = '(!)g = (2.612)g, (68) 
M-.oo AS AS 

lim no = 2n(3) = 2gA-S,(3) = (2.404)gA-s. (69) 
M .... O 

The solution of (66) for T, of course, implies that for 
a given density n, there exists a critical temperature 
Tc , below which condensation occurs. 

We know from (64) that, above the critical density, 
the fraction of particles in the ground state is (N == n V) 

since Z = 1. 
(70) 

As we near the critical point, it is of interest to 
have an expression for the fugacity. This can be 
obtaineds by putting (27) in the left-hand side of (34) 
and taking the limit s --+ 1. With a little algebra, and 
using the value of KB = -liz, one obtains 

l.. = 1 + -.L exp (_ 1. [00 <l>n(t) dt). (71) 
z B n V TT J 1 t( t - 1) 

The largest contribution to the integral is possible 
when t ~ I, at which point 

<l>n (t--+ 1) ~ tan-1 ( 2TTtg(ln t)t/n).3 ). 
(nc/n) - (l/n V)/(t - 1) - 1 

(72) 

Now consider the case n < nc , but n ~ no. Since the 
numerator in (72) is logarithmically small, the condi
tion for <l>n to be -TT and not 0 is that the denominator 
be ~ O. In other words, 

lti-?! (t - 1) ~ [nv(; - 1) rl

. (73) 

At <l>n = -TT, putting this into the integral in (71) 
produces a logarithmic divergence in (n V) as N --+ 00. 

However, it is canceled by the other (nV) in (70) and 
leaves 

lim...!. ~ 1 + c(nc - 1), n ~ nc' (74) 
z .... 1 zB n 

where C is a constant. Leonard3 has considered other 
limiting functional forms near the critical point, and 
the interested reader is referred there. 

v. CONCLUSION 
_ A-a ~ tM K 2(tM) = g m "",e , 

t=l tM 
(66) By inverting the expressions for the density, 

pressure, and energy density, we have obtained 
(67) exact, fully relativistic expressions for the fugacities Am = hC/(4TT)lmc2

• 
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of the ideal quantum gases. This allowed us to find 
the exact equations of state for the ideal Fermi and 
Bose gases. All these expressions were studied for 
physical content, and various cases, such as the non
relativistic and relativistic limits, were discussed. 

Because our solutions involve double integrals 
(the angles themselves are in terms of an integral), 
the solutions we have found are not necessarily 
always easy to use in computer calculations. Be that 
as it may, the value of our results is, first, that they 
are exact solutions for the fugacity and exact equa
tions of state and, second, that they can test the 
exactness of approximations in particular cases, 
especially since the inner integrals in the angles are 
all well-known Bose integrals. lo Furthermore, these 
exact equations clearly unify and show the common 
origin of special limiting cases, and provide a new 
perspective from which to understand the physics 
involved. 

APPENDIX A 

1. The Principle of the Argument and the Angle On 

In this appendix we will first use the principle of 
the argumentS to verify that .N'(s) has only one pole. 
The principle of the argument states that, as a 
function goes around a closed contour, the argument 
of the function increases by 217 times the number of 
zeros minus the number of poles. To apply this 
principle to .N'(s), we use the contour L in Fig. 1. 

First consider Ln . The dominant term in .N'(s) as 
Isl-+ 00 is the integral YF,,(s)jn. By changing 
variables to x = In (y) and replacing s by Xo = In (-s) 
(this last step is analytic on the contour L rn ), we have 

.N'(S)IL = _ r (00 dx(x + M)[x(x + 2M)]!. (AI) 
. 00 n J 0 exp (x - xo) + 1 

However, for Isl-+ 00, 

lim Xo = In lsi + i arg (-s) ~ In lsi. (A2) 
181-+00 

Then the integral in (A2) can be evaluated by the 
Sommerfeld techniqueP which states that, for Xo 
large, 

I = (00 dg(x) dx ,-..J g(xo). (A3) 
Jo dx exp (x - xo) + 1 

In our case, 
g(x) = i[x(x + 2M)]!, (A4) 

so that 

.N'(S)IL
oo 
~ -(Yj3n)[ln s(ln s + 2M)]! (AS) 

-+ - (Yj3n) [1n lsi (In lsi + 2M)]!. (A6) 

Equation (A6) means that arg [.N'(s)] does not in
crease as .N' traverses Loo • 

Next, consider .N'(s) as it traverses L+ from point b 
to point c. Since F,,(s) goes from F,,(l) > 0 to - 00, 

and I,,(s) goes from 0 to a positive logarithmic 
infinity such that 

lim (/,,(s») = 0, (A7) 
8-+00 F,,(S) 

we have that arg [.N'+(s)] = Ones) increases by 17 on 
L+. Taking the branch cut of the tan as we did in 
Eq. (14), this means 

0,,(1) = -17, On(oo) = O. (AS) 

Similarly, one sees that as .N'(s) traverses L_ from 
point e to point I, arg [.N'(s)] increases by 17 again. 
{With our choice of the branch of tan, arg [.N'(8)] goes 
from -217 to -17 on L_.} On Lo, in the limit € -+ 0, 
Re [.N'(s)] is positively infinite while 1m [.N'(s)] is 
finite, so that there is no increase in arg [.N'(s)] on Lo. 
Thus, the total increase in arg [.N'(s)] as .N'(s) traverses 
Lis 217, so there exists only the one pole, at s = j = 
-z. 

2. The Angle <I>n 

From Eq. (30), the angle <1>" is defined byll 

<I> (s) = tan-I ( 17 Yfn(s)jn ) 
n YF,,(s)jn - (ljnV)sj(s - 1) - I 

(A9) 

(AIO) 

As s -+ 1+, the condensation term's negative in
finity dominates over the logarithmic positive infinity 
of Fn in the argument of tan-I. Thus,ll <l>n(l+) = 0_. 
However, as s-+oo_, the termsln(s) and Fn(s) 
dominate the tan-I argument in the same manner as 
in Eq. (A7), so that <l>n( 00_) = 0_. For 1 < 8 < 00, 

the numerator of the tan increases from 0 to 00, as s 
is going from 1 to 00. At the same time, in the denomi
nator, Fn(s) is going from Fn(l) > 0 to - 00 and the 
condensation term is going from - 00 to O. The 
denominator mayor may not go through 0, depending 
on the size of V. In either case, the denominator 
eventually stops increasing and returns to - 00, since 
the F,,(s) term eventually dominates. 

This can all be summed up by saying that, for 
1 < 8 < 00, <1>,,(8) first decreases to some angle ~ 
( - t17 < ~ < 0 if the numerator of the argument of 
tan-I does not go through 0, -17 < ~ :::;;; - t17 if it 
does), and then as s increases further, <l>n(s) turns 
around and returns to O. However, as V becomes 
larger, the F,,(s) term dominates the numerator of 
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the tan for smaller and smaller s. The larger V 
becomes, the more quickly (15 smaller) and closer 
<Pn(1 + ~) approaches -7T. This means that, when 
Bose-Einstein condensation becomes unimportant 
(V -+ (0), the limiting behavior of <lIn(s) is similar to 
Ones). In fact, 

lim<Pn(1 + b) = -7T+. (All) 
V-+oo 
" .... 0 

This last step is true since the Fn(s) term becomes 
[n(l)/n(z < 1)] > 1 by the physical values of Z8 

(see Sec. IVB). 

3. The Angle If> p 

From Eq. (39) we have 

<pp(s) 

= tan-1 ( 7T YkTjp(s)/3P + kT arg (s - l)/PV ). 
YkTF p(s)/3P - 1 - kT In Is - ll/PV 

(A12) 

F or V finite, at s = 1, the condensation terms 
dominate both the numerator and the denominator 
of tan-I. The denominator term is a positive infinity. 
which implies that, as s goes from 1 to a positive 
number, the argument goes from 0 to a positive 
number. However, because of the limiting properties 
of the! and F functions {fp -+ 0, and the F p term is 
[P(z = l)/P(z < 1)] > I}, this is true even when 
V -+ 00, and the Fp term dominates. 

As s increases, the denominator of the argument 
goes through zero, as before, and then heads to a 
negative infinity. Therefore, <Pp is going from -7T to 
O. Thus, with or without the condensation term, the 
limits on <Pp(s) are the same as in the Fermi case, 
Opes): 

lim <Pp(s) = -7T+, 
8-+1+ 

lim <Pp(s) = 0_. (A13) 
$-'00-

APPENDIX B 

1. Modified Bessel Function of the Second Kind 

The modified Bessel function of the second kind 
can be defined by9 

Kv(z) = i7T[L.(z) - I.(z)]/sin V7T, (B1) 

00 (lzy+2m 
I.(z)=I . 

m=O m! rev + m + 1) 
(B2) 

They satisfy the following relations14 : 

Kv-l(Z) - Kv+l(Z) = -(2v/z)K.(z), (B3) 

KV-l(Z) + KV+l(Z) = -2K;(z), (B4) 

zK~(z) + vK.(z) = -zK._1(z), (B5) 

zK~(z) - vK.(z) = -zK'+l(z). (B6) 

For v an integer, they have the following limiting 
properties as z approaches 0 and + 00 on the real 
axis15 : 

lim Kn(M) 
lll .... 00 

= C~te-M 
X 1+ + +". ( 

4n2 - 12 (4n2 _ 12)(4n2 _ 32) ) 

(1 !)8M (2!)(8M)2 ' 

'(87) 

lim K,.(M) = (n - 1)! (2)n, n ~ 1, (B8a) 
llf .... O 2 M 

= In (~), n = O. (B8b) 

2. The Integrals In(M), Ip(M), and IE(M) 

To obtain the solutions in the final form, it is neces
sary to evaluate the three integrals 

I (M) =foo dY!n,p,E(Y) 
n,P,E 2' 

1 Y 
(B9) 

Using 

x = (In y)/M + 1, (B1O) 

In can be written as 

In = M3eM foo dxe-dI(x2 - l)lx 

= _M3eM a~(foodXe-"'M(X2 -1)), (B11) 

which can be integrated to give16 

In = _M3eM a~ [M-1K1(M)]. 

Now use of (B6) yields 

In = M 2eM [K2(M)]. 

Similarly, letting x = (lny)/M, we obtainl7 

Ip = M4loodXe-"'M[x(X + 2)]1 

= M 4[3M-2eM K 2(M)] 

= 3M2eM [K2(M)]. 

(B12) 

(BI3) 

(BI4) 
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Finally, using (B 10), 

I R = M4eM LX) dxe-M"'(x2 - 1)~(x2 - x) 

= M4ellf (~ + ~) (00 dxe-,U"'(x2 _ 1)~ 
OM2 oM J1 

= M4eM (L + ~)[M-IK (M)]. (BI5) 
OM2 oM 1 

With the help of the recursion relations above, this 
gives 

IE = M 2eM [MKl(M) + (3 - M)K2(M)]. (B16) 

From the limits of the Kn given above, we also have 

lim In = llim I p = 1 lim IE = 2, (B17) 
.M .... O .M -+0 "'II-+O 

lim In = 1 lim Ip = i lim IE = M!(t7T}!· (BI8) 
M .... oo ~1 .... 00 ~1-+oo 

3. The Integrals Fn(l) and Fp(l) 

The integral F1/(1) is necessary to determine the 
Bose-Einstein condensation condition. Starting from 
the definition of Fn in Eq. (6), Fn(l) can be evaluated 
by changing variables to Xo = In (y), writing 

1 ~ -1"'0 ---=£...e ; 
e"'o - 1 t~l 

(BI9) 

taking the summation sign outside the integral and 
changing variables again to x = (xo/M + 1). One then 
has 

Fn(l) = M3t~/Mloodxe-tllf"'(x2 -l)!x. (B20) 

But this is the same type of integral as in (Bll), and 
use of the same evaluation procedure yields 

F n(l) = M3 I etM K 2(tM) . (B21) 
t~l tM 

The limiting cases are 

lim Fn(1) = M~(!7T)!'(i) = (2.612)(t7T)!M~, (B22) 
lIt-+ 00 

lim F n(1) = n(3) = 2(1.202), (B23) 
11'1 .... 0 

where '(d) is the Riemann' function: 

00 

'(d) = L t-d
• (B24) 

t~l 

I n the same manner, 

F
1
,(1) = 3M4 I i M K2(tM) , (B25) 

1~1 (tM)2 

lim F 1,(I) = 3'(t)(17T)!M! = 3(1.34l)(t7T)iM i, 
111-+ 00 

(B26) 

lim Fp(l) = 6,(4) = f"57T4
• (B27) 

M-+O 

1 K. Huang, Statistical Mechanics (John Wiley & Sons, Inc., 
New York, 1963), Secs. 9.6 and 12.3. 

• See, for example, the discussion in H. Y. Chiu, Stellar Physics 
(Blaisdell Publ. Co., Waltham, Mass., 1968), Vol. I, Chap. 3. 

3 A. Leonard, Phys. Rev. 175, 221 (1968). 
4 M. M. Nieto, Nuovo Cimento Letters 1, 677 (1969). 
5 E. T. Copson, Theory of Functiolls of a Complex Variable 

(Oxford University Press, London, 1935), p. 119. 
6 A. Messiah, Quantum Mechanics (North-Holland Publ. Co., 

Amsterdam, 1961), Vol. T, p. 469. 
7 P, of course signifies "principal value." In what follows we will 

often omit the P sign where it is obviously understood. 
8 N. 1. Muskhelishvili, Singular Integral Equatiolls (P. Noordhoff, 

Ltd., Groningen, The Netherlands, 1953), Chap. 5. 
9 G. N. Watson, A Treatise on the Theory of Bessel Functions 

(Cambridge University Press, Cambridge, 1944), 2nd ed., Sec. 3.7. 
10 Actually, by defining our variables oppositely, all our integrals 

could have been Fermi-type integrals. but with the argument of the 
angles defined along the cut (-ct), -1]. 

11 In fact, at this point both Eqs. (28) and (30) should have an 
additional term like lim (Re s)/[(Re s - 1 T i€)nVj. To under-

'-0 
stand this, one must realize that on L+, just at the point s = 1 + iE, 
there is a contribution to the angle <lin even for € ...... O. This is 
because, before € ...... 0, <lin increases from -3TT/2 at point f, to TT 
at point a, to -TT/2 at point b. The increase is caused by the con
densation pole at s = I, and even when € ...... 0 it produces a step 
function in arg [oY'j;(s)] so that <IIn(1) = -!TT. In the limit € ...... 0, the 
effect is only at the point s = 1, which is a set of measure zero on 
L+. However, for our matching equation (34) the zero is eliminated, 
so that the angle II>n given by Eq. (30) is the correct one to use for 
our solution. 

12 Ref. 1, p. 197 
13 See, for example, the Appendix of Ref. 2. 
14 Ref. 9, p. 79. 
15 Equation (B7) is found on p. 202 of Ref. 9. Equation (B8) is 

found in N. N. Lebedev, Special Function and Their Applications 
(Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965), p. Ill. See also 
Eq. (14) on p. 80 of Ref. 9. 

16 W. Grabner and N. Hofreiter, Illtegraitafel, Part 2, Bestimmte 
Illtegrale (Springer-Verlag, Vienna, 1950), line (313.23). 

17 The second line of Eq. (BI4) is from Ref. (16), line (312.8). 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME II, NUMBER 4 APRIL 1970 

Lorentz-Covariant Matrices for Elementary-Particle Theories 
as Polynomials in the Spin Matrices * 

T. J. NELSONt 
Lawrence Radiation Laboratory, University of California, Berkeley, California 94720 

AND 

R. H. GOOD, JR.t 
Stanford Linear Accelerator Center, Stanford, California 94305 

(Received 25 September 1969) 

The problem of expressing the (2s + 1) x (2s + 1) covariantIy defined matricesSjlvp'" (used in theories 
of particles with spin) in terms of the angular-momentum matrices s is shown to be equivalent to the 
problem of finding a certain type of polynomial. Explicit expressions for the polynomials, recursion 
formulas, and differentiation properties are given. 

1. INTRODUCTION AND STATEMENT OF THE 
PROBLEM 

In discussing particles with spin s, free or interacting, 
there is an approach which uses (0, s) EB (s,O) wave
functions1- a for massive particles, (0, s) or (s,O) 
wavefunctions4•5 for massless particles. This approach 
is useful because it permits many of the well-known 
ideas about Dirac particles and 2-component neutrinos 
to be carried over directly into the higher-spin cases. 
Central in all the discussions are matrices which are 
generalizations of the Dirac matrices and Pauli mat
rices to the higher-spin problems.6 In some of the 
discussions, explicit formulas for the matrices are 
needed. The purpose of this paper is to provide ex
pressions for these matrices in terms of the angular
momentum matrices. 

The problem leads to new considerations of the 
Lorentz group which may be of mathematical interest. 
It leads to the definition of a set of polynomials, 
implied by the fact that Ra is a subgroup of the 
Lorentz group, which may have value in other 
Lorentz-group applications. 

One is led to the definition of the matrices from 
consideration of complete sets of matrices. For any 
integer or half-integer s, one can form a complete set 
of (2s + I) x (2s + 1) matrices from the three spin 
matrices Si' One procedure is to form tensors from 
products of the matrices, irreducible with respect to 
Ra, up to tensor rank 2s. For example, for s = t the 
complete set is {I, Si}, and for S = 1 the complete set 
is {I, s;, SiSi + SiS; - tt5;i}' However, an alternate 
procedure exists in which the (2s + 1)2 linearly inde
pendent matrices occur as components of a traceless 
symmetric Lorentz tensor of rank 2s. The main subject 
of this paper is the organization based on Lorentz 
symmetry. 

Consider the continuous Lorentz group. A general 
transformation of the coordinate 4-vector is written 

where X 4 is it, ajlVajlp is t5vp ' and a ii , iaM , iaw and aM 

are real. The (s, 0) and (0, s) representations are ei .... •·• 

and e; .... ··, respectively, where T; are three complex 
parameters that serve to label the Lorentz transfor
mations. Let{ Sd be any complete set of (2s + 1) x 
(2s + 1) matrices, the index r ranging over (2s + 1)2 
values. Since {Sr} is a complete set, one can expand 

(ei .. ·s) t Sr( ei'\"S) 

in terms of members of the set, 

(ei ...... )t Sr(ei ...... ) = ! Ar4S4 · 
4 

(2) 

Here Ar4 are the (2s + 1)4 expansion coefficients, 
which are functions of 't'. (The dagger indicates the 
Hermitian conjugate. It does not coincide with the 
inverse owing to the nonunitary nature of the repre
sentations.) Evidently, Ar4 is another representation of 
the continuous Lorentz group; in general, it is (s, s). 
Therefore, it is possible to make a special choice of 
the matrices Sr in which they are labeled like the 
components of a Lorentz tensor of rank 2s, symmetric 
with respect to interchange of any index pair and with 
all contractions zero. Let these matrices be SjlVP"" 

with 2s subscripts, where 

SjlVP'" = SVjlP'" = SjlPv'" = "', (3) 

SjljlP'" = O. (4) 

Equation (2) for these special covariantly defined 
matrices reads 

( i ...... )ts ( i ...... ) S (5) e I'vp'" e = ajl«av/lan • •• «/ly .•.• 

The problem is how to construct the matrices SjlVP'" 

from the spin matrices Si • 

For s = t, the result is well known: 

(6) 

(1) where Si are the Pauli matrices (1i and S, is i. For 

1355 
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s = 1 the matrices are2 

Sii = SiSi + SiSi - ~ii' 

S'4 = S4i = iSi' 

S" = -1, 

and they satisfy 

( i"'I)tS (i".S) - S e p,v e - ap,«av{J «{J' 

(7a) 

(7b) 

(7c) 

(8) 

The results for s = t have also been worked out. 7 

The S/lYP'" are a special case of the matrices intro
duced by Barut, Muzinich, and Williams. 6 One 
process for developing them in terms of angular-mo
mentum matrices has already been given by Weinberg.2 

In the present paper an alternative approach to the 
problem is given and some new properties of the mat
rices are found. 

The matrices provide especially concise and con
venient descriptions of elementary particles. For a 
massless particle and antiparticle of helicity -s and 
+s, the wave equation is5 

(9) 

That is, this equation has just two solutions of definite 
momentum q and energy E = q: one for the particle 
with helicity -s and one for the antiparticle with 
helicity +s. For a particle and antiparticle of finite 
mass m and spin s, described by a (0, s) EEl (s, 0) 
wavefunction,1-3 the wavefunction satisfies the Schro
dinger-Klein-Gordon equation 

02tp/OXa.oxa. = m2tp (10) 

and Weinberg's equation 

cal factor. That is, for an infinitesimal rotation, 

aii = ~ii + f.iikOk , 

ai' = a'i = 0, 

a4' = 1, 

T, = 0i 

(l3a) 

(l3b) 

(l3c) 

(I3d) 

[given ap,v, 't' can be readily determined from Eq. (6) 
and the properties of the Pauli matrices], and Eq. (5) 
implies 

(14) 

[Si' S4. "4i1"'iNL = if.ii1kS''''4kia'''iN + . "(Nterms). 

(15) 

Here N can be any number from 1 to 2s, S, ... , is the 
matrix with all subscripts 4, and S4 ... 'i,'" iN is the 
matrix with (2s - N) subscripts 4, the rest being i1 , 

i2 , ••• , iN' The notation + ... (N terms) indicates a 
sum in which each i index is treated the same way. 
That is, the right side of Eq. (15) is 

if. ii,kS " .. 4ki2' .. iN 

+ if.ii2kS4""i,kia·"iN· •• + if.jiNkS4""i''''iN-,k· 

Also, for an infinitesimal pure Lorentz transforma
tion, 

Eq. (5) implies 

aij = ~ij, 
ai' = -a4i = iVi' 

a'4 = 1, 

(16a) 

(16b) 

(I6c) 

(16d) 

lSi' S""4]+ = 2isS''''4j' (17) 

[Sj' S4"'41''''iN]+ = i(2s - N)S4"'4ji""iN 

Yp,vp ... 02Btp/OXp,oxvoxp ... = (_m)2Btp. (11) - ic5 ii,S'''''i2''' i N + ... (N terms), (18) 

We use units in which Ii = c = 1 so that mass has the 
dimensions of (length)-1. Here 

Yp,vp'" = ( 0 -S!vP"') 
-Sp,vp'" 0 

(12) 

are the generalized Dirac matrices. 
In this paper the problem of finding the matrices 

Sp,vp'" in terms of the spin matrices Si is converted to 
the problem of calculating certain polynomials PMz). 
Explicit formulas for the polynomials are given and 
some differentiation and recursion relations between 
them are reported. 

II. THE EQUIVALENT POLYNOMIAL PROBLEM 

As shown in Ref. 5, Eq. (5) is sufficient to determine 
the Sp,vp- .. in terms of s except for an over-all numeri-

for N = I, 2, ... , (2s - 1). The point is that Eq. 
(14) shows that S, ... , is a multiple of the identity, 
Eq. (17) fixes S'''',j once S''''4 is decided on, and Eq. 
(18) determines S''''41i''''iN once S''''4i''''iN and 
S, ... "2'" iN are known. Thus, the Sp,vp- .. are specified 
up to an over-all numerical factor. 

In agreement with the previous work,5let the factor 
be chosen so that 

(19) 

For S = t and I, this agrees with the usual conventions 
S4 = i and S4' = -1. It differs by a factor ofifrom the 
s = t convention in Ref. 7. This choice is appropriate 
because it yields the results 

(20a) 

(20b) 
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The sign in Eq. (20a) is +1 (-1) when there is an 
even (odd) number of 4's in the indices. The asterisk 
denotes the complex conjugate and C. is the unitary 
matrix such that 

C,Sc;-1 = -s*. 

Equations (20) are easily verified by using Eqs. (17)
(19). An important consequence of Eq. (20b) is the 
complement of Eq. (5): 

(ei .. ·.S/S!vp- .. (ei .. ••S
) = a,,«avpapy ' .. S!py .... (21) 

This can be derived by operating on Eq. (5) from the 
left by Cs , from the right by C;-I, and then taking the 
transpose. 

The problem of expressing S"vp'" in terms of s is 
equivalent to the problem of determining a certain set 
of polynomials, as will now be shown. First of all, Eq. 
(17) gives 

S ( ')2'-1 / 4",4;= I SiS. (22) 

Next, one observes from Eq. (18) that S4" '4i,'" iN is 
a sum ofterms built from numerical factors, Kronecker 
(J symbols, and angular-momentum matrices. For 
even (odd) N, only terms of even (odd) degree in s 
occur, and the highest degree is N. Each term is sym
metric in the indices i1i2 '" is. Consequently, for 
even N ~ 2 one can write 

S4' '04il'" iN = CO«(Jiti2 ••• (JiN-liN) 

+ C2«(Jili2 ••• (JiN_3iN_. SiN_lSiN) 

+ ... + CN(SilSi • ••• SiN)' (23a) 
and for odd N ~ 3, 

S4 .. • 4il" . iN = C1«(Jili • ••• (JiN-2iN-lSiN) 

+ Ca«(Jili2 ••• SiN_.SiN_1SiN) 

+ ... + CN(Sil Si, ••• s("{). (23b) 

Here the c's are numerical coefficients to be deter
mined and the angular brackets indicate lIN! times a 
sum over all permutations of the indices so that, for 
example, 

(SiSi) = t(SiSi + SiSi)' 

«(Jii) = (Jii' 

«(Jih) = l«(JiiSk + (JikSi + (JikSi)' 

The c coefficients define, for N ~ 2, an even or an odd 
polynomial, say 

p' (z) - (i)N-2. (2s)! " C zr (24) 
N - (2s _ N)! (N)! k r , 

where the sum ranges over r = N, N - 2, N - 4,'" , 
1 or O. The factor multiplying the sum is put in to 
make later formulas concerning the polynomials 
simpler. On contracting each i index of S4.·· 4il ... i 9 

with that of an arbitrary unit vector Pi' the same 

polynomial is reache~: 

S4'" 4il" 'iNPil ••• AN = 2., Cr(Siftt)r 

= (i)2s-N (2s - N)! (N)! p' (s. A.). (25) 
(2s)! N .P, 

It is appropriate to let this equation define the poly
nomials for N = 0 and 1, N = 0 meaning S4' .. 4 on the 
left. Equations (19) and (22) then give the first two 
polynomials as 

PMz) = 1, 

P~(z) = 2z. 

(26) 

(27) 

By contracting each i index in Eq. (18) with that of 
Pi' a recursion formula is obtained: 

(N + l)PN+1(Z) = 2zP~'Y(z) - (2s + 1 - N)P~\"_I(Z), 

(28) 

This formula is valid for N = 1, 2, ... , (2s - 1), and 
thus it serves to determine all the polynomials up to 
P~,(z). As a matter of convenience, this equation is 
taken as defining PN(z) for N > 2s also, although 
those higher degree polynomials are not needed for 
the covariantly defined matrices. The polynomials up 
to N = 7 are displayed in Table I. Once the poly
nomials are found, the C coefficients are known and 
SI'VP'" are given by Eqs. (23). 

III. THE POLYNOMIALS 

In the recursion formula, Eq. (28), the coefficient of 
PN-l(Z) goes negative for N > 2s + 1. It follows8 that 
we are not dealing with a classical set of orthogonal 
polynomials. Nevertheless, it is easy to demonstrate 
the following general formula for the polynomials: 

s iN ( _1)1N-n22n 

PN(z) = 2., 
n=ood(2n)! (iN - n)! 

x res - n + t)r(z + n + t) . (29) 
res - ·~N + t)r(z - n + t) 

TABLE I. The polynomials ?r.(z) for N = 0 to 7. When ex
pressed as 

P' () (')9-28 (2s)! ~ r 
N Z = I (2s _ N)! (N)! ... CrZ , 

the coefficients Cr give SI'VP'" according to Eqs. (23). 

P~(Z) = 1 
PHz) = 2z 
P~(z) = 2z· - s 
P.(z) = l[2z3 + (1 - 3s)z) 
P~(z) = t[4z' + 4(2 - 3S)Z2 + 3s(s - 1)] 
P~(z) = /.[4z5 + 20(1 - S)Z3 + (15s 2 

- 25s + 6)z] 
P:(z) = i.[8z6 + 20(4 - 3S)Z4 + 2(45s2 - 105s + 46)Z2 

- 15s(s - 1)(s - 2)] 
P;Cz) = ah-[8z' + 28(5 - 3S)Z5 + 7(30s' - 90s + 56)Z8 

- 3(35s' - 140s' + 147s - 30)z] 
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In the sum, n ranges in integer steps from 0 to iN 
when N is even, from t to iN when N is odd. To prove 
the validity of this formula, one first derives, from 
Eq. (28), a recursion formula that links even poly
nomials or odd polynomials: 

(N + l)(N + 2)P~V+2 
= (4Z2 + 2N2 - 4Ns - 2s)P'l., 

- (2s + 1 - N)(2s + 2 - N)P'l.'-2' (30) 

It is clear that this relation, together with the poly
nomials for N = 0, 1, 2, 3, determines all the poly
nomials. One can easily verify that Eq. (29) does give 
the correct polynomials for N = 0-3 and that it 
satisfies Eq. (30). 

The polynomials P;s+1 have special values. Because 
of the r(s - iN + t) factor in the denominator of 
Eq. (29), where N = 2s + 1 only the n = s + i 
term in the sum contributes and 

s 22s+1 1'(z + s + 1) P (z) - --- _-'--'-----'---...c. 
2S+1 - (2s + 1)! 1'(z - s) 

= [2 2S+1/(2s + 1)!](z + s) 

X (z + s - 1) ... (z - s + I)(z - s). 

(31) 

These polynomials are thus factors times the spin
matrix polynomials9.10 whose roots are the eigenvalues 
of SiPi' Furthermore, the recursion relation, Eq. (28), 
iIl.lplies that 

P~s+2(z) = (2z/2s + 2)P~'+l(z) (32) 

and, thus, that all polynomials P,v with N ~ 2s + 1 
contain the sth spin-matrix polynomial as a factor. It 
follows that 

(33) 

Referring to Eq. (25) one sees that, in the formulas 
for S4 ... 4i, ... i.v as functions of angular-momentum 
matrices s, if you use matrices for representation s with 
2s ~ N - 1, the S4 ... 4i, ... iN are identically zero. 

One can set up recursion formulas on the s index 
of the polynomials also. Relating polynomials with s 
indices differing by t, the result is 

ps+! = " (2r)! ps (34) 
N 7' 22r(l _ 2r)(r!)2 N-2r' 

where in the sum r = 0, I, 2, ... , iN for N even, r = 
0, I, 2, ... , teN - I) for N odd. This can be verified 
by substitution in Eq. (28). We first write the recursion 
formula with s replaced by s + t, then substitute 
using Eq. (34), and finally use Eq. (28) again to 
eliminate polynomials multiplied by z. We could use 
n = NI2 - r as the dummy index in Eq. (34). The 

sum then goes from O(!) to NI2 as in Eq. (29). How
ever, this way of expressing the result is particularly 
simple. It is remarkable that the coefficients on the 
right are independent of Nand s. The recursion 
formula relating polynomials with s indices differing 
by 1 is even simpler: 

(35) 

This formula can be easily verified by substitution 
using the explicit form of Eq. (29) for the polynomials. 

Another question is how the derivatives of the poly
nomials are expressible in terms of the polynomials. 
The answer is that 

(dldz)P'x(z) = L [2/(2r + 1)]PN- 2r- 1(z), (36) 

wherer = 0, I, 2,"', teN - 2) for N even, r = 0, 1, 
2, ... , leN - 1) for N odd. This result can be verified 
in essentially the same way as Eq. (34). Again, the co
efficients are independent of Nand s. In principle the 
polynomials could be determined by successive inte
gration of these equations; that is, starting from P~ 
known, one could integrate the N = I equation to get 
Pf, and so on. This program requires knowledge of 
the values of the polynomials at z = ° to fix the inte
gration constants at each step: 

P'l.,(O) = 0, for N odd, (37a) 

P~v(O) = (_1)h1'Cs + 1)/ON)! 1'(s - ~N + I), 
for N even. (37b) 

Thus, Eqs. (36) and (37) could be used as the definition 
of the polynomials. Equation (37b) can be verified by 
showing it satisfies the specialized form of Eq. (28) 
that results when z = O. 

IV. DISCUSSION 

The matrices S/lYP'" discussed here are covariantly 
defined using the representation eiT-S and its Hermitian 
conjugate as in Eq. (5). Alternatively, one can set up 
covariantly defined matrices using the representation 
eiT•

s and its inverse; that is, for any complete set of 
(2s + I) x (2s + I) matrices Sr, instead of Eq. (2), 
one can consider 

(eiT·T1Sr(eiT.S) = L BrASA· (38) 
11 

Evidently, BrA also is a representation of the con
tinuous Lorentz group. Matrices covariantly defined 
in the sense of Eq. (38) can in fact be built from 
products of SI'YP'" and S'~VP"" By combining Eqs. (5) 
and (21), one finds that 

( iT'S)-1St S (iT.S) st S e /l'" v .. · e =a/l~'"avfJ''' ~ ... fJ .... 

(39) 
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The representation produced by sz ... SV'" ,in this way, 
is reducible and some of the parts provide a complete 
set of (2s + 1) x (2s + 1) matrices. For spin 1, for 
example, from S~vSpa one needs the parts 

T = /2S:VSIlV' 

U!'v = -ii(S:pSvp - S~pSIlP)' 
itt t 

V!'p,va = -a(S!,vSpa + SpaS!'v - SpvS!'a 

(40a) 

(40b) 

- S:aSpv + 2D!'vDpa - 2DpA,a)' (40c) 

The nonzero components of these parts are given by 

T= 1, 

Vi4 ,;4 = !fik! Vk!,;4 = ! Vi4 ,k!fik! 

(41a) 

(41b) 

= tfik! Vkl.mnfjmn = SiSi + SjSi - JD ij • (41c) 

Thus T, U, and V have 1, 3, and 5 independent com
ponents and they form the complete set of 3 x 3 
matrices. From spin -1 functions rp and X [(1, 0) and 
(0, 1)] transforming as 

rp'(x') = eiT"Sq;(x), 

X'(x') = eiToSx(x) , 

one can therefore make the following bilinear co
variants: rptx, rptU!,vX' rptvpp.vaX. The types of co
variants that can occur are evident from a group
theoretical point of view since 

(0, I) ® (0, 1) = (0,0) ffi (0,1) E8 (0,2). 

The quantities S4 .. . 4i, ... iN are reducible with respect 
to R3 ; they are symmetric among the i indices but 
contracting on a pair of them does not give zero. 
However, one can build up linear combinations that 
are irreducible. Suppose Oi"" iN is irreducible, sym
metric among all indices, has zero contractions, and 
is built up from S4 ... 4i , '" iT with r ::;; N. Thus, for even 
N, 

Oil" 'is = aO(Di1i2 ... Di,v-1i) 

+ a2(Di1i • ... DiN_aiN_.S4'" 4i.v-1 i ) 

+ ... + aN(S4" 'M'''' i) (42a) 
and, for odd N, 

0i1"'iN = a1(Di1i • ... Dis_.i.v_1S4"'4is> 

+ a3(Di1i • ... S4'" 4iN-.iN-1 ilr) 

+ ... + aN(S4" ' 4i'''' i)' (42b) 

On contracting each i index with an arbitrary vector 

Pi' one finds 

0iri.·· . iN Pi ,Pi • ... PiN = ! arp
N- rS4'" 4i, ... irPi1 ... PiT' 

r 

where the sum ranges over r = N, N - 2, N - 4, ... , 
1 or 0. Here one can operate with o2jopi)Pa' The 
result is zero on the left because it is a contraction of 
two of the a indices. In the terms involving S4 ... 4aai '" i 

. 3 T 

on the right, this quantity can be replaced by 
-S4 ... 4i

3 
... iT and the sum index revised accordingly. 

After simplification, the recursion formula 

(r + l)(r + 2)ar+2 = (N - r)(N + r + 1)ar 

is obtained. This implies that 

2rr(1. N + 1.r + .1) 
a = 2 2 2 C (43) 

r (!N-ir)!r! ' 

where C is some normalization constant independent 
of r. Equations (42) and (43) solve the problem of 
finding irreducible combinations of the S4 ... 4i, ... iN' 

The polynomials can also be expressed as hyper
geometric symbols: 

s (-l)Nr(N - 2s) 
PN(z) = 2Fl( -N, -s£+ z, -2s; 2). 

N! r( -2s) 
(44) 

If this formula defines PMz) for S negative and z 
pure imaginary, then e-iNU/ 2P';/(iX) is a member of one 
of Pollaczek's systems of polynomialsY 
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First-order finite-dimensional equations of the generalized Bhabha type in a space with n spacelike 
and one timelike dimensions are considered. It is observed that invariance under the connected part 
SO+(n, 1) of the pseudo-orthogonal group in this space requires the use of a wavefunction transforming 
according to a representation of the larger group SO I-(n + 1, 1). It is shown that though the wave/unctioll 
[and each part of it obtained by reduction with respect to SO+(n, 1») transforms into itself under the 
strong reflection R also, nevertheless the wave equation in an odd-dimensional space (n + 1 = 2k + 1) 
mayor may not be invariant under R, when the wavefunction employed transforms irreducibly under the 
connected group SO+(n + 1,1). Thus, contrary to the suggestion contained in the recent literature, 
where specific equations are considered, the mere fact of oddness of the dimension of the space does not 
force the use of representations reducible with respect to the latter group (the matter is representation 
dependent). It is shown, however, that,irrespective of the representation used and of the dimension of the 
space, the equation is invariant under a transformation 0, defined as a combination of an improper 
transformation which reverses the sign of time and another improper transformation of reflection in any 
hyperplane in the spacelike variables. It is suggested that TCP in an arbitrary space be identified with 0 
rather than with R, which simply reverses the sign of all coordinates. 

I. INTRODUCTION 

The discovery of ever-increasing numbers of ele
mentary particles in recent years has served to direct 
attention to noncompact groups containing the 
Lorentz group as a subgroup. On one hand, such 
groups have been employed as "non in variance" 
groups to generate mass spectra with infinitely many 
levels and, recently, also to make predictions regarding 
other quantities of interest like form factors. 1 On the 
other hand, wave equations which are invariant under 
groups like the inhomogeneous de Sitter group and 
similar higher-dimensional groups have been system
atically explored, partly with the hope of incorporating 
internal symmetries alongside the space-time sym
metry and partly as a way of presenting in unified form 
systems of Lorentz-invariant wave equations.2 The 
use of invariant wave equations in odd-dimensional 
spaces [e.g., the (4 + I)-dimensional de Sitter space] 
has in turn raised questions regarding the role of 
improper transformations in such spaces and, in 
particular, regarding the TCP invariance of these 
wave equations. Considering a space with 2k spacelike 
and one timelike dimensions, Rosen3 and Fushchich4 

define the parity operation through a reversal of signs 
of all space coordinates, which is a proper transforma
tion in view of the evenness of the number of space 
dimensions. [Here we give the notation of the 
coordinates xP (ft = 0,1,2,···, n). The first, xo, is 
considered timelike and the Xi (i = I, 2, ... , n) is 
spacelike. We use a time-favored metric: gOO = + 1, 
gll = g22 = ... = gnn = -1. The group defined by 
matrices orthogonal with respect to this metric is 
denoted by O(n, 1), its subgroup consisting of those 

matrices with determinant + 1 by SO(n, 1), and the 
subgroup of matrices continuous with the identity 
(called proper, orthochronous) by SO+(n, 1).] They 
conclude therefrom that TCP invariance really boils 
down to TC invariance and then proceed to show that 
the equation 

(iP'op + m)1jJ = 0, (I) 

with the fll specifically chosen to be the lowest (2")
dimensional representation of a generalized Dirac 
algebra 

(2) 

does not possess TCP invariance, even though it is 
invariant under the proper orthochronous group 
SO+(2k,I). 

In this paper, we wish to point out that there exists 
a transformation, in any space of odd or even dimen
sion, under which an SO+(n, I)-invariant equation 
would be automatically invariant. We prefer to call 
this operation TCP and use the symbol 0 for it. The 
operation considered in Refs. 3 and 4 is denoted here 
by R ("strong reflection"). We discuss first, in Sec. II, 
the irreducible representations (IR) of SO+(n, 1) x R, 
and show that for any n, fields transforming irreduc
ibly under SO+(n, 1) provide, rather surprisingly, a 
representation space also for the operation R. The 
additional requirements for the existence of an 
SO+(n, I)-invariant equation of the general form (1) 
are then considered. It is shown that there is plenty 
of scope for choosing the fl' to be used in (1) in such 
a way that the equation is also R invariant. The choice 
contained in (2) is a very special one and the lack of 
R invariance in this case (if the r ll are taken to be 

1360 
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irreducible) is verified, and the kind of reducible repre
sentation of rl' needed to ensure R invariance is 
specified. We then proceed to introduce the e operation 
in Sec. IV and discuss the invariance under this oper
ation. We conclude with a few remarks on TC and P 
invariance. 

II. FIELDS TRANSFORMING IRREDUCIBLY 
UNDER SO+(n, 1) x R 

The basis of the expectation (and realization) of 
TCP invariance in Lorentz-invariant theories may be 
stated in broad terms as follows. The operation TCP, 
which in this case is the same as the "strong reflection" 
R, takes x -+ -x, t -+ -t, and lp(x, t) -+ 11'( -x, -t) 
to within a linear transformation on the components 
of 11'. (Since we are considering only the invariance of 
free-field equations in which 11' occurs linearly, the 
more recondite questions associated with TCP invari
ance of systems of interacting quantum fields do not 
arise here. For this reason it makes no practical differ
ence whether 11' is a quantum field or not and it may 
conveniently bevisualized as a c-number field.) It effects 
a transformation of determinant + 1 on the coordi
nates and, though it does not belong to SO+(3, 1), it 
does belong to the associated compact group SO(4). 
Now, every irreducible representation D of SO+(3, 1) 
gives, through Weyl's "unitary trick," an irreducible 
representation D' of SOC 4)/Z2, where Z2 is the 
Abelian invariant subgroup consisting of the elements 
I (identity) and R of SO(4). The direct product of D' 
and of a I-dimensional IR of Z2 gives an IR of 
SO(4) which, when continued back by the unitary 
trick, gives an J R of SO+(3, 1) x R, of the same 
dimension as the original representation D. Thus, the 
carrier space of any IR of the group SO+(3, 1) serves 
as one for SO+(3, 1) x R also. In the context of our 
problem, this means that any field 11' which transforms 
according to an IR of SO+(3, 1) transforms into itself 
under R. For example, the wavefunction 11' in the 
Dirac equation transforms according to the direct 
sum of the IR's DC!, 0) and D(O, i), of SO+(3, 1); 
the R (or TCP) transformation takes 11' into y5tp, and 
here, y5 does not connect the two irreducible parts, 
but it carries Del, 0) and D(O, t) each into itself. It is 
then not surprising that invariance under the proper 
Lorentz group should lead to invariance under TCP. 
Clearly, the above arguments go through for any 
pseudo-orthogonal space of even dimension. 

When odd-dimensional spaces are considered, then 
the operation 

R: xl' -+ -xl', f1 = 0, 1, ... ,2k, tp(x) -+ 11'( -x), 

is really TC together with a rotation, as noted in the 

introduction. The determinant of the transformation 
on the coordinates being -1, it is an improper trans
formation which does not belong to SO(2k + 1). 
Therefore, an IR of SO+(2k, 1) x R would be con
tinued, by the unitary trick, to one of SO(2k + 1) x 
R'"" 0(2k + 1), i.e., the full orthogonal group con
taining improper transformations also. But now a 
curious thing happens: The IR's of 0(2k + 1) are 
also fR'S5 of SO(2k + 1), so that on continuing 
back to SO+(2k, 1) x R one finds again that the 
carrier space of an IR of SO+(2k, 1) admits the opera
tion R = TC also and no enlargement of the space 
is necessary. 

The conclusion so far is that the operation R can be 
represented on any irreducible representation space of 
SO+(n, 1) irrespective of whether n be even or odd. 
This statement would seem to be in contradiction with 
the findings of Rosen3 and Fushchich,4 but this contra
diction is only apparent. What we have shown is 
merely that, given an SO+(n, I)-invariant equation 
involving a field transforming reducibly under this 
group, each irreducible part goes into itself even under 
the reflection R. This, however, is not enough, in 
general, to ensure form invariance of a given field 
equation. This kind of situation is not new. Indeed, 
already in the case of proper transformations which, 
by definition, carry an IR into itself, one does not 
have the freedom to insist on a wavefunction having 
only one irreducible part, if it is required to satis(y a 
particular wave equation. It is well known, for ex
ample, that the vector operator 1'1' needed for setting 
up an equation invariant under SO+(3, 1) in the 
general form (1) can be constructed only in a reducible 
representation of this group. 

The implication for the case of strong reflection is 
now clear. Despite the fact that the field 11' in any 
equation invariant under the proper group SO+(n, I) 
automatically provides a representation space for R 
also, an operator fJl with the correct behavior may 
nevertheless not exist within such a representation 
space. It would then be necessary to enlarge the space 
suitably and use a waveful1ction which transform 
reducibly under SO+(n, 1) x R. We now examine in 
more detail the conditions under which this becomes 
necessary. 

III. INVARIANCE OF WAVE EQUATIONS 
UNDER SO+(n, l) x R 

A general equation of the form (I) is invariant under 
the proper group if and only if the fl' transform like 
a vector, which means that they must have the follow
ing commutation relations with the generators IIlV of 
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the group: 

(3) 

The generators themselves have the Lie algebra 

[[I'Y, JP<1] = igYP II'<1 - igllPr<1 + igll<1rp - igY<1IIl". (4) 

Under R, 

and (8) together define the Lie algebra associated with 
the group SO-l-(n + 1, 1) in a space of one-higher 
dimension than what we first started.7 It has the 
generators 

(9) 

Under the reflection R in the (n + I)-dimensional 
(5) space, 

and for invariance of (I) we must further have 

(6) 

Equations (3) and (4) are invariant under these 
transformations so that under R any representation of 
(3) and (4) would go into some representation, but 
whether these two are equivalent depends on the nature 
of the algebraic relations other than (3) and (4) which 
hold among the IllY and r ll in specified representations. 
To consider a special example, in the case of SO+(4, I), 
we can take 

1'0 = EYo, r l = Eyl, r 2 = Ey2, 1'3 = Ey3, 

1'4 = €y5 (7) 

(where the y's are the familiar 4 X 4 Dirac matrices 
with 1'5 = 1'01'11'21'3 and E = ± I). The choices of 
E = ± 1 in (7) both satisfy (2), and together with 

IllY = _ i(f'/'rY - ryrll) (8) 

also satisfy (3) and (4). [Here, in (8), a factor i on the 
rhs has been omitted for later convenience. This 
corresponds to normalizing the 1'1' by multiplication 
by a factor t and would bring an extra factor t on the 
rhs of (7) and a factor i in Eq. (2), but these factors 
are not relevant for our purposes.} But the two choices, 
E = ± 1, provide inequivalent IR's of (3), (4), and (8), 
because the matrix rOr1r2r3r4 which commutes with 
all the I'll and IllY is a different multiple, + 1 or -1, of 
the unit matrix in the two cases. The transformation 
R, which by virtue of (6) leads to the interchange of 
E = + 1 and E = - 1, would interchange these two 
inequivalent IR's of the set of matrices (JIlY, r p

) and 
so an SO+(4, I)-invariant equation which involves 
only one of these cannot be invariant under R. 

We are now in a position to consider the general 
case of Eq. (1) in an (n + I)-dimensional pseudo
orthogonal space. We do not require the r ll to obey 
Eq. (2), but it is assumed that they obey the SO+(n, 1)
invariance conditions (3) and that the r ll together with 
the JIlV form a finite-dimensional Lie algebra through 
the relation (8) which enables the algebra to be closed. 
Thus, the equations considered are a generalization of 
the Bhabha equation6 to higher-dimensional spaces. 

The essential point to note now is that Eqs. (3), (4), 

(10) 

which corresponds to the transformation R': 

in the (n + 2)-dimensional space. 
It is clear from (9) that the invariance of Eq. (1) 

under the proper group SO+(n, 1) requires that the 
representation of the I' matrices employed should 
belong to an IR (or of course, to a direct sum of IR's) 
of the larger group SO+(/1 + 1, 1). The question noli' is 
whether or not every such equation would also be in
variant under R. The answer is in the affirmative only 
if the IR considered is also an IR of the group ob
tained by adjoining the element R' defined by (11) to 
SO-l-(n + 1,1). We see below that the IR's of this 
enlarged group may contain more than one IR of 
SO-l-(n + 1, 1), in which case such higher-dimensional 
reducible representations of the latter group would 
have to be used in (1) to ensure invariance under R 
also. For a detailed analysis of this point, we have to 
consider the even- and odd-dimensional cases sepa
rately. 

(a) Equation (1) in even-dimensional spaces: n + 
1 = 2k. In this case the transformation (11) has 
determinant + 1 and is therefore an element of the 
compact proper group SO(n + 2) associated with 
SO-l-(n + 1, 1). It follows then from the line of argu
ment used in Sec. II that any irreducible representation 
space of SO+(n + 1, 1) also accommodates the trans
formation R', and therefore, no enlarging of the 
dimension of Eq. (1) is necessitated by the introduc
tion of strong reflection invariance. An interesting 
special case is the spinor representation which, in 
view of the fact that n + 1 = 2k, is of dimension 2k. 
The matrices r ll = In+1.1l of this representation satisfy 
(2). This representation reduces into two inequivalent 
IR's of the original group SO+(n, 1) with which we 
started. The simplest example is the Dirac equation in 
(3 + 1) dimensions, where the 4-dimensional wave
function 'IjJ transforms irreducibly under SO+(4, 1) 
but reduces into the two IR's, D(t, 0) and D(O, t), 
of SO+(3, 1) as well as SO-l-(3, 1) x R. 

(b) Equation (1) in odd-dimensional spaces: n = 2k. 
Now the transformation (11) has determinant -1. 
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So the compact group corresponding to SO+(n + 1, 1) 
enlarged by this operation is not SO(n + 2) but 
O(n + 2). The IR's of O(n + 2), n + 2 = 2k + 2 
being even, are of two types.s One type is characterized 
by nonseJfassociated Young diagrams. These IR's are 
irreducible also under SO(n + 2) and lead, via the 
unitary trick, to IR's of SO+(n + 1, 1) in the repre
sentation spaces of which the transformation R' is 
also defined. In other words, if the /n+I,,,, of this kind 
ofIR of SO+(n + 1, 1) are taken as the r", in (1), no 
increase in dimension is necessary to incorporate 
strong-reflection invariance: Thus, the doubling of the 
representation space, found necessary in the context 
of odd-dimensional pseudo-orthogonal spaces in Refs. 
3'and 4, is a special feature of the representation of the 
r matrices employed there and is by no means a general 
property associated with the dimensionality of the 
space. 

. The second type of IR's of O(n + 2), characterized 
by selfassociated Young diagrams, is reducible into 
two inequivalent IR's of equal dimension of SO(n + 2). 
From this, one concludes that strong reflection inter
changes two inequivalent IR's of SO+(n + 1,1), so 
that an equation of the form (1), employing one of 
these IR's alone, cannot be invariant under 

SO+(n, 1) x R 

though it is invariant under SO+(n, 1). In such cases, 
a doubling of the dimension of the equation invariant 
under the proper group, so as to accommodate both 
the above inequivalent IR's, is necessary if strong
reflection invariance is required. 

Besides the above single-valued representations, one 
also has the fundamental spinor representation of 
dimension 2k+1 (where 2k = n) of O(n + 2). It splits 
into two inequivalent IR's each of dimension 2k under 
SO(n + 2). In both these IR's of SO(n + 2) the 
generators /n+I,,,, == r", obey Eq. (2) and, in addition, 
one of these sets satisfies 

(12a) 

while the other has 

rOrl ... rn = -(i)inI. (I2b) 

Either of these can be used in (1) to produce an 
SO+(n, I)-invariant equation, but a direct sum of these 
must be used if R invariance is also desired, since R 
interchanges (12a) and (12b) by virtue of its effect on 
rl' as in (6). It is this very special case which is the 
basis of the remarks in Refs. 3 and 4 regarding R 
invariance in odd-dimensional spaces. San
thanam9 suggests that, since R invariance cannot be 
had within the 2k-dimensional IR of the Dirac-

Clifford algebra C2k+1 [defined by (2)] which satisfies 
(12a), a reducible representation of these equations be 
used. However, it is clear from our consideration 
above that no representation (even a reducible one) 
satisfying both (2) and (12a) can ensure R invariance. 
The important point which is missed is that a pairing 
of a representation (reducible or irreducible) of (2) and 
(12a) with the corresponding one of (2) and (12b) is 
essential. Such a representation would, of course, be a 
reducible representation of (2) alone, but a special 
one, which forms 2k + 1 of the elements of the 
Dirac-Clifford algebra C2k+3' 

The considerations of the last paragraph may be 
illustrated by the example of the SO+(2, I)-invariant 
equation which has either the set of Pauli matrices 
(aI' a2 , a3) or the set (-aI' -a2 , -a3 ) as the r"'. 
The equations formed from these two possibilities go 
over into one another under the R operation and can 
be combined into one R-invariant equation which has 
three of the Dirac y matrices, say yI, y2, y3 for the r"'. 

IV. THE TCP OPERATION 

The preceding discussion concerned the invariance 
of (1) under the strong reflection R which is identical 
with the usual TCP in even-dimensional spaces, but is 
just TC in the odd-dimensional case. We recall here 
that in the former case, the fact of R being a trans
formation with determinant + 1 led to the expectation 
that it could be built into every IR of SO+(2k + 1, 1) 
by passing to SO+(2k + I, 1) x R, with the help of 
the unitary trick, from SO(2k + 2) to which R 
belongs. It follows that when R is a transformation 
of determinant -1, as in the case of odd-dimensional 
spaces, there is no longer any such strong reason to 
expect R invariance. But it follows equally well that 
one should expect invariance of the theory in any 
dimension under any transformation which has deter
minant + I ; for example, 

i = 2, 3, ... , n. (13) 

This is a combination of TC(xo ---+ -XO) with the 
improper transformation of space-rejiection,lO i.e., a 
reflection of space in a hyperplane which passes 
through the origin. (The special choice of this hyper
plane which singles out the I-direction is really irrel
evant; any other would do as well and is related to the 
one given, by a proper transformation.) We define this 
to be the TCP operation e in a space of arbitrary 
dimension and verify that any equation of the form (1) 
is automatically invariant under this operation. It 
does not require any special consideration in the even
dimensional case since it differs from R only by a 
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rotation. In the case of odd dimensions, the point to 
note is that SO+(n, 1) together with e-a semidirect 
product, since e does not commute with SO+(n, 1), 
unlike R-goes over into SO(n + 1) through the 
unitary trick [and not into O(n + 1) as when we had 
R instead of e]. It is easy then to see, by arguments 
similar to those used repeatedly above, that any IR of 
the group obtained from SO+(n, 1) by adjoining e has 
the same dimension as that of SO(n, 1) by itself. 
Nothing new comes up when we consider the invari~ 
ance ofEq. (1) either, for we have to consider for that 
purpose the group SO+(n + 1, 1) to which the trans~ 
formation 

i = 2, 3, ... , n + I, (14) 

a transformation with determinant + 1, is to be 
adjoined instead of R' as defined by (11). It follows 
then that every IR of this group is irreducible under the 
proper subgroup SO+(n + 1, 1) and therefore, any 
equation based on an IR of SO+(n + 1,1) [and hence 
invariant under SO+(n, 1)] is invariant under e also. 

In the case of the special representation of the r" 
defined by (2), for example, it is obvious that there is 
a matrix, namely rOrI, which induces the transforma
tion 

ro -+ _ro, rl -+ _rI, r i -+ r i , i = 2, ... ,n, 
(15) 

necessary for invariance of (1) under the e operation 
(13). This statement is independent of whether n is odd 
or even. 

V. THE OPERATIONS TC, P, T, AND C 

The question of TC invariance in odd-dimensional 
spaces has been treated as R invariance in Sec. III and, 
in view of the discussion in the last section, the require
ments for invariance under P (improper transforma
tion of space reflection) are the same as for TC 
invariance. 

In even-dimensional spaces, the question of TC 
invariance leads one to IR's of O(n + 2), where 
n + 1 = 2k; but since these are IR's of SO(n + 2) 
also, as mentioned in Sec. II, one finds by previous 

arguments that no increase in dimension of an 
SO+(n, I)-invariant equation is necessary to incor
porate TC invariance. 

On the question of separate T or C invariance, 
some interesting observations have been made by 
Fushchich4 in the context of the special spinor repre
sentation of the r matrices. A general discussion has 
to be ba~ed on the relation between the relevant IR's 
and their complex-conjugate IR's and is not attempted 
here. 
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The asymptotic evaluation of a wide class of multidimensional integrals occurring in mathematical 
physics is considered. J n this class are included integrals of the form 

t fa:> 
(21T)N -a:> p(k)exp[ik.x - a(k)t]dk. 

A semi,:(mstr~ctive method.is pro~en ~nd cer~ain c1as~es of integrals are asymptotically evaluated. Ex
amples involving problems In parllal differential equatIOns and a transport equation are given. 

1. INTRODUCTION 

It is often the case in mathematical physics that the 
resolution of a problem reduces itself to the evaluation 
of integrals. This is especially true in the case of linear 
problems. In spite of this, formidable problems still 
usually remain. Often the integrals one encounters do 
not have representations in terms of familiar or, for 
that matter, tabulated functions. In such cases one 
tries to take advantage of the presence of large param
eters in the integrand.! Techniques for exploiting the 
presence of a single large parameter occurring in 
I-dimensional integrands have been considered ex
haustively in the literature.2- 4 These classical tech
niques have also proven successful in a number of 
cases involving multidimensional integrals ,5-9 but 
progress there has not been as great. Generally 
speaking, these methods represent the asymptotic 
evaluation in terms of an evaluation at the stationary 
point of a function. The location of the stationary 
point of this exponent is, of course, not part of the 
classical methods, and this part of the calculation 
usually proves impossible except when only elementary 
functions are involved. 

In this paper, we develop a method for the asymp
totic evaluation of integrals which avoids these 
restrictions and difficulties. We consider integrals 
over an arbitrary number of dimensions, containing 
a number of parameters. In order to do this, we 
naturally have to give up a certain amount of general
ity. We do this by focusing on integrals which are 
typical of a large class that occur in mathematical 
physics. As the reader will see, the restrictions placed 
on the integrand of the integrals under study are 
typically the case in physical problems containing a 
dissipative mechanism. 

The method discussed in this paper has already 
proven successful in a number of problems in gas 
dynamics ,10-13 magnetohydrodynamics1,4.15 and ki
netic theory.16.17 A general discussion for integrals 
over one dimension has already been given.10 

2. STATEMENT OF THE MAIN RESULT 

To begin with, we consider integrals of the form 

I = ~ fa:> eik'X-cr(kltp(k) dk. (1) 
(27T) -01'0 

[This is generalized below by Eq. (21),) Both k and x 
denote N-dimensional vectors and dk represents the 
N-space volume element. The integration may extend 
over any part of N space. The infinite limits of inte
gration are indicated only for simplicity; other limits 
can be included in the support of p. The sole restriction 
in this regard is that the region of integration include 
the origin. 

Without loss of generality we may take 

a(k) = 0, k = 0. (2) 

a(k) is said to be admissible if it satisfies the following 
five conditions: 

(i) Re a = ar ~ 0, 

(ii) ar = 0, only if k = 0, 

(iii) a E C, 

(iv) in the neighborhood of the origin 

a = if(k) + g(k) + O(k3), 

where f and g are real, continuous, and homogeneous 
degree one and two, respectively, 

(v) g = 0, only ifk == 0. 

Condition (i), which demands that -ar have a global 
maximum, states that the system in question is stable, 
and condition (ii) then adds that it be dissipative. 
Condition (iv) is obtained if a E C3, and is therefore 
somewhat weaker. That the first order is pure imag
inary and the second pure real is often a direct con
sequence of the transformation properties of the 
equations governing the system. 

For most purposes it suffices to place the following 
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weak restriction on the function p(k): 

(vi) Ipl, L:lpl dk < M < 00. 

[Actually, as will be clear, (vi) is stronger than neces
sary, but we avoid such mathematical niceties.] 

Main Result 

If a is admissible and p satisfies (vi), then], as given 
by (1), can be written as 

I = 10 + O*(t-i (N+l), 

where 

I = _1_ foo eik.x-if(k)t-g(k)~(k) dk (3) 
o (21T)N_if) 

and O*(t-p) represents a quantity such that 

lim tP-
60*(t-P) = 0 

t-oo 

for any small t5 > o. 
With the additional condition at the origin 

(vii) p = Po + O(k), 

we obtain 

or 

1= 1° Po + o*(ri (N+1), (4) 

where]O is defined through (4). We prove (3) and (4), 
and an extension (21) and (22) in Sec. 3. In the re
mainder of this section we comment on certain aspects 
of the calculations involved in (3) and (4). 

Before going further, it should be noted that the 
main result is, in a sense, only semiconstructive. The 
integral appearing in (3), and even the one in (4), can
not generally be carried out in terms of elementary 
functions. Even after taking into consideration the 
homogeneity requirements onfand g [see (iv)], we are 
left with an integral which cannot, in general, be 
carried out. In Sec. 4, however, we carry out the full 
integration in several important special cases. 

So far, nothing has been said of the parameters x. 
In fact, the error estimates in (3) and (4) are com
pletely independent of x. This is another aspect of 
the semi constructive nature of the calculation. The 
region of validity in x space of the calculation is the re
striction to those x such that the integral of (3) or (4) 
is large compared with the error estimate. Often this 
region becomes apparent only after the completion 
of the integration of the integrals in (3) or (4). We give 
explicit examples of this in Sec. 4. 

In this same vein, we point out that it is conceivable 
that the integral terms in (3) or (4) are less than, or of 
the same order as, the error estimate for all values of 
x. In such a case, the calculation as it stands only 
represents an estimate for the integral 1. 

At this point, we mention an essential difference 
between (3) and (4). In general, the modulus of the 
error estimates in (3) and (4) are quite different. The 
first form (3) only involves an expansion in terms of 
the scales of the underlying operator leading to (1), 
while (4) involves in addition an expansion of the 
data of the problem. In other words, (3) leads to a 
sharper result and, hence, may be used for significantly 
shorter times. As an illustration, in gas dynamics,lO 
(3) is valid for times large compared to the mean time 
between molecular collision, while (4), in addition, 
requires that the time be large compared with the time 
taken by a sound wave to traverse the initial disturb
ance. 

[n the remainder of this section, we indicate how 
one can typically obtain the functions f(k) and g(k). 
For many problems of mathematical physics, this 
usually presents a simple calculation. The following 
remarks are only meant to be formal. 

Let us consider a problem which may be considered 
as an initial-value problem. Consider 

av 
-=Lv. at (5) 

L is a linear operator and v belongs, say, to a Hilbert 
space (perhaps finite). The problem, then, is to solve 
(5), subject to specified initial data 

v (t = 0) = VO. (6) 

Further, let us assume that the problem has already 
been Fourier transformed, i.e., L, v, and VO are to be 
regarded as functions of k. Using formal manipula
tions and inverting the transformations leads to the 
following representation for the solution: 

v = -- etk.xetLvO dk. 1 foo. 
(21T)N -cr:; 

(7) 

The representation of elL itself involves a number of 
problems, but, generally speaking, it can be repre
sented in terms of the spectrum of L. Therefore, a 
typical term which arises out of the point spectrum of 
L has the form 

~ foo eik,xHCk)tp(k) dk. (8) 
(21T) -00 

The function p(k) is partly due to the operator and 
partly due to the initial data. The function A(k) is an 



                                                                                                                                    

ASYMPTOTIC EVALUATION OF MULTIDIMENSIONAL INTEGRALS 1367 

eigenvalue of L, i.e., there exists a q such that 

Lq = Aq. 

The above integral is, of course, of the form I in Eq. 
(1). To employ the main result it is, of course, neces
sary to prove A admissible. Aside from this, it is 
important to note the way in which A(k) arises. Now, 
although A may be quite difficult to obtain, its ex
pansion is in practice much simpler to obtain. For
mally, one writes 

and 

where the Li (known) and the Ai are homogeneous of 
degree zero in k. A number of results and methods for 
such perturbation series for L are discussed in the 
literature.1s .19 

Finally, although it is not our intention here to con
sider the initial-value problem in any detail, one 
further point is worth mentioning. This has to do with 
the solution to (5) and (6), say, in the form (7). 
Suppose there exists a discrete eigenvalue of L, A, such 
that its real part for k = 0 is greater than any other 
part of the spectmm of L. Clearly, then, for t ->- 00 

the major contribution to (7) is given by (8), and by 
our main result this has the form (3) or (4) .. 

3. PROOF OF THE MAIN RESULT AND ITS 
GENERALIZATION 

We require the following lemma in our proof. 

Lemma: For a(k) admissible there exists a go > 0 
and an E1 > 0, such that 

Hence, there exists an Eo > 0 such that 

aT - tk2gm > 0, Ikl < Eo. 

Tn fact, let EO be the maximum such value. 

(11) 

Next from the continuity of ar and the dissipative 
condition (ii), we have that aT is bounded away from 
zero if Ikl is bounded away from zero. Therefore, for 
all ko > 0, we have 

aT ~ G(ko) = inf ar(k) > O. (12) 
Ikl >ko 

Then there exists an f such that 

o < ~ < EO 

and 
G(ko) ~ ~~2. 

For, if this were not true, there would exist a point set 
{kJ such that 

a(k i ) < tgmE;, 

where {EJ is a sequence converging to zero. From (11), 
Ikil 2: EO for all i. But then this contradicts (12). 
Denote the largest such ~ ~ Eo by E1 • Then from (II) 
we have 

for all Ikl > € and f ~ El' Setting go = ~g,,,, we have 
proven the lemma. 

Proof of the Main Result 

From condition (iv) we have 

lim I a - ~ - g I = c' < 00, 
Ikl-O k 

which may be zero. Tn any case, we set 

c = 1 + c' . 

(9) There exists an E2 > 0 such that 

for all Ikl > ~ and any ~ > 0 such that ~ ~ E1 • 

Proof' Since g is homogeneous of degree two 

g(k) = k2g(e), 
with 

e = k/k. (10) 

From the continuity of g and condition (v) we can also 
write 

with gM and gm the maximum and minimum, respec
tively. 

From condition (iv), 

aT - ik2gm > ik2gm + 0(0). 

la - if - gl ~ c Ikl3 (13 ) 
for 

Next, we choose 

where El is the same as that of the lemma. Then, for 
E < E3 we decompose the integral (1) as follows: 

(21TyvI = r eik'X-"(kltp(k) dk 
Jlkl~c 

+ r (eik,x-u(kll _ eik.x-ift-UI)p(k) dk 
Jlkl « 

+ r eik'X-if(klt-Y(kllp(k) elk 
.Ilkl« 

= II + 12 + 13 , 
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Then, since 

1(21r)NI - 131 ~ 1/11 + 1121, 

we need only estimate the first two integrals. Using (9) 
of the lemma, we easily have 

Next, writing 

12 =5, eik.x-ift-Yt(e(g+if-a)t - J)p dk 
Ikl« 

and taking absolute values, we have 

1/21 < M r le(y+if-a)t - 11 dk. 
J1kl« 

(14) 

Using a well-known inequality and Eq. (\ 3), we obtain 

1/21 ~ MeONt feck3tkN+2 elk 

«3tM (\ N+3 3 
e euNt€ K _"'+3 rE t ----'-'--- = € te , 

N + 3 
(15) 

where ON is the surface area of the unit sphere in N
dimensions. 20 

We now set 
t-!(1-M 

€= , 

where 0 > 0 is small and 

With this choice of €, Eq. (13) becomes 

1/11 < Me-
gotO 

and (15) becomes21 

(16) 

(17) 

1121 ~ Kec/(d-~l»/tl(N+l)-il>(N+l) = O*(t-i (N+1». (18) 

This proves the main result (3), since the extension of 
the limits of integration to 00 in I adds an asymptoti
cally small contribution. 

It is clear from the above proof that condition (vii) 
immediately leads to (4). In fact, it seems that a many
term expansion of p(k) leads to an asymptotic ex
pansion. There would be no value in this, since, if 
p = O(k), a simple estimate on I shows that 11 = 
O*(t-!(N+1», i.e., it is of the same order as already 
neglected terms. Therefore, if p(k) satisfies (vii), Eq. 
(4) is obtained, i.e., 

1= 10po + O*(t-!(N+l», 

where 1° is the same as defined through (4): 

1°(x, t) = _1_ IC() eik.x-ift-gt dk. (19) 
(21T)N -00 

For reasons which are discussed in the next section, it 
is sometimes best not to use the expansion of p(k) even 
if p satisfies (vii). In these cases, we can write, instead 
of (3), 

I = 1° * p(x) + o*(r1(N+1», (20) 
where22 

p(x) = L:e-ik,Xp(k) dk. 

The asterisk in the first term of (20) denotes the N
dimensional spatial convolution product. 

An examination of the proof of the main result 
given in this section shows that it depends in no 
essential way on the form eikox

, in which the vector x 
appears. In fact, if this exponential is replaced by any 
function F(x, k) which is uniformly bounded, no 
alteration in the proof is necessary. Hence, writing 

(viii) IF(x, k)1 < 00 uniformly, 

we extend our main result. 

Extension of the Main Result 

Consider the integral 

l' = (2~)N L:F(X, k)e-a(k)tp(k) dk, (21) 

with a admissible, p satisfying (vi), and F satisfying 
(viii). Then, for large t, we have 

I' = L:F(X, k)e-if(k)t-Y(k)tp(k) dk + o*(ri (N+l». 

(22) 

If p satisfies (vii), an expression similar to (4) may 
also be written. 

It is clear that the above generalization is quite ex
tensive, and we have chosen to focus attention on 
Fourier transform type integrals (1) only because of 
their natural importance. 

4. SPECIAL CASES AND EXTENSIONS 

Case (1): 
N 

(J ,......, ia. • k + 0 ~ {l;;kik j 
•• ,=1 

in the neighborhood of the origin: If, in addition 
to being admissible, we have also that (J has two 
continuous derivatives at the origin, then we may 
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conclude that 

/= ex· k, 
N 

g = 2 pijkik j , 

i,j=l 

where ex is a real constant vector and ~ is a real, 
symmetric, positive-definite matrix of order N. Tn this 
case, 1° takes the form 

]0 = _1_ fO') eik.(X-cxtl-k·IHt dk, (23) 
(21T)N -0') 

which may be integrated immediately and gives 

]0 = (41Tt)-!N e(x-cxt).~-1'(X-cxtJ/4t/( det ~)l. (24) 

In the above forms, the dot product denotes the inner 
product in Euclidean N space. 

Now, having the form (24) for 1°, we can, in this 
case, give a precise characterization to the region in 
x space for which the asymptotic approximation is 
valid. Writing, for example, 

] = 1° Po + O*(t-~(N+O), 
we clearly have that x must be such that 

(x - ext). ~-l • (x - ext) = oCt In t). (25) 

Using the properties of (3, a cruder estimate is that 
Ix - extl = o«t In t)!). Outside these regions we have 
the estimate that I = O*(t-!(.'\'-lll). 

Case (2): i-Dimensional Integrals: For N = I, k = 
k and the admissibility condition (iv) is clearly equiv
alent to (J having two derivatives at the origin. In 
this case 10 [Eq. (24)]has the form 

]0 (N = I) = e-(x-atJ
2
/4/1t/(41T{3t)!. (26) 

The range of validity is still given by (25). In terms of 
the integral22 

we can write 
(27) 

We now consider the next term in the asymptotic 
development of J or I. To accomplish this, we assume 
that a(k) satisfies 

(iv'): (J = iock + (3k2 - iyk3 + 0(k4) 

instead of (iv). ({3 > 0 and oc and y real.) The condition 
(13) is now replaced by 

la - iock - (3k2 + iyk3
1 < ck4, Ikl < 1:2 , (28) 

Also, instead of condition (vii), we now let p(k) be 
such that 

(vii'): p = Po + P1k + O(P). 

Then, using (iv') and repeating an argument analogous 
to that given in the previous section, we can directly 
prove the following: 

] = 1. fO') eik(x-atJ-flk2t+iYk'tp(k) dk + O*(t-~). (29) 
21T -00 

Equivalently, instead of (27) we can write 

J = 6° + O*(t-~) 
= J.. foo eiklx-atJ-/lk

2
t+iYk't elk + o*(r~l (30) 

21T -00 

Finally, with the additional requirement (vii') on p(k), 

we can write 

1 ( 
i a ) ·~.O + 0*( -~) = Po - - Pl - d t, 

oc ax (31) 

where (10 is defined through (30). On setting 

k = 'fJ - i{3/3y 

in 60 , we can reduce it to a standard representation of 
the Airy function Ai (x), and we obtain23 

~ 0 eP(X-atJ./3Y+2/J'tI27y2
• (X - oct (32/i ) 

d = AI --+-. (32) 
1T(3yt)! (3yt)! (3y)! 

This, in turn, may be expanded for f large and we 
obtain24 

~o e-(X-
atJ

2
/
4fJ f [ 3(x - oct) 

6 = I - ~---:: 
(41T{3t)! 4{32t 

+ (x - oct)3 + ... J. (33) 
8{33t2 

It is also clear that the range of validity is only mar
ginally extended. That is, the form in (33) holds in the 
basical1y parabolic region 

(x - oct)2 = oct In t), 

and outside this region we have the estimate O*(t-~). 
The further development for, say, J may be con

tinued in this way. Further differentiability conditions 
on (J at the origin have to be assumed, and their series 
development substituted. It is clear that the exact 
evaluation of 'do given by (32) was fortuitous and that 
the integrals in the general case cannot be expected to 
have known forms. However, as (33) already indicates, 
such an evaluation is not really necessary and a direct 
(second) asymptotic analysis of (to for t --+ 00 could 
have to be performed. This is also true in the general 
case, although we do not pursue this line of study. 
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The same remarks are also valid in the N-dimen
sional case. In general, the estimate O*(rl(N+ll) may 
be improved upon by assuming further differentiability 
conditions on a, and the development of I may be 
obtained. Since this is straightforward and, perhaps, 
of only limited value, we do not pursue it further. 

Finally, we remark on the distinction between using 
the development of p(k) directly in I and, on the 
other hand, leaving this intact and only developing J in 

1= J(x, t) * p(x). 

This distinction is important and even crucial in 
certain problems. Referring back to the formal prob
lem posed by (5)-(8) in Sec. 2, we recognize that, in 
expanding in small k, two distinct expansions are in 
play. There is, of course, the expansion of the under
lying operator, but there is also the expansion of the 
data of the problem. In general, this involves two 
entirely different time scales. For example, in 
problems involving gas dynamics, the expansion of the 
operator is tantamount to considering times large 
compared to the time between molecular collisions 
(which is extremely small under ordinary conditions). 
If the initial data is also expanded, the circumstances 
become more involved and the time it takes a sound
wave to 'traverse the data comes into play. This latter 
quantity can be quite large, and the utility of the 
resulting asymptotic development becomes quite 
limited. These remarks manifest themselves in the 
modulus of the error term O*(t-I(NH». The constant 
that is implicit in this symbol can be radically different 
under the two different expansions. This is already 
clear in (31), where the presence of PI can signal that t 
must be extremely large for the development to be 
valid. As a practical rule, one may say that only that 
portion of p(k) arising from the underlying operator 
should be expanded and that expanding the remaining 
portion can badly inhibit the usefulness of the asymp· 
totic development. 

The above remarks are applicable without modi
fication to the N-space case. 

Case (3): 11 = l1(\k\). In a number of applications 
(see, e.g., Refs. 12 and 13), due to the isotropy of the 
underlying equations, an admissible a is a function of 
only k = Ikl. Although a is not differentiable in this 
case, the admissibility condition immediately leads to 

a = iock + (Jkz + O(kS) 

with ct real and (J > O. As shown in the previous dis
cussion, when N = 1, the calculation is straight
forward. This important case, however, in more than 

one dimension is far from trivial, and we now consider 
the case N 2 2 in some detail. 

We first note that the estimate of the error term may 
be greatly improved. To accomplish this, we can start 
with I itself, (l) or, alternatively, we may consider 

since 

J = _1_ fe-a(klt+ik.X dk 
(21T)N • (34) 

1 = J(x, t) * p(x). 

The limits of integration in (34) have been purposely 
left out since, if convergence problems appear with 
infinite limits, we may take the limits of integration in 
(34) to be finite without loss of generality. (We have 
already demonstrated through (14) that the contri
bution from outside the neighborhood of the origin is 
exponentially small in time, uniformly in X.22] 

The integration of (34) can be carried out most 
easily by introducing spherical coordinates in N-space. 
Integrating over all angles but the polar angle yields 

J = ilN- 1 r" dOeikrcosO sinN- 2 0 dO r e-t7{kltkN- 1 elk, 
(21T)N Jo Jk~ 0 

where 

(35) 

is the area of unit sphere in k space. The remaining 
angular integration can be carried in terms of Bessel 
functions and yietds,25 

r
1
-

iN i J = -- Ji _ (kr)kINe-a(klt elk. 
(21T)lN k?:O N 1 

We now focus attention on 

'J = rtN-1J = (h)-iN f It'H(kr)k1Ne-a(k>t dk. 
Jk$O 

(36) 

As mentioned before,22 the upper limit of integration 
may be taken to be finite if convergence difficulties 
appear with infinite limits of integration. 

Since 
IJ.(x) I S 1, 11 ~ 0, 

the integral 'J clearly falls under the hypothesis (viii) 
of the extension of the main result and we may apply 
(22). The modification due to the presence of kIN is, of 
course, of no consequence. Therefore, writing 

'Jo == (21TriN l'X>JIN_l(kr)e-taltt-PlttlklN dk (37) 

and using the arguments leading to (18), we can easily 
show that 

(38) 



                                                                                                                                    

ASYMPTOTIC EVALUATION OF MULTIDIMENSIONAL INTEGRALS 1371 

As preparation for the evaluation of 60' we first It is, therefore, clear that, for all N ~ 2, this is already 
express the Hankel expansion of the Bessel function26

: small, compared with neglected terms. In what follows, 

Jv(x) = (:J*[COS(X - H2v + 1)17) 

x (i/ _1)m(v, 2m)(2x)-2m + 0(/Xr2P-2») 

+ sin (x - H2v + 1)17) 

x (,~o( _1)m(v, 2m + l)(2xr2m
-

1 

+ 0(/X/-
2Q

-
3») J. (39) 

If v is of half-odd-integer order (N = 3,5," .), these 
series are known to terminate with 

p = [H2v - 1)] ~ 0, 

Q = [H2v - 3)] ~ 0, (40) 

i.e., with the limits (40), the finite expansions in (39) 
are exact. In this case, N odd, the integration may be 
carried out explicitly and, in fact, if N = 3, then 

60 (N = 3) 

= [16ri(pt17 )if1 

X [(r + ext)e-(r+at)2/4 /l t erfc (i(r + ext)/2(Pt)!) 

+ (r - ext)e-(r-atl
2
/4/lt erfc (i(ext - r)/2(pt)!)]. (41) 

The argument in the first expression of the bracket is 
large, and, on performing the required asymptotic 
expansion, we find 

~ (N _ 3) _ r - ext -(r-,t)2/4/lt I' (i(ext - r») 
60 - - ! 3 e erIC ! 

16r (pt17P 2(pt) 

+ O(t-!). (42) 

[In this last expression, r should be regarded as being 
I' ~ OCt). For r small the entire expression (36) will be 
shown below to be of negligible order.] 

The general case for N odd may be obtained, but we 
do not give it, since it is tedious to express and, as we 
will shortly see, it carries already neglected orders. 
For N even, no explicit integration seems to be avail
able. 27 At this point of the analysis, we abandon the 
search for an explicit calculation of (37), and perform 
a second asymptotic analysis. As will be seen, this is 
at no expense to the 0*(t-tS - 1) estimate, and we 
find an explicit calculation independently of the di
mension N. 

The asymptotic analysis of (\0 (37), under the con
dition r = o(t), is fairly straightforward and we merely 
quote the result: 

._ (-i)Nf(N - 1) r!N-1 
d '""'-' -- r = oCt). 

rUN)17!N2N- 1exN tN ' 

therefore, we may restrict attention to 

r ~ OCt). 

Using this and returning to J in (34) and (36), we see 
the superiority of the estimate (38) over the estimate 
given by (4). 

As a first step in our evaluation of 60' we demon
strate that 

a = -- Jt (kr)ktNe-iatk-/lk2t dk 1 f
o(r») 

o (217)tN 0 N-1 , 

with P such that O(t-p) = 0*(t-1) is of an already 
neglected order. To avoid carrying unimportant con

stants in our estimates, we consider instead 0(3-0)' 
Then, clearly, 

A IN I
t--

0«(\0) ~ 0 JIN_l(kr)k dk. 

The integral on the right may be explicitly evaluated28 : 

Odo) ~ r-IN-\rjt1')tN JtN(r/tV
). 

In view of the fact that r ~ OCt) and p < 1, we can 
asymptotically evaluate the Bessel function and find 

O(ao) ~ (rHt t!v(N-1lr\ 

which is, clearly, of an already neglected order. We 
next consider 

From the limits of integration and the condition on r, 
kr is large, and we therefore write 

JtN- 1(kr) = (2/17kr)* cos (kr - l-(N - 1)17) 

+ O(lkrl-i ). 
Hence, we consider 

Proceeding as before, we have 

O(A) ~ 1, foo k!U.-3l e-/llk' dk 
r 2 I- P 

1 1" • <. ~ O( t-4"-4), 
r~tiLV-lJ 

which is also of a neglected order. Finally, it only 
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remains for us to consider 

1 IOCt- P
) 1 (2 i B=--!- pN_) 

(217)_N 0 17kr 

X cos (kr - teN - 1)17)e-i~kt-/lk2t dk, 

from which we directly obtain 

O(B) ~ [r*thCN+llrl 

and which again is of negligible order. We have, 
therefore, demonstrated that 

(to = 2 roo kicN-1) e-Pk2t-i~kt 
rl (27T)I(N+1) Jo 
x cos (kr - teN - 1)17) dk + o*(r1N- 1

). (43) 

The resulting integral may now be carried out in terms 
of confluent hypergeometric functions29 and, due to 
their special form in our case, these may in turn be 
written as parabolic cylinder functions. 30 Choosing 
these latter forms, we find that 

f(t(N + l»f(teN + 3»21(N+1) 
(to = ri (21T)i(N+1)2(Pt)t(N+l)f(t) 

x [e--hCN-l)".-(r-~t)2/S/lt D 1 (i(a.t - r») 
-I(N+1) (2Pt)1 

+ e!;(N-ll1r-(r+«t)2/S/lt D 1 (i(r + ext»)] 
-I(N+1) (2pt)1 

+ o*(r1N- 1
). (44) 

If N is set equal to 3 in (44), we get our previous result 
(42). Noting that the argument of the second term is 
large, and using the asymptotic estimate31 

DiZ) = e-1Z2Zv(1 + 0(Z-2», larg ZI ~ !17, 

we conclude that this term is of negligible order. 
Therefore, we finally have 

(t = (rIN- 1)J 
r(i(N + l»fCt(N + 3»e-h (N-l,..-(r-.. t)2/S/lt 

= 
2f(t)rl (2172pti(N+1) 

x D 1 (i(a.t - r») + 0*(t-1N- 1) (45) 
-I(N+1) (2{Jt)1 ' 

where we have used (38) to replace (to by (t. In the 
interest of completeness, we note that, if N is odd, 
t(N + 1) is integer and the following formula is of 
the value32 (n integer) 

D (Z) = (1 )! (-1)" -tz' ~[IZ' '" (~)J -n-l "2"17 e e enc / . 
n! dZ n ,,2 

For N even, the following may be usefup2: 

D_ICZ) = (27TrIZi[K!UZ2) - Kt(!Z2)] 

and 

'JI Dv_ 1(Z) = e-1z2 ~ [e1z1 Dv(Z)], 
dZ 

where the K" refer to the modified Bessel functions. 
We once again note from (45) that the estimate (38) 

is superior to (3) and (4) (except in the case N = 2, 
when it gives the same result). Also, note that the 
range of validity may be obtained from (45). Without 
going into details, we further note that, since Dv = 
O(l) in the neighborhood of the origin, (45) is valid 
for at least 

Ir - oct 1 = O(ti ). 

Before ending this section, we add a cautionary 
example. Consider the following integral: 

J(t) =Jh- e-tU-eik
) dk. 

-h-

In this case, (J = 1 - eik in the interval (-i17, t7t) 
certainly satisfies all the admissibility conditions. 
Then, applying the main result, we obtain 

J(t) = (217/t)ie-it + O*(t-l). 

Hence, the result of the asymptotic analysis is less than 
the error estimate. This signals the failure of the main 
result for this integral, as it should, since standard 
methods show thatf(t) '" 217ie-t. 

5. APPLICATIONS 

We consider three applications in the following. 
These have been chosen to demonstrate the range of 
the main result, rather than for their physical impor. 
tance. Applications to a number of specific physical 
problems have already been cited.10- 17 

Although in each problem below a mathematically 
rigorous analysis may be given, our discussion is only 
meant to be formal. 

Problem 1: Consider the following initial·value 
problem33 : 

(0
2 

.-,2 ...,2 0) 
ot2 - v - ftv at sex, t) = 0, 

os(t = 0) 
s (t = 0) = b(x), iJt = ftV' 2b(x), (46) 

with the constant ft > O. The partial differential 
equation (46) is probably the simplest one demonstrat· 
ing wave propagation and diffusion. Introducing the 
Fourier transform 

s(k, t) = L:e-ik.Xs(x, t) dx, 
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we see that the solution to (46) is 

where 

sex, t) = ~ ret) eik'X(eO'+t + eO'-t) dk, 
(21T) J-et) 

Both a+ and a- satisfy the conditions of admissibility 
and, at the origin, 

The main result is, therefore, applicable. In particular, 
the results of Case (2) of the previous section apply. 
On using (45), we have, for N ~ 2, 

r(HN + l)r(t(N + 3»e-!i<N-O,,-<r-!)2/4I't 
sex, t) = ~~~--'-;--~~--':"""-"..:---;-----

2ri <N+1)rCt)( 1T2,ut)t(N+1) 

(
i(t - r») *( -iN) 

X D-i<N+1) t + 0 t , 
(,u.t) 

and from (26), for N = 1, 

sex, t) = e-(3l-t)2/2I't/(21T,ut)! + e-<3ltt)2/2I't/(21T,ut)i 

+ 0*(t-1
). 

Problem 2: Consider the following transport equa
tion34 •35 : 

(:t + ~. V + v(~»)1 

= V(~)(f(21Trie-hYv d~) / (fC21T)-ie-Uv d~) 

= (v/v1)p(x, t) = Kf (47) 

The collision frequency v is a positive, monotonically 
increasing function of the magnitude of the molecular 
velocity ~ = (~1' ~2' ~3)' We attempt to solve (47) 
in an unbounded domain and subject to the initial 
data 

f(t = 0) = b(x). (48) 

We first consider the Fourier-transformed problem 

(~+ ik· ~ + v - K)/= 0, 

I (t = 0) = 1. C 49) 
Next, writing 

L = -ik· ; - )1 + K, 

we write the Eq. (49) as 

dl 
-=L/ 
dt 

Following the formalism given in Sec. 2, the solution 
to Eqs. (49) is 

I(k, ~, t) = etL. (50) 

The operator v-1K is clearly a projector and, hence, 
v - K is non positive. Further, we may prove that L 
has just one eigenvalue A(k) and that it satisfies all the 
admissibility conditions. (For k sufficiently large this 
eigenvalue may disappear.) In addition, the operator 
L has a continuous spectrum which covers a 2-
dimensional region to the left of 

Re a = v(O) 

in the complex a plane.35 (For v constant, this region 
degenerates to a single line Re a = -v.) Denoting 
this region by C(k) and an element of area in the com
plex a plane by ds, we can write (50) in the form 

I(k, ;, t) = e)'(k)tgoC~, k) + r eO'tg(a,~, k) ds, (51) 
JO<k) 

where the eigenfunction go and the "improper eigen
function" g are still to be determined. The eigenvalue 
determination leads to 

(A + ik . ~ + v)go = Kgo. 

On using the perturbation analysis outlined in Sec. 2, 
we easily find 

with 

and 

go = fJ + O(k), fJ = const. 

Since C(k) lies to the left of Re a = -v(O), the 
contribution from the continuous spectrum is asymp
totically small when compared with the point spectrum 
contribution. Therefore, for large times, we may 
neglect the integral term on the right of (51). On in
verting the Fourier transforms and making use of the 
main result, we find 

I(x, ~, t) "" _fJ_ ret) e-ak·t+ik.X dk 
(21T)31-00 

and, from the evaluation given in (24), 

I(x, ~, t) "" fJe-r2/4at/(4rx1Tt)i. 

Finally, to calculate the constant fJ, we note that (47) 
leads to the continuity equation and, hence, the total 
number of particles at the initial instant is conserved. 
Carrying out the required integration, we find that 
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fJ = I and, therefore, 

f(x, ;, t) '"'-' e-r2/4at/( 4ot7Tt)!. 

Problem 3: Consider the following 3 problems: 

aw a2w - = -, w (t = 0) = t5(x), 
at ax2 

(52a) 

(~ -~ - ~)w = t5(t)t5(x), (52b) at at2 ax2 

a
2
w + aw = 0, ~Wt (t = 0) = t5(x), 

ax2 at u 

w (t = 0) = 0. (52c) 

Using transform techniques, we can easily analyze 
each of these and make them fall under the hypothesis 
leading to the main result. In fact, for t - 00, each 
problem leads to the same asymptotic result: 

w = e-x24t/(47Tt)! + O*(t-l). 

[Problem (52b), of course, should be considered in the 
complete (x, t) plane; for t < 0, however, the solution 
is exponentially small.] 

Each o(the problems (52) can, of course, be exactly 
solved; however, this is not the point. Equations (52) 
represent the three basic types of partial differential 
equations of second order. It is, of course, amusing 
that all three have the same asymptotic solution, but 
of more importance is the fact that the main result and 
the methods associated with it can be used independ
ently of the type of partial differential equation. 
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Two summation theorems are given for the terminating generalized hypergeometric function pFp_ 1 , 

for arbitrary p, with certain restrictions on the parameters. 

The generalized hypergeometric function of unit 
argument may be defined by the series 

where as usual 

(ah = r[a + k] = f[a + k]. (2) 
f[a] a 

We are concerned with the case in which q = P - 1 
when the series converges for 

(3) 

or terminates when ai = -n for i = 1, 2, ... ,p and 
n = 0, 1, .. '. It is assumed that bj =;6 -n for j = 
1, 2, ... ,q and n = 0, 1, ... ,so that the function 
is defined. 

This type of function often appears in solutions to 
problems in theoretical physics (for example, Racah 
coefficients are of this type with p = 4) and it would be 
of some interest if it were possible to sum the series in 
closed form in terms of say f-function products, thus 
simplifying the physical solution. 

For p = 2, the series may be summed by Gauss' 
theorem for all values of the parameters, but even for 
p = 3 it has been summed only for parameters satis
fying certain conditions, as in, say, the Saalschutz 
theorem. 1 There are a number of other special sum
mation theorems for particular values of p > 3,2 
again involving restrictive conditions on the param
eters, but as far as we know there have been no 
theorems given for arbitrary p, even with such restric
tions on the parameters. We have so far been unable 
to obtain a generalization of the Saalschutz theorem 
for any p, which would be most useful for the physical 
problem, but give two other summation theorems for 
arbitrary p, one of which is very similar to the Saal
schutzian form. 

We first give the relation 

p+IFp[al , a2 ,' ", ap+l; bl , b2 ,' ", bp; x] 

= q1ap (al)q ... (ap)ibp - ap+I)q (-x)q 
q=O (bl)q' .. (bpMl)q 

x pFp_1[al + q,"', ap + q; 

bi + q, ... , bp _ 1 + q; x]. (4) 

We have assumed that ap is a negative integer so that 
both sides terminate and the relation is defined for all 
x. The proof of Eq. (4) may be performed by expand
ing the pFp_l function as a series in x, changing 
summation indices, and using the Gauss summation 
theorem, i.e., 

[
bl' bl - al - a2] 

2Fl[a1 , a2 ; b1 ; 1] = f b _ b . (5) 
1 a1'1-a2 

From Eq. (4) we may derive directly two relations 
for the case p = 2 and x = 1. First, 

sF2 [a1 , a2, as; b1 , b2; 1] 

[
bl , bi - a1 - a2] 

=fb b SF2[al,a2,b2-aa; 
I - aI' 1- a2 

b2 ,al +a2 + l-bI ;I] (6) 

which gives the Saalschutz theorem when b2 - as = 
al + a2 + 1 - bI , i.e., for 

Secondly, 

where s = b1 + b2 - a1 - a2 - as. This is the gener
alization of Dixon's theorem and, in particular, if 

1375 
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b2 - aa is a negative integer so that the right-hand side 
terminates, we may, remembering that a2 is also a 
negative integer, put s = 0 to give 

for the case where 

The first theorem for arbitrary p is that, for ao 
negative integral and ao < L,~~; bi - ai' if bi - ai is 
negative integral, i = 1,2, ... , p - 1, then 

= r[b + 1, 1 - ao](alLb(a2Lb ... (av- 1Lb . (12) 
b + 1 - ao (bILb(b2Lb'" (bv-1Lb 

The proof is by induction using Eq. (4) with x = 1. 
On substituting from Eq. (12) into Eq. (4) and re
arranging terms, we finally arrive at 

b + 1, bI ,"', bp_l , bp; 1] 

= (aILb' .. (av-ILb r[b + 1,1 - aoJ 
(bILb' .. (bp-ILb b + 1 - ao 

X 2FI[b, bp - ap; bp; 1], 

where we now require bp - ap negative integral and 
ao < Ir=1 bi - ai • The 2FI function then terminates 
for bp - ap negative integral, and is summable by 
Eq. (5) to give 

= r[b + 1,1 - ao](aIL ' .. (a pL b • (13) 
b + 1 - ao (bILb'" (bpLb 

This is now in the same form as Eq. (12) with the 
extra conditions on the parameters ap and b l ). We have 

thus shown that, if the theorem is true for the v+lFv[l] 
function, it is also true for the l>+2Fp+l[1] function. In 
particular, for p = 1 we have, from Eq. (12), 

which is ~imply the result given by Gauss' theorem. 
Knowing that the theorem is true for p = 1, we may 
then say that, from Eqs. (12) and (13), it is true by 
induction for all p. 

The second theorem may be obtained from the 
first. Thus, writing Eq. (13), for example, in more 
symmetric form, with the previous restrictions on the 
parameters understood, we have 

(1 - aoMl - al)b ... (1 - aV)b 

We may let b -* OCJ to give the second theorem: 

for 

= lim (lMl - bl)b' .. (1 - bph 
b->oo (1 - aoMI - al)b ... (1 - aph 

= r[1 = ao, 1 - a l
,:::, 1 = ap

], (14) 
1 b1 , 1 - b2 , , 1 bv 

p p 

ao + I ai = I bi • (15) 
i=1 i=1 

When p = 2, this reduces to the already proved 
result (10) and (11). The result (14) is very similar to a 
generalization of the Saalschutz theorem, while Eq. 
(15) differs from the Saalschutzian condition by unity 
on the left-hand side. 

• Supported in part by the National Research Council of Canada. 
1 E. D. Rainville, Special Functions (The Macmillan Co., New 

York, 1960), p. 87. 
2 L. J. Slater. Generalised Hypergeometric Functions (Cambridge 

University Press, Cambridge, England, 1966), Chap. 2. 
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In this paper we give some ideas that can be useful to solve Schrodinger equations in the case when 
the Hamiltonian contains a large term. We obtain an expansion of the solution in reciprocal powers of the 
large coupling constant. The procedure followed consists in considering that the small part of the 
Hamiltonian engenders a motion adiabatic to the motion generated by the large part of the same. 

1. INTRODUCTION 

We define strong coupling, stating that the per
turbation expansion is not valid. Then we pretend to 
obtain the solutions to the equations of motion in 
negative powers of the coupling constant g. Such an 
expansion has not been achieved so far and constitutes 
a crucial problem of elementary-particles dynamics. 
It is assumed nowadays that perturbation expansion 
is not valid; however, most of the calculation per
formed at the present time to discover the symmetry of 
elementary particles assume the validity of pertur
bation theory, an assumption that probably is not 
true. 

We cannot state without discrimination that in the 
case of strong coupling we have to expand the solu
tions of the equation of motion into negative powers 
of the coupling constant. The coupling constant, being 
large, may be multiplied in the solution by factors that 
are small, which yields a small product. Thus, for 
strong coupling the general solution has to be ex
panded into negative powers of the coupling constant 
when multiplied by small factors. Most likely there is 
an intermediate region in which the solution has to be 
evaluated by variational methods, as it corresponds 
to intermediate effective coupling. 

As is well knowil, it is hoped that, for the strong 
coupling approximation, the eigenstates of the large 
part of the Hamiltonian play the most important role. 
What we pretend in this paper is to find out, in powers 
of the reciprocal of the coupling constant, the mixing 
that the small part of the Hamiltonian produces 
among the eigenstates of the large part. The procedure 
followed consists in considering that the small part of 
the Hamiltonian engenders a motion adiabaticl to the 
motion generated by the large part of the same. This 
paper is no more than an introduction to the above
mentioned problem. 

Indeed, we do not solve the problem completely, 
since we do not obtain completely a series of negative 
powers of the coupling constant; but this paper is a 
first approximation to the desired solution. 

The Schrodinger equation which is studied is 

iii ~ It) = (Ho + gHI ) It), ot 
where Ho and HI are time independent, while the 
coupling constant g is large. 

The solution to this equation is exactly 

It) = exp [~(Ho + gHI )] 10), 

but, written in this way, we do not see how the eigen
states of HI are mixed amongst themselves. In what 
follows, we pretend to solve such a problem. 

2. STRONG COUPLING SOLUTIONS TO 
SCHRODINGER EQUATION 

Essentially, we want to solve the equation 

iii ~ U(t) = (Ho + gHI)U(t) ot 
for the unitary operator U(t), since the time evolution 
of the state vector It) at instant t is given by 

It) = U(t) 10) 

when we suppose that t = 0 is the time origin. Corre
spondingly, we impose on U(t) the following boundary 
condition: 

U(O) = T. 

The total Hamiltonian H = Ho + gHI contains the 
dimensionless coupling constant g, which we suppose 
to be large. This implies that gHI gives a large contri
bution to the time derivative of the evolution operator 
U(t), i.e., such an operator generates a fast time 
dependence of U(t). Perturbation expansion in powers 
of g is not valid, since g is large. 

We assume also, for the sake of concreteness, that 
Ho and HI do not have an explicit time dependence. 
The study of the cases when Ho and HI may have 
explicit time dependence yields much more complicated 
solutions and no better insight of the method used in 
this paper is gained. Besides, we should remember 
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that for most physical applications Ho and HI do not 
depend on time explicitly, though they may have a 
dynamical time dependence; this is the case of 
quantum field theory. 

Since the contribution of gHI to U(t) is very large, 
it is sensible to suppose that the eigenvectors of HI 
play an important role in the expansion of U(t) in 
powers of g-I. This evident fact means that we will 
have difficulties in interpreting the physical meaning 
of the solution found, since ,usually , free or undressed 
particles are the eigenvalues of the Hamiltonian Ho, 
which in this case has a much smaller contribution 
to the motion than gHI' 

Therefore, we use the eigenvectors of HI as the 
basis for the representation of the solution. So we 
assume that the following equation has been solved, 

HI IE) = E IE), 

and that the eigenvectors IE) form a complete set in 
the sense that the identity operator is given by 

I = IIE)(EI. 
E 

Let A be any time-dependent operator. We can 
split it into a diagonal part AD and a nondiagonal part 
AN, in relation to the basis of our representation, the 
eigenvectors IE). SO we have 

A = AD + AN, 

where 

AD == I IE) (EI A IE) (EI, 
E 

AN == I {IE) (EI A IE') (E'I (-CJE •E , + l)}. 
E.E' 

It is very easy to check that diagonal parts of any two 
operators commute, while the corresponding non
diagonal parts generally do not commute; the product 
of any two diagonal parts of operators is a diagonal 
operator, while the product of two nondiagonal parts 
of operators may have diagonal and nondiagonal 
parts. We also have from the definitions above 

(EI AD IE) = (EI A IE). 

The diagonal part of the Hamiltonian H is 

HD = H{? + gHI , 

and its nondiagonal part is 

HN = Hi/. 

We solve the time equation for U(t) exactly for HD 
and treat HN as the perturbation that mixes the 
eigenvectors of HI, as we have already done in 
preceding papers.2- 4 Accordingly, we write 

U(t) = SD(t)S(t), (1) 

where SD(t) is a diagonal operator in our chosen 
representation, i.e., an exact solution of the following 
equation, 

iii ~ SD(t) = (H{? + gHI)SD(t) , 

and Set) is an operator that contains diagonal and 
nondiagonal parts in general and that we have to 
expand in negative powers of g. 

We have to impose the conditions S D(O) = I 
and S(O) = I. We have 

SD(t) = exp L~ (H{? + gHI )}, (2) 

the exact solution of the equation for SD(t). The 
equation for Set) is 

iii ~ S(t) = Hi![t]S(t), at 
when, as usually occurs, the effective-perturbation 
Hamiltonian is defined by 

Hi![t] = Si}(t)Hi!SD(t), 

which is well known since SD(t) has been obtained 
exactly and Hi! can be evaluated. Then 

Set) = I + ~ (tdt'Hi![t'] 
Iii Jo 

+ _1_ dt'HN[t'] dt"HN[t"] + .. . (3) it it' 
(ilil 0 0 0 0 , 

as is well known. We have to show that, indeed, the 
terms of the expansion (3) as a series in powers of H~ 
contain negative powers of g only, when g is large. 

We define 

where 

A(t) == ~ (tdt'Si}(t')A(t')SD(t') 
Iii Jo 

=1. (tdt'S-l(t')AN(t')S (t') 
iii Jo D D 

+ 1. (tdt'S-l(t')AD(t')S (t') 
iii Jo D D 

= sn\t) ~[AN]S D(t) + [AD]d' 

~[AN] == SD(t){~ L (tdt'(exp ~ [(EI H{? + gHIIE) 
Iii E.E' Jo Iii 

- (E'I H{? + gHl IE')]) 

and 

X IE) (EI AN(t') IE') (E'I}S:D1(t) (4) 
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Integrating (4) by parts, we obtain 

a[AN] = ! «(EI HfI + gHl IE) 
E.E' 

- (E'I HfI + gH1 IE,»-1 

x {SD(t) [ (exp i~ [(EI HfI + gHl IE) 

- (E'I HfI + gHl IE')]) 

x IE) (EI AN(t) IE') (E'I]>n\t) 

- SD(t)[fdt'(exp~ [(EI HfI + gH1IE) 

- (E'I HfI + gHl IE')]) 

x IE) (EI ~ AN(t') IE') (E'I]SI}(t)} 
dt' 

= O(l/g), (5) 

because we suppose, as usual, that ACt) and its deriva
tives are bounded operators. 

Now we can evaluate every term in (3): 

I =.l [ldt'HN[t'] =.l (tdt'S-l(t')HNS (t') 
1 iii Jo 0 iii Jo DOD 

= S1)l(t) a[Ht']SD(t) = O(1/g), 

I =...L dt'HN[t'] dt"HN[t"] L
t Lt' 

2 (ili)2 0 0 0 0 

= ~ f dt'S1)l(t')Ht'a[Ht']SD(t') 

= S1)l(t) b[Ht',,[Ht']]SD(t) + ~ (tdt , [Ht'" [Ht'llD. 
Iii Jo 

The first term in the expression of 12 is of the order of 
g-2 and the second is of the order of g-3 because 

rjh c:: Ijg2 

by definition of the coupling constant g, where r is 
approximately the time during which the interaction 
takes place. Similarly, 

13 = ~ (tHt'[t']12(t') 
Iii Jo 

= sn1
(t) b [Ht'b [Ht'" [Ht'mS D(t) 

+ ~ [ldt' [Hfi" [Hfi" [Hfi)]]D. 
Iii Jo 

Therefore, the degree of approximation of every term 
can be simply obtained by adding to the number of () 
twice the number of integrals. The terms in 13 are 

Therefore, the unitary evolution operator in the 
second-order approximation, for instance, is 

Vet) = {I + b[H~] + 6[H~b[H~ll + O(1/g3)}SD(t). 

(6) 

Evidently, it is quite easy to continue with the 
calculation of further terms in the expansion of Set). 
We see that successive terms contain higher and higher 
negative powers of the dimensionless coupling con
stant g. 

A very interesting case is that in which both Ho and 
HI can be simultaneously diagonalized. Then our 
procedure results are considerably simplified (the same 
occurs in the ordinary perturbation theory). The ex
pression for Vet) can be reduced to 

Vet) = SD(t). 

Then,in this special case, it is not possible to obtain 
the evolution operator as an expansion in reciprocal 
powers of the large coupling constant using this pro
cedure. But when this occurs, the problem is easier 
than usual and frequently can be solved, as in Example 
I in the next section. 

We should remark that it is essential for the validity 
of this expansion that the difference 

(E'I HfI + gHl IE') - (EI HfI + gHl IE) 

be large for any two values of E and E'. If it were 
small, the method would not be acceptable, since the 
denominators in brA] would not be large. 

The time dependence of Vet) is very fast, since the 
exponent of SD(t) contains a constant without dimen
sions which is large. But Set) will not necessarily vary 
rapidly with time. We have here two time scales: the 
fast one generated by HD and the slow one generated 
by HN. We separate the two time dependences, fast 
and slow, to solve the problem considering the slow 
time dependence as producing a small perturbation 
compared to the fast time variation. Both motions 
are adiabatic to each other. The method is similar to 
those used by us in preceding papers to treat adiabatic 
motions. 

3. EXAMPLES 

A. Example I 

Consider two identical linear oscillators with spring 
constant k and an interaction potential given by 
gX1X2, where Xl and X 2 are the oscillator variables, 
and g is large. The total Hamiltonian is 

Je = Jeo + gJe1 , 

where 

li
2 

( a2 
(

2
) k Jeo = - -2 ;--2 +;2 + -2 (x~ + x:) 

m UX1 UX 2 
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and 

Jel = X I X 2 • 

The energy levels of Jeo are thus given by 

Eo = (nl + !)liw + (n2 + t)liw, 
where 

w2 = kIm. 

As we really have a two-dimensional problem, it is 
advantageous to use a Jf ® Jf representation, Jf 
being the occupation number of each oscillator. Then 
the unperturbated eigenfunctions are 

Inln2) = n1 11.0) + n2 10.1). 

The Hamiltonian matrix of the unperturbed motion 
is 

Jeo = tliw (~ ~) 
and the Hamiltonian matrix ofthe perturbation, taken 
witl~ respect to the unperturbed states, is 

where 

a = (1.01 Jel 10.1) = g (01 Xl 11) (11 x 2 10) = Iij2mw, 

as may be deduced from the quantum-mechanical 
version of the virial theorem. 

In order to apply the approximation given by (6), 
it is necessary to make a transformation of state 
vector bases to achieve a new representation in which 
Jel is diagonal. This matrix transformation is 

Then 

and 

A __ 1_(1 
- i~2 1 

a[Ho] = SD(t)[fdtISDI(tl)H~SD(t')JSJi(t) = o. 

Formula (5) gives 

U(t) = SD(t) = exp [ - i t(Ho + gHI )} 

or, in the original representation, 

U(t) = exp [ - ~ t(Jeo + g~) 1 
In this case we have not achieved an expansion in 
powers of g-l. But, owing to the simultaneous 

diagonalization of Jeo and Jel , the problem can be 
easily solved. Defining new variables u and v by 

Xl = (u + v)/2, X2 = (u - v)/2, 

we express the Hamiltonian as 

H = - !t..(~ +~) + t(k + g)u2 + t(k _ g)v2
• 

2m au2 av2 

The exact energy levels are thus given by 

E = niliw i + n2liw2 + (lij2)(WI + w2), 

where nl and n2 are positive integers and 

wi = (k - g)jm, w~ = (k + g)jm, 

and the eigenfunctions are 

In1n2 ) = Fn1(u)Fn .(v), 

where the F's are simple harmonic oscillator wave
functions. 

Actually, this problem has nothing to do with the 
procedure that we introduced in Sec. 2. It is easy 
enough to be solved with a simple change of the 
variables. 

We have included it for two reasons: First, it 
serves to introduce the notation that we are going to 
employ with some further complications in the next 
example, which is the one that demonstrates the 
validity of our method. Secondly, it represents the 
special case in which Jeo and Jel can be diagonalized 
simultaneously. In this case, our procedure is not 
available, but then we have shown that the problem is 
easy to solve, as we anticipated in Sec. 2. 

B. Example II 

In the foregoing example, it has not been possible to 
check the validity of the approximation suggested by 
formula (6). In order to verify it, we consider two 
different oscillators strongly coupled. In this case, 

where 

a = (1.01 JeI IO.1) = 1i(2m)-I(wI W 2)-!. 

The diagonalization of Jel as in the preceding 
example can be done by transforming both Hamil
tonians with the matrix 

A = _1_(1 1) 
i~2 1 -1' 



                                                                                                                                    

STRONG COUPLING SOLUTION TO SCHRODINGER EQUATION 

The new Hamiltonians are 

Ho = A-1JeoA = !1i(Wl + w2 w2 - WI), 
W2 - WI WI + W2 

HI = A-1Je1A = (~ ~a) = 1i(2m)-1(WIW2)-t(~ _~), 

H = ~(-l(Wl + ( 2) + g(m)-1(W1W2r l ~(W2 - WI) ). 
2 -l(W2 - WI) -l(Wl + (2) - g(m)-1(w1W2)-t 

The first-order approximation of formula (6) is given by 

U(t) = (1 + o[H~DSD(t), 
where 

and 

Hf=!Ii(Wl+W2 0). 
o WI + W2 
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The validity of the method can be checked by evaluating H~ and verifying that it is of the order of g-l. 
Now we may easily calculate 

( 
0 exp [-gt(im

o
)-1(W1W 2)-t]). SL}(t)H~SD(t) = !1i(W2 - WI) . -1 -t 

exp [gt(zm) (W1W2) ] 
Integration yields 

o[H~] = SD(t)[fdtISli(tl)H~SD(t')JSINt) 
= !1i(W2 _ WI) im~( 0 1 - exp [gt(i

o
m)-1(W1W2)-t]) , 

g 1 - exp [-gt(imr1(wlw2rl ] 
in accordance with (5). 

The above expression is of the order of Ilg because W2 =F: WI' Thus, 

U(t) = {(I 0) + !1i(W2 _ WI) im.,jo;;;J;( 0 1 1 - exp [gt(i
o
m)-1(W1(1)2)-l])}Sn. 

o 1 g 1 - exp [-gt(im)-1«(I)I(l)2)-~] 

(7) 

Expression (7) allows us to solve this problem in the first order and prove our assertion about the non
diagonal character of o[H~]. 

4. CONCLUSION 

We have found how the eigenvalues of HI mix. We have found an expression of Set) that, expanded in 
powers of g-I, is the term that indicates how the eigenvalues of HI mix. 

The process developed in this paper will be applied in a future paper to evaluate the mass renormalization 
of a nucleon coupled to a cloud of mesons when the coupling constant is large. 

1 A. Lenard, Ann. Phys. 6, 261 (1959). 
2 L. M. Garrido, J. Math. Phys. 5, 335 (1964). 
3 L. Navarro and L. M. Garrido, Proc. Phys. Soc., Ser. 2,1, 326 (1968). 
4 L. Navarro and L. M. Garrido, Physica 39, 361 (1968). 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 11, NUMBER 4 APRIL 1970 

Spherical Symmetry and Mass-Energy in General Relativity. I. General Theory 

MICHAEL E. CAHILL AND G. C. MCVIITIE 

University of Illinois Observatory, Urbana, lIlinois 61801 

(Received 10 July 1969) 

The mass-energy of spherically symmetric distributions of material is studied according to general 
relativity. An arbitrary orthogonal coordinate system is used whenever invariant properties are dis
cussed. The Bianchi identity is shown to imply that the Misner-Sharp-Hernandez mass function is an 
integral of two combinations of Einstein's equations for any energy-momentum tensor and that 
mass-energy flow is conservative. The two mass equations thus found and the mass function provide 
a technique for casting Einstein's field equations into alternative forms. This mass-function technique is 
applied to the general problem of the motion of a perfect fluid and especially to the examination of nega
tive-mass shells and their relation to singular behavior. The technique is then specialized to the study of a 
known class of solutions of Einstein's equations for a perfect fluid and to a brief treatment of uniform 
model universes and the charged point-mass solution. 

1. INTRODUCTION 

The physical situation to be dealt with in this paper 
is the motion of a self-gravitating spherically symmet
ric distribution of material. By spherical symmetry is 
meant that an observer at the center of the distribution 
will discern at any instant the same physical picture 
regardless of his orientation, which makes two of the 
coordinates, (J and cp, cyclic in character. 

Much of the treatment is devised so that forces 
other than gravitation may be present, but particular 
attention is paid to the motion of a perfect fluid. 
The material may have discontinuities, in which 
case the external region is assumed to be empty. 
Einstein's general theory of relativity is assumed to 
provide an accurate description of the given physical 
situation. 

Several problems in this paper are examined in an 
arbitrary orthogonal spherically symmetric coordinate 
system. It is possible to find an integral of Einstein's 
field equations which represents the total quantity of 
mass-energy enclosed by the 2-space of equivalent 
points passing through an arbitrary point in space
time. This mass function is shown to be a scalar in
variant. The Bianchi identity is used to demonstrate 
that both the space and time derivatives of the mass 
function are related to components of the energy
momentum tensor and these equations are called the 
mass equations. The mass function may be used to 
construct a vector which represents the flow of mass
energy, and this vector has vanishing divergence. The 
mass equations and the mass function allow Einstein's 
equations to be put in an alternative and sometimes 
more transparent form. The case of a perfect fluid is 
considered with the aid of the mass function, as is that 
of fitting a solution to a Schwarzschild exterior. 

Another class of problems explored involves the 
motion of a perfect fluid as described by a comoving 

coordinate system. Negative-mass shells, which are 
regions that produce a negative contribution to the 
total mass-energy content of the material, are ex
amined and are shown to imply singular behavior 
under a certain restriction. The mass function tech
nique is used to elucidate, simplify, and generalize the 
solutions of McVittie.1 

The last series of problems involves well-known 
solutions. The mass function approach is applied to 
the uniform model universe solutions and negative
mass shells are found in the closed solutions. The 
charged point-mass solution is then considered, and 
the problem of a zero-pressure charged fluid is briefly 
treated. 

This work is related to that of several other in
vestigators. Hernandez and Misner2 have found the 
expression for the mass-energy of a perfect fluid in 
spherical symmetry by a different technique. They 
have also dealt with the problem of the occurrence 
of gravitational-collapse-type singularities when nega
tive-mass shells arise in imploding perfect fluids. 
Misner and Sharp3 have formulated and examined 
Einstein's field equations of a perfect fluid in a 
comoving coordinate system and have fitted an 
arbitrary solution of them to an empty exterior. May 
and White4 have integrated the field equations by 
computer for a perfect fluid undergoing adiabatic 
collapse using formulas similar to those of Misner 
and Sharp. They also encounter situations in which 
the mass-energy does not increase monotonically 
with the comoving radial coordinate and show that 
where this happens a negative-mass shell occurs. 
McVittie1 has developed a class of solutions of Ein
stein's equations. Thompson and Whitrow5 have 
generalized McVittie's class of solutions by an alter
native method and have investigated the uniform den
sity case. Lastly, Taub6 has examined this class of 
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solutions, and paid particular attention to their and so 
thermodynamic properties. reO, x4) = 0. (2.4) 

2. BASIC FORMULAS FOR SPHERICAL 
SYMMETRY 

In this section we present important formulas for 
an arbitrary spherically symmetric space-time. The 
metric is 

ds2 = e2Y(dx4)2 - c-2[e2a(dxl)2 + ,2 dn2], (2.1) 

where y, oc, and, are functions of Xl and X4, and 

dn2 = de2 + sin2 e drp2. 

The center of symmetry is defined by 

Xl = 0, 

r~l = OC1, 

r~4 = OC4' 

r~2 = '1/" 
r:4 = '4/" 

(2.2) 

(2.3) 

It is also assumed that 

r(xl, x4
) > 0, 

for all Xl ¢ 0, that 

(2.5) 

(2.6) 

for all Xl and x', and that oc and yare bounded unless 
otherwise stated. 

Throughout this paper, numerical subscripts on 
lower case letters refer to partial or ordinary deriva
tives as the context requires, while a subscript on a 
capital letter is a covariant index. 

The nonvanishing Christoffel symbols are 

r~3 = '1/" 
r~3 = cot e, 

r~l = e2
(a-Y)oc,/c2, 

r~, = YI' 

r~2 = -e-2arr l , r:3 = -sin e cos e, r:4 = '4/" 

r~3 = sin
2 er~2' 

r~2 = e-2Yrr4/c 2
, 

r:3 = sin 2 er:2, 

r:4 = Y4' 

(2.7) 

r!4 = c2e2(y-a)Y1' 

The Riemann-Christoffel tensor, defined by 

has the following nonzero components: 

RI224 = R1334/sin2 e = -'('14 - OC4'1 - Y1'4)/C
2
, 

R1414 = e2a(oc44 + oc: - OC4Y4)/C2 - e2Y(yu + y~ - OCIYI), 

R - R /. 2 e _ ( 2 2(y-a) )/ 2 2424 - 3434 sm -, '44 - Y4'4 - c e Y1'l C. 

(2.8) 

The components of the Einstein tensor may now be 
found by 

Thus, 

(2.9) 

Upon evaluation, Eqs. (2.9) become 

(2.10) 

G4 -2Y(': + 2 ") c
2 

4 = - e - oc, - --,2 , ,2 

+ 2 -2a(2'U + ,~ 2 '1) C e - - - OCl- , ,,2 , 

e2YG: = _e2aG!/c2 = 2('14 - OC4'l - YI")/" 

The Einstein tensor has vanishing vectorial diver
gence, and hence obeys 

G~.11 = 0, (2.11) 
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and this equation gives rise to two nontrivial equations 
which are 

aG~ aG~ ( r4) 4 
axl + ax4 + Y4 + 0(4 + 2 -; Gl 

= Yl(G! - GD + 2(G~ - GD!:!, (2.12) 
r 

aG! oG! ( rl) 1 
oxl + ox4 + 0(1 + Yl + 2 -; G4 

= O(iG~ - G!) + 2(G~ - G!) ~. (2.13) 

Finally, Einstein's field equations are 

-8~re = G~. 

r 

(2.14) 

Formulas (2.7), (2.8), and (2.10) are slightly modified 
versions of those developed by Synge.7 

3. THE MASS FUNCTION 

In this section the meaning and properties of R:32 
are studied. This function, by Eq. (2.8), is 

R~32 = (1 + e-2Yr!/c2 - e-2O!rD· (3.1) 

This component of the Riemann-Christoffel tensor is 
of interest because it involves only first derivatives and 
because it is invariant under transformations of the 
form Xl = Xl (Xl , X4), X4 = X4(Xl , X4). Examination of 
(3.1) reveals that if r is used as a coordinate and t as a 
conjugate orthogonal coordinate to r, then in this 
coordinate system the metric is 

ds2 = e2
1j! dt 2 - ~[ dr23 + r2 d0,2]. (3.2) 

C (1 - R232) 

Because r is the curvature of the 2-space of symmetry 
passing through (Xl, (), cp, X4), it is called the curvature 
coordinate. It is spacelike in character when R~32 is less 
than unity, but timelike when R~32 exceeds unity. 
Thus, in this coordinate system, e2O! could diverge. If 
curvature coordinates are used in an empty region of 
spherically symmetric space-time, the Schwarzschild 
metric results wherein 

ds2 = (1 - 2M/r) dt2 
- ~[ dr

2 
+ r2 dQ2], 

c (1 - 2M/r) 
(3.3) 

and M is a constant. 
Consider next an arbitrary spherical distribution of 

material which is surrounded by empty space. In such 
a case, the boundary of the material is a surface of 
discontinuity. Israel8 has shown that the theory of 
surfaces of discontinuity due to Lichnerowicz9 implies 
that in curvature coordinates the metric tensor must 
be continuous across a surface of discontinuity. 

Comparison of (3.2) with (3.3) then reveals that 

(Ri32)b = 2M /rb , 
where subscript "b" means evaluation at the boundary. 
This suggests that a function m(xl, x4) be defined by 

m = trR~32 = lr(1 + e-2Yr:/c2 - e-2O!ri), (3.4) 

and because of the invariance of R~32 and r, m is an 
invariant also. The function m may be tentatively de
fined as the total amount of mass-energy entrapped 
between the center of the distribution and the 2-space 
of symmetry passing through the point (xl, (), cp, X4). 
Equation (3.4) was originally developed by Hernandez 
and Misner,2 who also proved the invariance of m 
by a different method. The mass function possesses 
the important property that the only derivatives 
present in it are those of the first order and they occur 
to the second power. In the following, it is shown that 
the above tentative identification is a reasonable one. 

The mass function is an integral of Einstein's 
equations. This may be demonstrated by examination 
of the Bianchi identity 

R:32 .u + R:2u .3 + R~u3.2 = 0, (3.5) 

where (J is 1 or 4, and where a comma indicates 
covariant differentiation. Equations (2.7) and (2.9) 
may be used to evaluate the terms in (3.5) and, with the 
identity 

Eq. (3.5) becomes 

(3.6) 

In view of Eqs. (2.7) and (2.9), the last equation is 
expressible as 

ml = r2(G~r4 - G:rl)/2c2, (3.7) 

m4 = r2(G!rl - G~r4)/2c2. (3.8) 

The field equations (2.14) then imply that 

ml = 4~r2(T:rl - T~r4)/c2, 

m4 = 47T~r2(Th - Th)/c2. 

(3.9) 

(3.10) 

Equations (3.9) and (3.10) are the mass equations, 
and imply that the mass function is an integral of two 
combinations of Einstein's equations. Moreover, they 
are equivalent to two of Einstein's equations. Also, the 
form of these equations clearly indicates that m is a 
constant in empty space. Finally, (3.9) may be regarded 
as a source equation for mass-energy. 

The mass function may also be used to determine 
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another equation which gives the second partial deriv
ative of r with respect to X4. If the right-hand side of 
(3.4) is differentiated with respect to X4, the result 
must equal the right-hand side of (3.10). Hence, 

47T~r2(T~r4 - T!r l )/c
2 

= mr4/r + re-2a(rJ.4r~ - rlr14) + re-Yrie-Yr4)4/c2. 

With the aid of Eq. (2.10) and the field equations, 
r 14 may be eliminated with the result that 

e-Y(e-Yr4)4 = 4~rT~ - mc2/r2 + c2e-2arl Yl' (3.11) 

This equation is the relativistic analog of Newton's 
law of gravitation. The left-hand side corresponds to 
the acceleration, while the right-hand side contains 
the familiar inverse square attraction, a stress term 
and a term which involves Yl' Equation (3.11) was 
originally derived for the case of a perfect fluid, in the 
form given below as (4.13), by Misner and Sharp.3 

Mass-energy is conserved in spherically symmetric 
space-times. This may be shown by defining a mass 
flow. vector Ja by 

r = sin O( -m4' 0, 0, ml)/[47T( - g)t]. (3.12) 

Its vector character follows from the tensor character 
of the Levi-Civita density ea/l yb = <5~glt( _g)-t, where 
<5~gl: is the generalized Kronecker <5 function, and of 

0". = sin O(<5!<5~ - <5!t5~), 

which was introduced by Regge and Wheeler. lo Thus, 
it is seen that 

r = eaa/lY0apmy/87T. (3.13) 

The reason why J2 and J3 vanish is that no mass
energy may flow in these directions. The radial com
ponent J1 gives the rate at which mass-energy is 
flowing out of the coordinate sphere Xl = const at any 
fixed X4. The J4 component describes the distribution 
of mass-energy in the radial direction. The conserva
tion of mass-energy follows immediately from (3.12) 
for 

J~a = O. (3.14) 

The mass-flow vector is orthogonal to ma , because 

(3.15) 

This is to be expected, for the direction of mass
energy flow should be tangential to the surface 
m = const. Thornell has also developed Eqs. (3.12) 
and (3.14) by an alternative method. The Bianchi 
identity, which ensures that there is local conservation 
of mass-energy, has thus been shown to be involved 
in the construction of the mass function, which 
represents a globally conserved quantity. 

4. SPHERICALLY SYMMETRIC PERFECT FLUID 

In this section some of the familiar formulas for the 
motion of a perfect fluid are developed from the mass 
function approach. The energy-momentum tensor for 
such a fluid is 

(4.1) 

where p and p are the internal energy density .and 
pressure as measured by a local comoving observer 
and U" is the 4-velocity of the fluid which must be a 
unit vector and hence satisfy 

(4.2) 

Einstein's field equations (2.14) and the form of G~ 
in (2.10) imply that U2 and U3 vanish. The field 
equations and (2.11) imply that 

T~." = 0, (4.3) 

which expresses the local conservation of energy and 
momentum. All the components of the energy
momentum tensor are not independent and (4.1) may 
be used to show that 

(4.4) 
and so 

(4.5) 

which is called a consistency relation by McVittie.12 

In order to specify a particular coordinate system, the 
four coordinates (Xl, X2, x 3, x4) must be defined. Two 
definitions are X2 = 0 and X3 = T, and a third is 
implied by g14 = 0. There is, therefore, one further 
specification available. Thus, in an arbitrary spheri
cally symmetric coordinate system, the functions rJ., y, 
r, m, p, p, U\ and U4 are determined by four state
ments defining the coordinates, one of which is 
arbitrary, by the mass function equation (3.4), by the 
two mass equations for the derivatives of m, Eqs. 
(3.9) and (3.10), by the dynamical equation (3.11), by 
the condition that Ull be a unit vector (4.2), by the 
consistency equation (4.5) or some equation equiv
alent to it, and lastly, by an equation of state or 
some condition that permits the integration of the 
entire set of equations. 

If the motion of the fluid is such that a comoving 
coordinate system may be used, then Tf, which is 
proportional to UI, must vanish. Thus, by means of 
the field equations, the nonvanishing components of 
the energy-momentum tensor are 

T~ = T~ = T~ = _p/c2
, T! = p. (4.6) 

Equation (4.2) is then U4U4 = 1. Because the vanish
ing of Ti is equivalent to the vanishing of Ul, the last 
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specification for defining the coordinate system is 

(4.7) 

The mass function equation is still (3.4), namely, 

m = tr(1 + e-2Yr;jc2 - e-2«rD, (4.8) 

while the mass equations (3.9) and (3.10) now become 

m1 = 47Tripr2rl/c2, 

m4 = -47Tripr2r4!c4. 

(4.9) 

(4.10) 

The consistency relation is G~ = G~ but this is equiv
alent to either of the nontrivial local conservation 
equations (4.3). By means of the field equations (2.12) 
and (2. I 3) and the form of T:, they are 

Pt!c2 = -Yl(P + p!c2), 

P4 = - (2r4/r + IX4)(p + p/c2
). 

(4.11) 

(4.12) 

The dynamical equation (3.11) takes the form 

e-Y(e-Yr4)4 = -(47Trirp!c2 + mc2jr2) + c2e-2«r1Yl' 

(4.13) 

Equations (4.8)-(4.10) and (4.13) were discovered by 
Misner and Sharp3 and Bardeen. 13 Equation (4.13) was 
also examined by May and White.4 Since it is merely 
necessary to determine (IX, y, r, m, p,p) in comoving 
coordinates, only five of the equations, (4.7)-(4.13), 
are independent. 

The mass function may be used to show that the 
boundary pressure of a perfect fluid surrounded by 
empty space must vanish. If the equation of the bound-
ary is 

then 

(d~) = (-mJi + m4) 
dx " 11 " 

(4.14) 

and 
«(fl11 + U4j4h = O. (4.1S) 

By means of Eqs. (3.9), (3.10), and (4.1), Eq. (4.14) 
becomes 

(
dm) 47Trir~ 1 4 - = -- [p(U1r4 - U4r1)(U 11 + U }4) 
dx4 

b C2U1h 
+ (p!c2)(U1r1 + U4r4)(Ud4 - U4fl)l!,· 

(4.16) 

Because the mass function is an invariant and depends 
only on first derivatives, the Lichnerowicz continuity 
conditions require that it be continuous across the 
boundary of the material. Thus (dm/dx 4 )b must vanish. 
The first term on the right-hand side of (4.16) vanishes 
because of (4.1S). The second term can vanish only if 

Pb = o. (4.17) 

S. NEGATIVE-MASS SHELLS 

Negative-mass shells were first encountered by May 
and White.4 A negative-mass shell occurs in an orthog
onal comoving coordinate system if m1 becomes 
negative during the motion of the matter distribution. 
Equation (4.9) shows that this condition is equivalent 
to r1 becomif.lg negative. Hernandez and Misner2 have 
shown that, for a situation in which r4 is always nega
tive, gravitational collapse must occur if r1 ever 
becomes negative. They proved this by making use of 
the theorem· of Penrose,14 which gives very general 
sufficient conditions under which a solution of Ein
stein's equations either has a singularity or possesses 
no initial Cauchy hypersurface. The purpose of this 
section is to investigate negative-mass shells without 
restrictions on r4 • 

In the following it is assumed that all derivatives 
employed exist and are bounded and that the pressure 
and density are nonnegative. Furthermore it is 
supposed that a negative-mass shell exists in an orthog
onal comoving coordinate system for all values of X4 

on an unbounded interval of X4. Because r1 must be 
positive at the center of the material, it follows that, at 
each value of X4 on the interval, there is a value of 
Xl at which r1 vanishes, while for all smaller values of 
xl, r1 is positive. If there is a set of such points in the 
(xl, x4) plane given by 

Xl = l(a), X4 = g(a), (S.1) 

where I and g are continuous functions of a con
tinuously varying parameter a, and g takes on all 
values of X4 on the unbounded interval,then this set 
of points forms the inner boundary of a permanent 
negative-mass shell. Clearly, 

r1(f(a), g(a» = O. (S.2) 

The path given by (S.1) is denoted by C. Thus, on C 
the dynamical equation (4.13) becomes 

e-Y(e-Yr4)4 = -(47Trirp!c2 + mc2jr2), 

which may be integrated along C to give 

where x! and xt are the initial and final values of X4. 
Now 

1:lb

4

[(e-Yr4)4 dX4 + (e-Yr4)1 dx1] 
"'a' 

= [e-Yr4U(x4
), x4

)]:::, (S.4) 
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but, by Eq. (4.7), 

(e-Yr4)1 = e-Y(r14 - yl r4) = e-Yoc4rl' 

which vanishes on C. Thus (5.3) becomes 

[e-Yr4(f(x4), X4»):b: = _c21Xb4

(47T;P + ~)e1 dX4. 
a "'a4 C r 

(5.5) 

Since rl(xl , x4 ) is positive for Xl less thanf(x4), Eq. 
(4.9) shows that m is positive along C. It is assumed 
that either p or m/r2 has positive lower bounds along 
C. As the interval of integration in (5.5) becomes 
arbitrarily large, so, too, does the right-hand side as 
long as e1 has a positive lower bound on C. In this case, 
Ir41 must become arbitrarily large. If there is no posi
tive lower bound for e1 , then it must vanish for some 
X4. In either case, the physical situation must be one 
in which a singularity is occurring. This shows that 
permanent negative-mass shells arise only in physical 
situations in which there is a singularity. Moreover, 
if a fluid distribution has a negative Schwarzschild 
mass due to such a negative-mass shell, it must ex
hibit singular behavior. The question of whether a 
finite number of temporary negative-mass shells could 
exist in a spherically symmetric distribution of material 
which does not exhibit singular behavior is left open, 
as is the question of whether an infinite number of 
temporary negative-mass shells could occur in a 
spherically symmetric fluid distribution which does not 
exhibit singular behavior but does possess a negative 
Schwarzschild mass. In Sec. 7, it is shown that 
permanent negative-mass shells occur in the closed 
uniform model universe solutions. Also in Sec. 7, the 
issue of whether negative-mass shells occur in charged 
distributions is discussed. 

6. A CLASS OF EXACT SOLUTIONS OF 
EINSTEIN'S EQUATIONS 

In this section, a class of solutions of Einstein's 
equations for a perfect fluid is developed by imposing 
a restriction on the form of the mass function. The 
material is assumed to occupy the interior of a sphere 
at any time and to be surrounded by empty space. 
Moreover, a comoving coordinate system is employed 
so that all the equations of Sec. 4 may be used. 

The class of solutions to be discussed has been 
investigated by a number of authors. McVittie l ex
amined special cases of the class by placing restrictions 
on the form of the metric. Thompson and Whitrow5 

and Taub6 derived the class by imposing Eq. (6.5) as a 
condition on the metric. Taub6 has shown that the 
metric restrictions of McVittiel are necessary if p is to 
depend on p alone. The class of solutions is developed 

here by the introduction of a function 'IJ'(x1, .X"") con
nected with m by 

m = 47Tgpr3/3c2 + 'IJ'. 

Because of Eq. (4.9), it follows that 

47Tgr3p1/3c2 = -'IJ'I' 

(6.1) 

(6.2) 

The time derivative of'lJ' may be found by differen
tiating (6.1) with respect to X4 and employing (4.10) 
for m4 and (4.12) for P4' This results in 

4~( P) 3( r4) - P + - r OC4 - - = 'lJ'4' 
3c2 c2 r 

(6.3) 

The restriction that will be placed on the mass function 
is 

(6.4) 

This is the simplest class of functions 'IJ' that gives a 
nonzero spatial gradient for P, by Eq. (6.2). The 
resulting class of solutions is called simple density 
gradient (SDG) solutions. Equation (6.3) then implies 
that 

(6.5) 

which may be integrated to give 

(6.6) 

where u is a function of Xl alone. Therefore dl2 , the 
spatial part of the metric (2.1) ,becomes 

dl2 = (r2/u2)(du2 + u2 dO,2). (6.7) 

Henceforth, u will be used as the radial coordinate. 
Whenever the spatial part of a spherically symmetric 
metric is some function times the metric of a Euclidean 
3-dimensional space, it is said to be in isotropic form. 
Thus, in a co moving coordinate system, the restrictions 
(6.4) or (6.5) or the condition that the spatial part of 
the coordinate system be isotropic are equivalent and 
result in the same class of solutions. Equation (4.7), 
with the aid of Eq. (6.5), becomes 

(In r4)1 = (y + In r)l, 

which may be integrated to give 

e1 = Hr4/r, (6.8) 

where H is a function of X4 alone. The mass function 
(4.8), by means of (6.6) and (6.8), takes the form 

m = tr[l + (r/Hc)2 - (ur • ./r)2]. (6.9) 

If the material is not bounded by empty space,then 
(2.1), (6.8), and (6.7) yield the metric 

ds2 = (r4H)\dX4)2 _ ....c.. (du2 + u2 d(2). (6.10) 
r C

2
U

2 
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It depends on the function r alone and, therefore, 
all the information of physical interest is determined 
once r is known. An equation which determines r 
may be found by differentiation of (6.1) with respect 
to Xl and use of (6.2) to eliminate Pl' The result is 

u2rruu - 2u2r: + urr" + r2 = 3'!jJr. (6.11) 

Since the mass function is known from (6.9), the 
density, by means of (6.1), is 

41T'Jp/3c2 = (m - '!jJ)/r 3• (6.12) 

The pressure may be found by use of (6.1) in (4.10), 
which yields 

(6.13) 

In the event that the material is bounded by empty 
space, examination of the metric (6.10) reveals that 
no generality is lost if the boundary of the material is 
given by 

u = 1. 

Because the Schwarzschild solution is the external 
solution, the boundary value of the mass function is 
M. Hence, by (6.9), H is given by 

Therefore, the mass function is 

m = M(~)3+ 1r[1 - (~r+ r2C~):- u
2
Cu)] 

(6.14) 

The form of the metric which follows from the above 
expression for Hand (6.10) is 

ds2 = (r4H)2(dX4)2 _ L (du 2 + u2 dQ 2
), 

r C
2
U

2 

(6.15) 

It is possible to determine alternative expressions for 
p and p. Equation (6.2) may be integrated to give 

41T'J ( ) il '!jJ" d - P - Pb = - u, 
3c2 u r3 

which with the aid ofEq. (6.12) becomes 

41T'Jp = M - '!jJb + e '!jJ" duo (6.16) 
3c2 r~ Ju r3 

Equation (4.11) may be integrated and with the aid of 
(6.8) the expression for p becomes 

(6.17) 

where use has been made of the vanishing of the 
boundary pressure which follows from the fact that 
mb = M is a constant. Finally, p may also be found by 
use of the dynamical equation (4.13). 

Equation (6.11) may be put into other useful forms. 
First let 

Y = 1/(ru), x = In u, 

so that (6.11) becomes 

Yxx + 2yx = -3'!jJeXy2. 

In the event that 
-3'!jJex = Bxn , 

(6.18) 

(6.19) 

(6.20) 

Eq. (6.19) becomes a special case of the generalized 
Lane-Emden equation which is mentioned by 
Kamke. 15 As an alternative, let the independent 
variable be 

(6.21) 

then Eq. (6.19) becomes 

y •• = -3tpZ-~y2. (6.22) 
In the event that 

(6.23) 

where k is some constant, then,with the aid ofKamke,15 

y = f.J(kx + A(x4», (6.24) 

where f.J is the Weierstrass f.J function with invariants 

(6.25) 

Thus, A and B are functions of integration. This solu
tion is noticed but it will not be examined further here. 
It is also possible to integrate (6.22),when 

tp = 0, (6.26) 
to obtain 

y = z/16R + K/R, 

where Rand K are functions of X4 alone. Thus, r is 
given by 

r = Ru/(l + Ku2). 

Because of Eq. (6.2), it follows that 

p = p(x4) 

(6.27) 

(6.28) 

is equivalent to (6.26) and so the general uniform 
density solution has been recovered in co moving 
coordinates. In Sec. 7, the uniform model universe 
solutions are shown to be a special case of this solu
tion. The physical properties of the uniform-density 
solutions have been extensively investigated. Bonnor 
and Faulkes16 have constructed oscillating uniform
density solutions that have no singularities. Thompson 
and Whitrow5 have shown that all uniform-density 
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solutions that correspond to inward motions which 
have a negative density-gradient undergo gravitational 
collapse. McVittie and StabelF7 have investigated 
some uniform-density solutions and shown that they 
must undergo collapse even though they have infinite 
central pressure. Taub6 has shown that the outer 
boundary in an oscillating uniform-density solution 
which is free of singularities does not fall through the 
Schwarz schild radius of the configuration. Bondjl8 
finds conditions under which initial inward motion in 
an uniform-density solution will be halted. Particular 
non-uniform-density SOG solutions have also been 
examined by McVittie1 and by Nariai. 19 

The regularity conditions which ensure that an 
SOG solution be free of singularities will now be 
developed. Because the material at u = 0 is assumed to 
be at the center of the distribution, 

reO, x") = O. (6.29) 

In order that the coefficient (r(u)2, which occurs in the 
spatial section of the metric (6.15), be finite at the 
origin, it must be the case that 

lim (r(u) = r uCO, x4
) > O. (6.30) 

u-+O 

The radiu~ of curvature by (2.5) should vanish only at 
the center and therefore 

r(u, x4) > 0, (6.31) 

for all u on (0, 1]. The coefficient of (dx4)2 in metric 
(6.10) must never vanish and so, without any loss of 
generali ty, 

(6.32) 

Because the density is finite in the vicinity of the center, 
it follows from (4.9) that 

lim m(r3 = 41Tgp(0, x4)/3c2
• (6.33) 

u-+O 

This result, by virtue of Eq. (6.12), is equivalent to "p 

obeying 

lim "P(u 3 = O. (6.34) 
u-+O 

Equation (6.34) moreover implies that m(r3 does 
approach a finite limit. The right-hand side of Eq. 
(6.11) is zero to order u3 at least, by virtue of Eq. 
(6.34). The left-hand side of (6.11), when expanded 
to order u3

, depends on the behavior of r to order 
u3• Thus the solution of (6.11) is the same as the uni
form-density solution to order u3

• Now in the uniform
density solution (6.29) and (6.30) hold and also 

(6.35) 

and so these equations are satisfied for any solution of 

(6.11) so long as (6.34) is satisfied. When Eq. (6.11) is 
examined at u = 0 with the aid of (6.34) and (6.35), it 
turns out that 

I ( r~ r u r) I lim - 2 - + 2 + --; < 00. 
,,-+0 ru u u 

But if this expression is rewritten and (6.30) is em
ployed,we find that 

I

· r ( r uU r u r u 1 ) I hm - - 2 - - + - + 2 < 00 
u-+O u r ru ru u 

implies 

II' (1 - uru/r) I 1m 2 < 00. 
u-+O u 

(6.36) 

Equation (6.36) implies that p is finite at the center of 
the material for, by Eq. (6.14), 

lim m = M _ [1 - (ru/r)~] 
u-+O r3 r; 2r~ 

+ t lim u: (1 - (u; u/r)2). 
u-+O r u 

By means of (6.30) the last term becomes 

1 I' (1 ur u) I' (1 - ur u(r) 
24 1m + - 1m 2 

2r uCO, x ) u-+O r u-+O u 

= 1m 1 I' (1 - uru/r) 
r!(O, x4

) u-+O u2 
' 

which has been proven to be finite. Thus the con
clusions are that if Eq. (6.34) is satisfied, then (6.29) 
and (6.30) both hold and also that the central density 
is always finite. Equation (6.34) is the necessary and 
sufficient condition for the spatial part of the metric, 
and the density, to be well behaved at u = O. Equation 
(6.17) then implies that p(O, x4

) is also well behaved 
provided e 2y is positive and bounded. I( in addition, 
Eq. (6.31) holds and p and p are positive, the solution 
is physically acceptable and free from any singularities. 

7. APPLICATIONS OF THE MASS FUNCTION 

In this section the mass function is used to examine 
certain properties of the uniform model universe 
solutions, the charged point-mass solution, and dis
tributions of charged fluid at zero pressure. 

In the following it is shown that the uniform model 
universe solutions are the subclass of the uniform
density solution discussed in Sec. 6 in which p is a 
function of X4 alone and A, the cosmical constant, is 
taken to be zero. For, if both p and p depend on X4 

alone, Eq. (6.13) implies that r4(r depends on X4 alone. 
In the uniform-density solution r is given by (6.27) 
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and therefore 

r4 R4 K4U2 
-=--
r R 1 + Ku 2

• 

Thus, if r41r depends on X4 alone, K4 must be zero, 
which in turn means that K is a constant. Moreover, 
the form of the spatial part of metric (6.10) implies 
that K is a scale factor and so without loss of general
ity we take 

K= k14, k = {I,O, -I}. (7.1) 

Because g44 in the metric (6.10) depends on time alone, 
a new time coordinate t may be introduced by 

(7.2) 

Thus the metric (6.10) with the aid of (6.27), (7.1), and 
(7.2) becomes 

R2 
ds2 = dt2 

- (du 2 + u2 dQ2) (7.3) 
c2(1 + tkU 2

)2 ' 

which is one of the standard forms of the metric of 
a uniform model universe. In order to examine 
these solutions by means of the mass function tech
nique, it is preferable to use another form of (7.3), 
namely, 

where R(t) is the scale function, w is the radial co
moving coordinate,and Skew) is given by 

SkeW) = sin w, if k = +1, 

= w, if k =0, (7.5) 

= sinh w, if k = -1. 

Equation (2.1) implies that the radius of curvature, r, 
is given by 

(7.6) 

Comparison of (2.1) with (7.4) indicates that t = X4, 

W = Xl. Hence, the mass function (3.4) is 

m = ir[1 + R2S2(W)jc2 - q(w)], 

where 1< = dRldt and Ck = dSk/dw. Thus, with the 
aid of (7.6) and q + kS: = 1, the mass function 
becomes 

(7.7) 

Because (6.26) must hold in any uniform-density 

Comparison of (7.7) and (7.8) immediately gives p as 

8~p = 3 (k + 1<2/C2) 
c2 R 2 • 

(7.9) 

A striking feature of the spherical universe, which 
occurs when k = + 1, is the existence of a perJ!lanent 
negative-mass shell on the w interval (!1T, 1T). This is 
because r is R sin w by (7.6) and, increases with in
creasing w to a maximum value of R when w is !1T, 
and then falls off to zero when w is 1T, at the anti pole. 
In fact, Eq. (7.8) implies that the total amount of 
mass-energy between the origin w = ° and its anti
pole w = 1T is zero,which means that 

m(1T, t) = 0. (7.10) 

Since'1 = R cos w, it follows that r1 is negative in the 
w interval (!1T, 1T) and thus the condition for negative
mass shells, stated at the beginning of Sec. 5, is 
satisfied. 

A second application of the mass function to a 
specific case is found in the solution for the external 
field of a charged spherically symmetric distribution of 
material due to Nordstrom20 and Reissner.21 Adler, 
Bazin, and Schiffer22 give the metric for the external 
field as 

ds2 = [1 - ;(M - 2~q) ] dt2 

- ~{[1- ;(M - 2:~q2)r1 dr2 + r2dQ2}, 

(7.11) 

where M and q are constants. Their expression for the 
electric field, which is radial, is 

(7.12) 

where q is interpreted as the charge of the distribution 
and Heaviside-Lorentz units are used. Their expres
sion for the energy density is 

(7.13) 

Because the radius of curvature, is the radial coordi
nate in (7.11) and '4 = or/ot is zero, Eqs. (3.2) and 
(3.4) imply that the mass function is 

(7.14) 

solution, Eq. (6.1) becomes Equation (7.14) implies that 

(7.8) mew) = M, (7.15) 
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which means that M is the total amount of mass
energy between the center of the material and infinity 
calculated from the external field. Equation (7.14) also 
shows that the mass function decreases as r does. The 
reason for this may be established as follows. When 
(7.14) is differentiated with respect to rand (7.12) is 
also used, it is found that 

dm = 27T{'Jq2 = ~ E247Tr2. 
dr c4r2 2c4 

If this is integrated, an equivalent form of (7.14) IS 

obtained, namely, 

mer) = M - ~ i oo 

(E:) 47Tr2 dr, (7.16) 
c r 2c 

a result that would also be derived from (3.9) and 
(7.13). Therefore, mer) is the total mass-energy minus 
the mass equivalent of the energy stored in the electric 
field between radius r and infinity. 

Another aspect of (7.14) is that m becomes nega
tive for sufficiently small r. This means that a small 
particle close to a point charge will be repelled. If the 
metric (7.11) is that of the field exterior to a charged, 
static, and finite distribution of matter at zero pressure, 
then two alternatives arise. The first is that, because of 
the presence of the electric field, the distribution has 
a positive mil' The second alternative is that the 
boundary value of m may be negative. [n this case, 
for a static incoherent charged fluid Adler, Bazin, and 
Schiffer23 give r: as 

T: = p + E2/2c2. (7.17) 

Equation (3.9) yields 

47T§L",1 '2 d 1 m = -2- T,r r1 x. 
c 0 

(7.18) 

This shows, since T! is necessarily positive, that the 
only way in .which the above material could have a 
negative mass at the boundary would be for a negative
mass shell to occur. 
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A solution of Einstein's field equations for the motion of a spherically symmetric distribution of perfect 
fluid is investigated in an isotropic comoving coordinate system. It is shown that this solution includes 
all solutions discussed by McVittie in which the density depends on both the radial and time coordinates. 
Necessary and sufficient conditions for the solution to be singularity-free and for the density and pressure 
to be nonnegative and monotonically decreasing from the center of the material outwards to an outer 
boundary are found. The material is surrounded by empty space. Examples of both oscillating and 
"bouncing" solutions are produced. It is shown that the outer boundary of the material never penetrates 
the Schwarzschild radius in all singularity-free solutions. 

1. INTRODUCTION 

The radial motion of a spherically symmetric mass 
of perfect fluid may be treated exactly in general 
relativity by solving Einstein's equations. Classes of 
analytical solutions of these equations are attainable 
under certain circumstances. One such class was 
developed by McVittie.1 Thompson and Whitrow2 

showed that McVittie's solutions were a subclass of a 
still more extensive group and Cahill and McVittie3 

(hereinafter referred to as Paper 1) have discussed 
some properties of this group. 

There are three classes of solutions treated by 
McVittiel and it is shown in Sec. 2 of this paper that 
in class (iii) the density depends on the time coordinate 
alone. This class of solutions, therefore, is a special 
case of the general uniform-density solution which 
is briefly treated in Paper I,where references to several 
more complete descriptions of the general uniform
density solution are given. However, it should be 
noted that Taub4 has shown that the outer boundary of 
any singularity-free uniform-density solution cannot 
penetrate the Schwarzschild radius. It is also shown 
in Sec. 2 that the remaining two classes of solutions, 
classes (i) and (ii), may be treated together and that 
the isotropic coordinate system employed in Paper I 
may be used to develop these classes in a simple form. 
The purpose of this paper is to find members of these 
classes which are free of singularities and in which the 
density and pressure are nonnegative and monot
onically decreasing from the center of the material 
to an outer boundary. This is accomplished by use 
of the general results obtained in Paper I. Lastly, we 
point out that a special case of these classes due to 
Nariai5 has already appeared in the literature. 

2. McVITTIE'S SUBCLASS OF SIMPLE 
DENSITY GRADIENT SOLUTIONS 

The class of solutions of Einstein's equations 
developed by McVittiel has the metric 

ds2 = /(dX4)2 - R~S2e~c-2[(dxl)2 + J2 dQ2], 

Y = 1 - i7J., eZ = Q/S, (2.1) 
dQ2 = d()2 + sin2 

() dc/, 

where Xl and X4 are the radial and time coordinates, 
respectively, 7J is a function of z, Q andJare functions 
of Xl, S is a function of X4, and Ro is a constant. In 
Paper I the more general metric 

ds2 = e2Y(dx4)2 _ c-2[e2~(dxl)2 + ,2 dQ2) (2.2) 

is employed, where IX, y, and, are functions of Xl and 
x4. This is Eq. (L2.1) [that is, Eq. (2.1) of Paper I). 
Hence (2.1) is the special case in which 

e2y = y2, 

e2~ = R~S2e~, 

, = RoSe~/"l-

(2.3a) 

(2.3b) 

(2.3c) 

If the energy-momentum tensor is that of a perfect 
fluid, then the coordinates are comoving by virtue of 
the previous formulas. 

The condition that Tf and Ti are identical leads 
McVittie to the three equations 

Qu/Q - QdllJQ = a(QI/Q)2, 

JulJ - JiIJ 2 + IIJ2 = b(QI/Q)2, 

yzz + (a - 3 + y)yz 

(2.4a) 

(2Ab) 

+ y[a + b - 2 - (a - 3)y - y2] = 0, (2.4c) 

where the suffix 1 means a derivative with respect to 
Xl and Yz = dy/dz, and a and b are two constants 

1392 
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which may be specified arbitrarily. There are three 
known first integrals of Eq. (2Ac), namely, 

case (i): dy = tea _ 3)y + ty2, 
dz 

provided that 

case (ii): 

b = - 2
15(6a2 

- lla + 4); 

dy = -!(b + 1) + ii, 
dz 

provided that a = 3; and the particular integral 

case (iii): dy = (a + b - 2) - (a - 3)y -l. 
dz 

The density turns out to be 

~7T§ = (§)2 + c2
e-

q {O - fi) _ 2(1 _ y) Qdl 
3 P S R~s2 f2 Qf 

- t[2b - 2yz + (1 - y)(2a - 1 - y)] 

(2.5) 

(2.6) 

(2.7) 

x [~lr}, (2.8) 

where S = dS(dx4. 
The theory of the mass function will now be applied 

to McVittie's metrics. The mass function was given 
by Eq. (1.3.4) as 

In = ir(1 + e-2Yr!/c2 - e-2ari) , (2.9) 

where r4 and r1 are the partial derivatives of r with 
respect to X4 and xl, respectively. Its calculation 
requires the derivatives of r, where r is defined by 
Eq. (2.3c). With the aid of (2.1) also, the derivatives 
are 

r1 = RoSe!q[h + (1 - y)Qd/Q], 

r4 = RoSehfy = ry(S/S). (2.10) 

The mass function is then, by (2.9), (2.3), and (2.10), 

m = ir{1 + (rSlcS? - Lh + (l - y)fQI/Q]2}, 

which with the aid of Eq. (2.8) becomes 

In = 47T§pr3/3c2 + [a + b - 2 - (a - 3)y 

- y2 - yzHr(Qxf/Q)2. 

Thus, the mass functions corresponding to the 
three integrals of Eq. (2.4c) , corresponding to cases 
(i)-(iii), respectively, are 

m = 47T§pr3/3c2 - try + tea - 3)]2r(Qd/Q)2, 

(2. 11 a) 

m = 47TfJ pr3 /3c2 + H b + 1 - y2)r(Qd/ Q)2, (2.11 b) 

In Paper I, Einstein's equations for a perfect fluid, 
in which the mass function was written in the form 
given in (1.6.1), are discussed. This equation is 

m = (47T§ pr3/3c2) + tp. (2.12) 

The class of solutions which occur when tp depends on 
Xl alone was first considered by Thompson and 
Whitrow. 2 As in Paper I, this class is referred to as 
the class of simple density gradient (SDG) solutions. 
Equations (2.11) and (2.12) may be used to evaluate tp 

in each of the three cases with the results 

tp = -Hy + tea - 3)]2r(QdIQ)Z, 

tp = Hb + 1 - y2)r(Qd/Q)2, 

tp = 0, 

(2. 13 a) 

(2. 13 b) 

(2.13c) 

for cases (i)-(iii), respectively. Because tp is zero in 
case (iii), all solutions of this type are uniform
density solutions which, as mentioned in Sec. I, are 
treated elsewhere. In cases (i) and (ii), tp will be shown 
to depend on Xl alone by completing the solution of 
the problem in the following way. 

In case (i): let /-l = t(a - 3). Then (2.5) may be 
integrated and the definition y = I - i'fJz used to 
give 

y = -2/-lel'z/(r + ellZ) , eh = eZ(r + e1tZ )2, (2.14) 

where l' is a constant of integration and a multiplica
tive constant of integration in the determination of 'fJ 
has been equated to unity. Equation (2.3c), the rela
tion eZ = Q/S, and (2.14) imply that 

r = RoQfCI' + (Q/S)Il)2. (2.15) 

Equation (2.13a) for case (i), with the aid of Eqs. 
(2.14) and (2.15), yields 

tp = -2Ro(/lI')Y3Qi/Q. (2.16) 

This clearly shows that tp is a function of Xl alone 
and concludes the treatment of case (i). 

In case (ii), let y2 = b + I, b ¥- -I. Equation (2.6) 
may then be integrated and the definition y = 1 - tnz 
used to give 

y = y(1 - I'eVZ)/(l + reVZ ), 
eq = (1 + reVZ )4e2(I-V)Z, (2.17) 

where r is a constant of integration and a multiplica
tive constant of integration in the determination of 1'/ 
has been equated to unity. Equation (2.3c) implies 
that 

(2.18) 

(2.1lc) Equation (2.13b) for case (ii) with the aid of Eqs. 
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(2.17) and (2.18) requires that 

tp = tv2 (1 (l - reVZ)2)R SF(l + reVZ)2eU-vlz (Qd)2 
(1 + fe VZ)2 0 'J Q 

= 2R v2 fSej3 Q~ 
o Q2' 

Because eZ = Q/S, it is seen that 

(2.19) 

which shows that tp again depends on Xl alone. 
Equation (2.18) may be put into a simpler form if 
the quantities cp and € are introduced by 

cp = In Irj + z = In If I + In Q - In S, € = Irj/f, 
(2.20) 

for it thereby reads 

r = (RojQ/IfI)(e-!'" + €e+!",)2 

= (RojQ/WI)(e'" + e-'" + 2€), 
whence 

r = (2RojQ/IfI)(cosh cp + E). (2.21) 

The form of r in the last equation is 

r = Dn[cosh (h + G) + €], (2.22) 

where nand h are functions of Xl, G is a function of x4, 
€ is ± 1, and D is an arbitrary constant length. Thus 
Eq. (2.22) gives the form of r in case (ii). Moreover, if 

€ = -1, n = ii/Gz, h = hG, G = CG, (2.23) 

where ii and h are functions of Xl, G is a function of 
X4, and 15 is a constant, then 

lim Dii[cosh G(h + G) + €]W = Dii(h + Cl, (2.24) 
.1->0 

which is the form of r in Eq. (2.15) for case (i). Thus 
it is seen that the form of r, given in Eq. (2.22), 
covers both cases (i) and (ii). In Paper I it is shown 
that for all spherically symmetric perfect fluid solu
tions, in which tp depends on Xl alone, the metric may 
be expressed as (1.6.10) which is 

dsz = (r4H)\dX4)Z _ L (du2 + u2 dn2), (2.25) 
r cZuz 

where X4 is the time coordinate, u is the radial co
moving coordinate, r is the radius of curvature, H 
is an arbitrary function of X4, and r 4 is the partial 
derivative of r with respect to X4. The functions nand 
h in Eq. (2.22) may therefore be regarded as functions 
of u. It is also shown in Paper I that r must be a 
solution of Eq. (1.6.11) which is 

uZrruu - 2uzr~ + urr" + r2 = 3tpr, (2.26) 

where the subscript of u refers to partial differentia-

tion with respect to u. In Sec. 3 of this paper the most 
general forms of n(u) and h(u) consistent with (2.26) 
are found, the function G(x4) being left arbitrary. 

3. McVITTIE'S CLASS OF NONUNIFORM
DENSITY SDG SOLUTIONS 

The plan of this section is to use the generalized 
form of r for McVittie's SDG solutions of cases (i) 
and (ii) given by Eq. (2.22) and substitute it into the 
differential equation (2.26) in order to determine n(u) 
and h(u). It will be supposed that G(x4) is arbitrary 
since (2.26) is a differential equation which involves 
derivatives with respect to u alone and coefficients 
depending only on u and on r itself. Nariai5 has 
investigated McVittie's case (i) solutions with a 
restriction on the constants of integration. Thus, the 
solutions to be developed will include the Nariai so
lutions as a special case. The metric of any SDG 
solution which is bounded by empty space has the 
form of (2.25) but H is no longer arbitrary because of 
the condition that m shall be constant at the boundary. 
A quantity with the subscript "b" is evaluated at the 
boundary and thus mb = M, the Schwarzschild mass. 
Without loss of generality the boundary can be 
defined by u = 1. Equation (1.6.15) for the metric in 
this situation is 

Conditions under which ea and eY are bounded and 
positive and under which r is positive, except at the 
center of the material, will be developed and discussed. 
Expressions for the density and pressure will be found 
and the conditions under which both quantities are 
nonnegative will be determined. 

Since 

r = Dn[cosh (h + G) + €], (3.2) 

its logarithmic derivative with respect to X4 is 

~ = sinh (h + G)6 

r cosh (h + G) + € ' 

(3.3) 

where the dot denotes differentiation with respect to 
X4. Metric (3.1) thereby becomes 

ds2 = (Sinh (h + G)6H )2(dx4l 
cosh (h + G) + € 

D 2n2 

- 22 [cosh (h + G) + €]2[du2 + u2 dnZ], 
cu 

(3.4) 
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where 

The values of the metric coefficients are unchanged 
if h(u) + G(x4) is replaced by -h(u) - G(X4). More
over, since g44 may not vanish, h + G may never 
equal zero and it is therefore possible to impose the 
condition that 

h + G > 0, (3.6) 

for all (xl, x4) without any loss of generality. The 
remaining condition which ensures that g44 does not 
vanish is 

GH>O. (3.7) 

The determination of n(u) and h(u) is now under
taken. The first and second derivatives of r with 
respect to u are 

r" nur h' (h ) - = - + n u smh + G , 
D nD 

r"" = (nu" + h2)!... 
D n U D 

+ (2nuh" + nh"u) sinh (h + G) - h~ne. (3.8) 

When the above equations are used in Eq. (2.26), it 
becomes an equation of the form 

'In [cosh (h + G) + e] + '2 sinh (h + G) + 'a = 0, 
(3.9) 

where 

~I = n"u/n - h~ - 2n~/n2 + nu/un + l/u2, 

~2 = nhuu - 2n"h" + nh,,/u, 

~a = (3/u2)(h~nu2€ - tp/ D). 

If this equation is to hold for an arbitrary function G, 
then ~l' ~2' and ~3 must be identically zero. Thus, the 
following three equations are obtained: 

n"u/n - h~ - 2n~/n2 + n,,/un + 1/u2 = 0, (3.10) 

nhu" - 2n"hu + nh,,/u = 0, (3.11) 

(3.12) 

Equations (3.10), (3.II), and (3.12) are the con
ditions that n, h, and tp must satisfy in order that r be 
of the form given in Eq. (3.2). Equation (3.11) is a 
first-order linear equation in hu, the integral of which 
is 

(3.13) 

where the constant of integration has been written as 
co/c2 • This equation may be used to eliminate h" in 

Eq. (3.10) which, when multiplied by u2/n3, becomes 

But if unu/n2 is factored from the left-hand side then 

results. The bracketed term is d(unu/n2)/dn and so 

!!.. (un u )2 = 2 (S!)2 n _ 3.. , 
dn nZ 

C2 n3 

which may be integrated to give 

(3.14) 

where the constant of integration has been written as 
c1/cz. The substitution n2 = l/x reduces this equation 
to . 

dx _ _ 2du 

[(CO/C2)2 + 2(CI/C2)X + x2]! - u 

Hence, 

In {x + ~ + [(~r + 2(~)X + x2r} = -In(c2u2), 
where C2 is the constant of integration. Thus, 

(S!)2 + 2(S)x + x2 = (~_ S _ X)2. 
C2 C2 C2U C2 

This equation may be solved for x and, because x = 
1/n2, the result is 

n2 = 2c2u
2/[(1 - C1U

2)2 - C~U4]. (3.15) 

The function n2 must be positive for all u on (0, 1]. 
This implies that 

(3.16) 

Moreover, the denominator in (3.15) must be positive 
also, whence 

(3.17) 

for all u on [0, I]. The inequality is equivalent to 

11 - cl u21 > leol u2
, 

and because the left-hand side may not vanish for all 
u on [0, 1], 1 - Cl U2 is positive. The inequality becomes 

1 > (Cl + ICoDu2
, 

which is true for all u if it holds at u = 1. Thus (3.17) 
is satisfied if and only if 

(3.18) 
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The constant C2 is not present in the function h because 
of Eqs. (3.13) for hu and (3.l5) for n2• It therefore 
enters the metric (3.4) through n alone. Because the 
expression for n2 only depends multiplicatively on C2 

and n in turn is always multiplied by D in the metric, 
C2 is a scale factor and may be taken to be unity without 
loss of generality. Thus, 

(3.19) 

and CI and Co must satisfy (3.18) in order that n2 be 
positive. The derivative of n is needed for later use 
and is given by 

nu _ 1 + (c~ - cDu4 

n - [(1 - CIU2)2 - C~U4]U • 
(3.20) 

By means of Eq. (3.13) with C2 = I, Eq. (3.12) for "p 

becomes 

(3.21) 

Equation (3.13) with C2 taken to be unity may be 
integrated with the aid of Eq. (3.19), which leads to 

h = Ca + t In {I + 2cou2f[1 - (c i + CO)u2]). 

Inequality (3.l8) implies that 1 - (ci + co)u2 is 
always positive for all values of u; moreover, Eq. 
(3.l3) implies that h is a monotonically increasing 
function if Co is positive and monotonically decreasing 
if Co is negative. The argument of the logarithm in the 
expression for h is always positive because 

2cou
2 1 + (co - CI )U

2 

1+ 2= 2' 
1 - (CI + co)u 1 - (ci + co)u 

and inequality (3.18) implies that both numerator and 
denominator are positive. Finally, the function h 
enters the metric (3.4) additively with G. Thus, Ca in 
the expression for h may be taken to be zero without 
loss of generality so that 

and its derivative is given by Eq. (3.13), with C2 = 1, 
as 

hu = con2/u = 2cou/[(1 - C1U2)2 - C~U4]. (3.23) 

This concludes the integration of Eqs. (3.10) and 
(3.11) whose integrals are (3.19) and (3.22). The 
generalizations of McVittie's cases (i) and (ii) are 
thus seen to be SDG solutions in which 'IjJ is given by 
(3.21). 

If the material is surrounded by empty space it 
follows that Eqs. (1.6.14), (1.6.16), and (1.6.17), for 
the mass function, the density, and the pressure, 

respectively, must hold. They are 

m = M(~r + !r[1 - (~)2 + r2(~): - u2(;n, 
(3.24) 

(3.25) 

(3.26) 

Thus, Eq. (3.25) for the density may be evaluated by 
means of Eq. (3.21) for "p and (3.2) for r. Differentia
tion of (3.21) yields 

(3.27) 

and thus (3.25) becomes 

41T~ D2 _ = €C2fl nnu du 
15c2 (p Pb) 0 u [cosh (h + G) + €]a' (3.28) 

Equations (2.12), (3.2), and (3.21) furnish the form 
of Pb as 

41T~ 2 Mj D - €c~n~ 
- D Pb = . (3.29) 
3c2 n~[cosh (hb + G) + €]3 

If the density is to be a monotonically decreasing 
function of u for any X4, nu must be positive when 
€ = + 1 and negative when € = -1. In Eq. (3.20) for 
llu the denominator is always positive by condition 
(3.18). Hence the sign of nu is that of the numerator, 
1 + (c~ - c~)u4. This cannot be negative for any u in 
the € = -1 case and therefore the density increases 
monotonically from the center of the material out
wards for some, and perhaps all, u. In the € = + 1 
case, however, if 1 + (c~ - cDu2 is positive at the 
boundary,then llu is positive for all u and the condition 
becomes 

1 + c~ - ci > 0, € = + 1. (3.30) 

If the density falls off monotonically from the center 
of the material toward the outer boundary at any 
X4, then the condition for the density to be non
negative is that the boundary density be nonnegative. 
The boundary density Pb given by Eq. (3.29) is non
negative if 

Mj D 2: €c~n~. (3.31) 

In the event that P is not a monotonically decreasing 
function of u, there is no simple requirement like 
(3.31) which ensures nonnegative density, although 
(3.31) is a necessary condition. When the equality 
holds in the € = + I case,the boundary density is zero. 

Equation (3.26) for the pressure may be evaluated 
once eY is known. Comparison of Eqs. (3.4) and 
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(2.2) shows that 

eY = sinh (h + G)GH/{cosh (h + G) + E}, 

and hence, since E = ± 1, 

)I" = Ehu/sinh (h + G). 

Thus Eq. (3.26) becomes 

p cosh (h + G) + Efl PEhu du - = (3.32) 
c2 sinh (h + G) u cosh (h + G) + E ' 

and with the aid of the properties of the hyperbolic 
functions we have 

p/c2 = t coth t(h + G) fph u sech2 t(h + G) du, 

E = +1, 

= -t tanh t(h + G) f phu csch2 t(h + G) du, 

E = -1. (3.33) 

Condition (3.6) which requires that h + G be positive, 
coupled with the properties of nand H, implies that 
both the density and pressure have no divergences. 
Furthermore, p must be nonnegative in order that it 
be physically acceptable, and examination of Eqs. 
(3.33) shows that this is true if and only if f.hu is 
positive. The expression (3.23) for hu implies that 
the sign of hu is that of co. Therefore, the condition 
that p be nonnegative is equivalent to 

Co ;;::: 0, E = + I, Co S 0, E = -I. (3.34) 

When Co = 0, which may occur for either value of f., 

the pressure is uniformly zero throughout the mate
rial. Moreover, when ECO is positive, it follows from 
Eq. (3.33) that the pressure falls off monotonically 
from the center of the material to zero at the boundary. 
Inequality (3.6) may now be written in a simpler form. 
Equation (3.23) implies that in the E = + 1 case h is 
either a monotonically increasing function of u or a 
constant, while in the E = -1 case h is either a 
monotonically decreasing function of u or a constant. 
Thus, the minimum value of h(u) when E = + 1 is 
h(O), which is zero by Eq. (3.22); but if E = -1 the 
minimum value of h(u) is h(1). Hence inequality 
(3.6) becomes 

G(x4
) > 0, E = +1; G(X4) > hb' E = -I, 

(3.35) 
for all X4. 

Because of inequality (3.7), GH is required to be a 
positive bounded dimensionless function W(x4) , say, 
of X4. Equation (3.5) for H may therefore be used 
to give 

G2 = W2(X
4

) (.E..)2[2M _ 1 + ~(ar)2J. 
rb rb rb au b 

If a new dimensionless time coordinate T is introduced 
by 

Wc 
dT = -dx4, 

rlJ 

the equation for G in terms of T becomes 

(dG)2 = 2M _ 1 + .l(ar)2 
ciT rlJ r~ au lJ' 

Therefore, the metric (3.4) becomes 

d 2 (Dnb' s = -c- smh [h(u) + G(T)] 

X cosh [hb + G(T)] + f. \2 di 
cosh [h(u) + G(T)] + EJ 
D 2n2 

- 22 {cosh [h(u) + G(T)] + E}2 
C U 

(3.36) 

(3.37) 

(3.38) 

An important consequence of Eq. (3.37) is that in 
this solution of Einstein's equations the boundary 
may never pass inside the Schwarzschild radius, for 
if 2M/rlJ > I occurred for some G, then, as G became 
smaller, G2 in (3.37) would always be positive. Thus 
condition (3.35) could not be satisfied, for either G 
was negative at a previous time, corresponding to 
the positive root of (3.37) for G, or G becomes 
negative at a later time, corresponding to the negative 
root of (3.37) for G. Taub4 has proven that the 
boundary of the uniform-density solution also has 
this property. 

The nature of the function G(T) determined by Eq. 
(3.37) will now be discussed. Because of the peculiar 
behavior of the density in the E = -1 case, only the 
E = + I case will be considered. Inequality (3.35) 
then implies that the only acceptable solutions of 
(3.37) are those in which G is positive for all values of 
T. If, in addition, G is bounded from above, the 
solution is oscillatory, while, if G may become 
arbitrarily large, a "bounce" type solution occurs. A 
"bounce" is a solution that refers to a case in which 
the material, at a moment in the infinitely remote 
past, was spread out throughout all space. It then 
contracted to a sphere of finite radius and thereafter 
will expand again to a state in which it fills all space 
at a moment in the infinitely remote future. The 
mathematical characteristic of a "bounce" solution 
is that the continuous function r possesses the proper
ties that 

lim r(u, r) = 00, 

while r(u, T) is finite for finite T. In such a solution 
the pressure overwhelms the attraction of gravity. 
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FIG. I. Typical behavior of r in a "bounce." 

The typical behavior of r(u, 1') for a fixed u is illustrated 
in Fig. 1. 

By means of Eqs. (3.2) and (3.8), Eq. (3.37) becomes 

(
dG)2 _ 2M/D _ 1 
dT nb[cosh (hb + G) + 1] 

+ [(nu) + hu sinh (h + G) J2, 
n cosh (h + G) + 1 b 

which may be expressed with the aid of the hyperbolic 
half-argument formulas as 

(
dG)2 [M (nu)2 (hunu) h 1. h dT = Dn + -; - 1 + 2 -n- tan 2( + G) 

+ (h u )2 - M) tanh2 tch + G)] . 
Dn, b 

This differential equation may be simplified with the 
aid of the definitions 

A= M -(h~h, B=(hunu), 
Dnb n b 

C = 1 _ M _ (nu)2. (3.39) 
Dnb n b 

The constant A defined in Eq. (3.39) may be written 
as 

A = (M/ D - c~n~)/nb' 

and is therefore positive by virtue of inequality (3.31), 
provided that PI> does not vanish. The constant B 
is also positive because in the € = + 1 case inequality 
(3.34) implies that hu as given in (3.23) is positive 
and (3.30) implies that nu is positive. The constant 
C will turn out to be positive in situations of physical 
interest because of the condition that G always be 
positive, which will be examined shortly. The differ
ential equation for G now becomes 

(
dG\2 - , = -A tanh2 t(h b + G) 
dT, 

+ 2B tanh !(hb + G) - C. (3.40) 

This equation may be integrated with the aid of the 
substitution x = tanh l(hb + G), but it is merely 
desired to show that G is positive here. The roots of 
(dGjdT)2 will determine the bounds on G and these 
roots are 

tanh Hhb + G±) = [B ± (B2 - AC)tJ/A, (3.41) 

where 
0< G_ ~ G ~ G+ ~ 00 (3.42) 

and A '¢: O. In order for the roots to be real, 

(3.43) 

When the equality holds in (3.43) both roots are equal 
and the oscillations have zero amplitude,and hence 
the solution is a static one. It is also interesting to note 
that oscillations cannot occur if Co vanishes,for then 
B would vanish also. But Eqs. (3.33) and (3.23) show 
that Co vanishes if and only if the pressure is zero for 
all Xl and X4. Thus, a pressure is essential for the 
existence of oscillations. 

If G_ is to be positive,then the condition 

tanh !hb < [B - (B2 - AC)t]/A, (3.44) 
where 

[B - (B2 - AC)t]/A < 1 (3.45) 

must be imposed because the hyperbolic tangent of a 
finite positive quantity is less than unity. If G+ is to 
be finite,then 

[B + (B2 - AC)t]jA < 1. (3.46) 

Thus, for the € = + 1 case any set of constants co, 
CI' and M/ D, which satisfy inequalities (3.18), (3.30), 
(3.31), (3.34), (3.43), (3.44), and (3.45), determine a 
solution of Einstein's equations for which the metric 
coefficients g44 and gll never vanish while r is positive 
and vanishes at the center only and for which the 
density and pressure are nonnegative and monotoni
cally decreasing from the center of the material 
outwards. Also, if inequality (3.46) is satisfied, the 
solution is oscillatory and gll, g44 are bounded, while 
if it is not satisfied the solution is of the "bounce" 
type. 

4. EXAMPLES OF McVITTIE'S CLASS OF 
NONUNIFORM-DENSITY SDG SOLUTIONS 

The purpose of this section is to demonstrate that 
values of co. CI' and Mj D, which satisfy the inequali
ties derived in Sec. 3 for € = + I, do indeed exist. A 
"bounce" and an oscillatory solution are developed. 
The method of attack consists of solving all the 
inequalities in Sec. 3 which involve Co and CI alone. 
The solution consists of a region in the (CI' co) plane 
of values of Co and CI for which there may be values of 
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MjD such that the remaining inequalities are satisfied. 
Two values of C1 and Co are selected and a range of 
values of M/D is then found so that the remaining 
inequalities are satisfied. 

In either a "bouncing" or oscillating solution where 
f: = + I, the inequalities which depend on C1 and Co 
alone are (3.18), 

1 > C1 ± Co 

(the condition for nand h to be real and bounded), 
(3.30), 

1 > ci - c~ 

(the condition that the density be a monotonically 
decreasing function of u at any T), and (3.34), 

co> 0, 

which is used in the strong form to ensure that the 
pressure is always positive in the interior of the 
material. Each of these inequalities defines a region 
of inadmissible values of Co and C1 in the(c1 , co)plane 
and the boundaries are given in Fig. 2. The only 
permissible region lies within GFID. That this region 
of possible acceptable values of Co and C1 is divided 
into possible bounces and possible oscillations by the 
line OR will be demonstrated. 

The inequalities that Co, c, and M/ D must satisfy and 
which are common to both "bouncing" and oscillating 

B 

Co 

D 

E R 
G 

FIG. 2. Solution to the co, c, inequalities for the "bouncing" 
solutions and oscillating solutions. AB is the line I = c, - co; 
CD is the line I = c, + co; EFG and HIJ are the branches of the 
hyperbola I = c~ - c~; OR is the line c, = -Co' 

solutions are: (3.31), 

M/D> c2n5 
_ 0 b 

(which ensures that the boundary density is non
negative for all values of T), (3.43), 

B2:2: AC 

(which, with the definitions (3.39), ensures that the 
roots of (dG/dT)2 are real and distinct if B2 > AC), 
and (3.44) and (3.45), 

tanh thb < [B - (B2 - AC)!]jA, 

[B - (B2 - AC)!]/A < 1 

(which together imply that G_ is positive and finite). 
If the inequality (3.46). 

[B + (B2 - AC)!]/A < 1, 

is satisfied, then G+ is finite and the solution is oscil
latory while, if this inequality is not satisfied, there is 
no finite second root of (dG/dT)2, the solution G is 
therefore unbounded, and lim G = 00 as T -- ± 00. 

The solution is a "bounce" when G is unbounded at 
T = ± 00 because the continuous function r(u, T) 
satisfies both lim r(u, T) = 00, as T -- ± 00, and 
r (u, T ;If 00) ;If OO,and hence the material was spread 
out over all space in the distant past, contracted to a 
finite size, and then will expand outward to occupy 
all space in the distant future. If an oscillation occurs, 
then Eq. (3.46) implies that 

2B < A + C, 

which, by means of Eq. (3.39), becomes 

(hu + nu/n)~ < 1. 

Because h" and n,,/n are positive by inequalities (3.34) 
and (3.30), respectively, this inequality becomes 

(h" + n,,/nh < 1, 

and, with the aid of equations (3.23) for (hu)b and 
(3.20) for (nu/n)b' this becomes 

2co + 1 + cg - ci < (1 - C1)2 - c~, 

and thus 

0< (c1 + co)(-1 + C1 - co). (4.1) 

If the solution "bounces," then (4.1) does not hold 
and so the inequality (4.1) divides the (Cl' co) plane 
into regions of points for which either "bounces" or 
oscillations, but not both, may occur. These regions 
and their boundaries are illustrated in Fig. 3. All the 
boundary points do not satisfy (3.46) and they are 
therefore "bounce" possibilities. The boundary line 
C1 = -Co thus divides the region of points which 
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A 

c 

Possible Oscillations 

c, 

-1 

Possible Oscillations 

Possible IlSounces
ll 

1 Co 

B 

FIG. 3. Solution of the inequality (3.46). AB is the line c, = -co 
and CD is the line Cl - Co = 1. 

satisfy inequalities (3.18), (3.30), and (3.34) illustrated 
in Fig. 2 into "bounce" possibilities which include 
Co = -C1 (region ROID), and oscillation possibilities 
(region GFOR). 

A set of "bouncing" solutions will now be con
structed. In this IE = + 1 solution, the values of Co and 
C1 are given by 

(4.2) 

Values of MID which satisfy inequalities (3.31) and 
(3.43)-(3.45) but not (3.46) will be found. Equations 
(4.2) and (3.19) give, at the boundary u = 1, 

while Eq. (3.20) gives 

(n,,jnh = t· 
Equation (3.22) for h yields 

hb = tin 2, 

and Eq. (3.23) for hu becomes 

(huh = t. 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

Equation (4.5) may be used to evaluate tanh thb as 

tanh thb = (~2 - 1)/(~2 + 1). (4.7) 

Equations (4.3), (4.4), and (4.6) may be used to 
evaluate A, B, and C defined by Eq. (3.39) which 
thereby become 

M 1 
A=---

D 4' 
1 

B =-, 
4 

3 M 
C=---. 

4 D 
(4.8) 

Inequality (3.31) becomes 

MID ~ t, 
and inequality (3.43) becomes 

(~r ~ (; -~) (~ -~) 

(4.9) 

= [(; -D +~J[~- (~ -Dl 
which is always true. Inequality (3.45) with the aid of 
(4.8) becomes 

t - [W 2 
- (MI D - t)(1 - MI D)]! < 1 

MID - t ' 
but because the bracketed term is (M/ D - t)2 the 
inequality reduces to 

M/D > t. (4.10) 

Inequality (3.44) with the aid of Eqs. (4.7) and (4.8) 
becomes 

J2-1 i-M/D 
/ < , 

-v2+1 MID-! 
and thus 

MID < t + J2/8. (4.11) 

Inequalities (4.9)-(4.11) are satisfied if 

t < M/ D < t + /i/8. (4.12) 

It remains to show that inequality (3.46) does not 
hold so that G is unbounded and a "bounce" occurs. 
This is true because [B2 + (B2 - AC)i]/A = 1. This 
completes the demonstration that "bounce" solutions 
having all the properties cited at the end of the last 
section do exist. 

The fact that oscillating solutions exist will now be 
demonstrated. In Fig. 2 it may be seen that the point 
(co, Cl) for the previous bounce solution lies on the 
line separating the possible "bounces" from the 
possible oscillations. Thus, the values 

Co = t - b, Cl = -t, (4.13) 

where b is chosen so that 

1» b > 0, (4.14) 

are in the possible oscillation region of Fig. 2. More
over, (4.12) gives a finite range of values of MID such 
that inequalities (3.31) and (3.43)-(3.45) are satisfied. 
All expressions resulting in these inequalities are 
bounded and continuous for values of Co and Cl in the 
vicinity of Co = t, C1 = -to Therefore, there must also 
be a finite set of values of MID satisfying (3.31) and 
(3.43)-(3.45) for Co and Cl given by (4.13). The new 
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region differs from the one given by (4.12) in that the 
endpoints of the new region are displaced from the end
points of the old region by amounts proportional to (y. 

The endpoints of the new region have been calculated 
to first order in 15, but these results are not presented 
here. This completes the demonstration that both 
oscillating and "bouncing" cases occur in McVittie's 
class of nonuniform-density SDG solutions and that 
they are solutions in which the pressure and density 
are bounded positive functions which are monotoni
cally decreasing in u. Furthermore, in these solutions 
g44 and gu are always positive while r vanishes only 
at the origin. 

APPENDIX 

In this appendix the functions ii and It as defined in 
(2.23) for McVittie's case (i) are found. For the special 
case in which Eq. (2.23) holds, r is given by Eq. (2.24) 
when a approaches zero and thus 

r = Dii(h + G)2. 

If the transformation (2.23) is applied to Eq. (3.9), the 
conditions that '1, 15'2, and '3 vanish as 15 approaches 
zero give rise to the three equations 

iiuu _ 2ii~ + iiu + l = 0, 
ii ii2 uii u2 

iihuu - 2iiuhu + iih,,/u = 0, 

1fJ = - DIt!iiu 2
• 

(Al) 

CA2) 

(A3) 

The solution of Eq. (AI) may be obtained from 
the solution of (3.10) because these two equations 
differ only in that the latter contains a - (hu)2 term. 
Because of the first member of Eg. (3.23) this term 
gives rise to the cg term in Eq. (3.19). The solution of 
equation (AI) thus results when the cg term of Eq. 
(3.19) is' omitted. Hence 

(A4) 

When Eq. (A4) is substituted into the first term of 
Eq. (3.23), the result may be integrated to give 

(AS) 

where, as before, in the derivation of h, an additive 
constant of integration has been equated to zero. 
Clearly both 11 and It are bounded monotonic functions 
if and only if 

(A6) 

Equation (3.12) with the aid of the first term of Eq. 
(3.23) becomes 

1 G. C. McVittie, Ann. Inst. Henri Poincare 6, 1 (1967). 
2 I. H. Thompson and G. J. Whitrow, Monthly Notices Roy. 

Astron. Soc. 136, 207 (1967). 
3 M. E. Cahill and G. C. McVittie, J. Math. Phys. 11, 1382 (1970). 
4 A. H. Taub, Ann. Inst. Henri Poincare 9,153 (1968). 
5 H. Nariai, Prol\r. Theoret. Phys. (Kyoto) 38,740 (\967). 
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With the aid of a Coulomb "free propagator" U~ ± )(t) constructed from the asymptotic form of the 
conventional time-independent solution to the scattering problem in a pure Coulomb field, Meller 
wave operators are shown to exist for general Coulomb-like (Coulomb + short-range) potentials. It is 
emphasized that when scattering occurs in such long-range fields, one should distinguish three classes of 
states: the prepared and detected states, the scattering states, and certain asymptotic states which are 
peculiar to long-range potentials. The existence of the third class as a class distinct from the first suggests a 
connection between U~±)(t) and the quantum theory of measurements. 

I. INTRODUCTION 

The time-dependent theory of potential scattering, 
first formulated in a mathematically satisfactory form 
by Jauch,1.2 has been the subject of considerable study 
during the past decade. A review of this work em
phasizing the mathematical problems can be found in 
a recent book by Putnam.3 Following M0ller4 and 
Cook,S Jauch defines a single-channel scattering sys
tem as one whose essential property is that one can 
associate with the given scattering system the two 
wave or M011er operators Q(±), which are defined by 
the relations 

limit in (3), one should identify <P(t) at large negative 
(positive) times with the beam of projectiles which one 
has prepared for the scattering (or which one will 
detect after the scattering). This identification of <p(t) 
with the prepared (detected) beam is consistent with 
the theoremlO that, if Ho = -llf2m, then at large 
times the probability of finding a projectile in any 
finite region of space when it is in the state <P(t) = 
e-iHot<P approaches zero as t -+ ± 00. Thus, <P(t) 
describes afreely moving system which at large enough 
times is far from any finite region, just where the 
projectile originates (or where it is detected) in an 

(1) idealization of a real scattering experiment. As a 
result of this identification of <P(t) with the prepared 
(detected) state, relation (3) asserts the existence of 
scattering states '¥W at t = 0 which arose from (-) 
[will give rise to (+)] the freely moving prepared 
(detected) asymptotic state <P(t). 

t-+±oo 

Here H = Ho + V and Ho = -I1J2m (we take units 
with Ii = I) are the full and the free Hamiltonians 
respectively, and the limits are taken in the strong 
topology of linear operators on a Hilbert space. When 
these operators exist, they can be applied to an 
arbitrary6-9 wave packet or state <P in the space of 
square-integrable functions U(£3) to yield 

According to (2), one may define the wave operator 
Q(±) as that operator which converts the prepared 
(detected) state into the corresponding scattering state. 
Useful sufficient conditions5•8•9 for the existence of 

'¥W = Q(±)<p. (2) QW are that VCr) be either (I) square integrable, or 
(2) locally square integrable and O(r-P), fJ > 1, as 
r -+ 00. Such potentials will be called short-range 
potentials. 

The significance of the states '¥W and <P can be ob
tained by combining (1) and (2), which imply that 

Ile-iHt'¥(±) - e-iHot<P11 -+ 0, as t -+ ± 00. (3) 

Thus, '¥(±) can be interpreted as the scattering state 

These conditions clearly exclude the Coulomb 
potential (I./r. In fact, it can be shownll that there is no 
wave operator which satisfies (1), and consequently 
(3), when the Coulomb potential is involved. This 
conclusion is reasonable if it is recalled, from the 

at time t = 0, which at long times in the past (-) conventional time-independent scattering theory, that 
[future (+)] becomes indistinguishable from the state the scattering state corresponding to a pure Coulomb 
<P(t) = e-iHot<P. The latter state is developing in time interaction is asymptotic (in space) not to a plane 
like a conventional free system for which V = 0. wave, but to a distorted plane wave. [See Eq. (14) 
Therefore, it seems clear that, because of the zero below.] Thus, in the distant past, for example, one 

1402 
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must expect the scattering state to approximate an 
asymptotic state which is not identical with that of the 
beam prepared (and monitored) in the absence of the 
scatterer. And it is the state of the latter beam at t = 0, 
say, which contains the initial data for the scattering. 
Thus, for scattering carried out in Coulomb or 
Coulomb-like (Coulomb + short-range potential) 
fields one becomes involved with three statesl2 : 

(a) q,o(t), the state of the projectile prepared in the 
absence of the scatterer (we shall refer to this state as 
the prepared state); 

(b) ,¥H(t), the resulting scattering state; 
(c) q,(t), the asymptotic state to which'¥(-)(t) con

verges as t --+ - 00, and which is indistinguishable 
from q,o(t) in the short-range case. 

The scattering problem now consists in relating 
,¥H (and also '1'(+» with a given q,o. It can also be 
formulated by the relations (I) and (3) in which the 
conventional free propagator e-iHot is replaced by a 
more general "free" propagator, one which either 
converts q,o into q, and propagates the asymptotic 
state in a suitable manner, or propagates q,o as a 
conventional free particle and converts it at any time 
t into a suitable asymptotic state. In either case, we 
must replace Eqs. (1)-(3) with the relations 

Q(±) = lim eiHtU(t), (4) 
t~±oo 

'¥(±) = O(±)q,o, (5) 

lim lle-iHt'¥(±) - U(t)q,oll = 0, (6) 
t ..... ±oo 

where U(t) is a suitable generalized "free" propagator. 
These relations become identical with the earlier ones 
if, for the short-range potentials, we define U(t) = 
e-iHot. 

In the more general case, when we are concerned 
with the Coulomb or Coulomb-like potentials, the 
relations (4)-(6) pose an ambiguous problem: Given 
q,o, an experimentally determined prepared state, and 
the full Hamiltonian H for the interacting system, 
find,¥<±> and U(t) satisfying (6). Clearly, the problem 
is indeterminate, since any U(t) for which the limits 
(4) exist determines some '¥(±), while any'¥(±) deter
mines the asymptotic behavior of U(t). Because of this 
ambiguity, we are no longer guaranteed, as we are in 
the short-range case, that a solution of (6) will yield 
the scattering states appropriate to the prepared 
state q,o' 

In this paper, we present a solution to the Coulomb 
problem assuming that the relation between q,o and 
'¥<±> is known. We then prove that a particular U(t), 
whose structure is physically plausible, satisfies (6) 

which then gives rise to the wave operator and the 
relation (5). 

The assumed relation between q,o and '¥(±) is a 
generalization of a result proved by Ikebe13 for a 
special class of very smooth short-range potentials, in 
particular, those potentials which vanish at infinity at 
least as fast as ,-2-h, h > 0. This result asserts that, 
if f E V and if 1 is the Fourier transform off, then 

(0(±1)(r) = l.i.m. (h)-i f dk1j/±)(k, r)l(k), (7) 

where the lp<±>(k, r) are the conventional stationary 
scattering states which satisfy the spatial asymptotic 
condition 

lpH(k, r) ~ eik•r + g({}, lp)eikr/r, (8) 

lp(+)(k, r) = lpH*( -k, r) (8') 

and the Q(+) are the short-range wave operators 
defined in (1). Following this structure, which seems 
physically plausible, we shall assume for the pure 
Coulomb case that, if l(k) E V and is the Fourier 
transform of the prepared state q,Of' i.e., if 

then 

q,oir) = (27T)-tt f dkeik'1(k), (9) 

'¥~7)(r) = C27T)-i f dklp~;l;)(k, r)lCk) (to) 

are the physically associated scattering states, where 

lp~-)(k, r) = f(1 + ;},lk)e-rr )J2keik'r 

X IFI (- ;}.Ikll li(kr - k . r», 
lp~+)(k, r) = 1p~)*( - k, r) (11) 

are the conventional stationary Coulomb14 scattering 
states. Here A = m::/., where m is the mass; VCr) = IXlr 
is the Coulomb potential energy; and IF1 is Kummer's 
form of the confluent hypergeometric function. There
fore, the states that play the role of asymptotic states 
may be expected to be constructed from the asymp
totic forms of 1p~±)(k, r). Thus, associated with the 
states in (9) and (10), we define the asymptotic states 

where 

cP~±)(k, r) = exp i[k. r =F (Alk) In (kr ± k· r)] (13) 

and 

lp~-)(k, r) ~ cP~-)(k, r) 

+ fcC-&){exp i[kr - (Ajk) In 2krJ}/r. (14) 
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Referring to (9) and (10), we note that, since the 
Fourier and Coulomb transforms are isometric on 
V, we have,ll forfE V, 

II<PoIII = Ilfll, 

11'f~~)11 = Ilfll. 

(lSa) 

(1Sb) 

On the other hand, for f E .At, c L2, where .At, is a 
space whose elements are dense in V and is defined in 
the next section, it can be shown that, as a result of 
several judicious integrations by parts, 

(16) 

[We conjecture that the norm in (16) is, in fact, equal 
to Ilfll withfE V. We shall discuss this point further 
in Sec. III.] 

With these definitions, we shall prove the following 
in the next section: 

Theorem 1,' The operators n~±) which map the pre
pared (or detected) state <PO! onto the Coulomb 
scattering states 'f~i), i.e., the operators n~±) defined 
by the relation 

n~±)<pO! = 'f~), fE 13(E3), (17) 

are the unique continuous extensions of the operators 
o.~±). The latter operators, in turn, are defined on .At, 

by the following relations. If 

H = -6.J2m + (J./r, (J. = const, (18) 

and the "free Coulomb propagator" U~±)(t) is defined 
for fE.At, by 

U~±>Ct)<l>otCr) = (2rr)-! f dk4>~±\k, r)e-ik't/2ml(k), (19) 

then 
o.~±) = lim eiHtU~±)(t), on.At" (20) 

t--+±cc 
and 

lim Ile-iHt'Y~7) - U~±)(t)<l>otll = 0, f E.;I(,. (21) 
t .... ±oo 

Recently, motivated by considerations other than 
ours, DolIard11.15 proved (21) for fE V using the 
following "free" propagator in place of our U~ ±) (t): 

(22) 
where 

HD(t) = - ~ t + E(t)me1e21n (_ 2 Itl6.) 
2m (_6.)t m 

and E(t) = ± 1 when t ~ O. Thus Dollard has proven 
the existence of wave operators 

Q~) = lims ei'HtU D(t), (23) 
t-...±oo 

which satisfy (17). Assuming the validity of Theorem 
1, we have the result 

n(±) = n(±) 
D .l.~c· (24) 

In addition, he has proven the existence of the limit in 
(23) when the potential in the full Hamiltonian is 
Coulomb-like. We have occasion to use both of these 
results to facilitate the proof of Theorem 1 and its 
extension to Coulomb-like potentials. 

II. PROOF OF THEOREM 1 

The proof of Theorem 1 will be carried out with the 
aid of several lemmas. In order to be able to integrate 
by parts, and to be able to use the asymptotic expan
sion of the confluent hypergeometric functions which 
arise in the Coulomb problem, it is convenient to 
introduce a linear space of testing functions .;I(, 
defined in the following way: fCr) E .At,' (n) if its 
Fourier transform l(k) satisfies the following con
ditionsAin momentum (k) space. (See Fig. 1.) 

(a) f(k) = 0 inside some sphere of radius p > 0 
with center at the origin. 

(b) l(k) = 0 outside a region :R~ bounded by an 
infinitely long right circular cone, whose apex is at the 
origin, and whose generators make an angle 0' ::;; 
1;11' - 0, 0 > 0, with the central axis of the cone, 
whose direction ii is arbitrary. 

\ ~(_) I 2-,--
I 

~~: / 
\ : I / 

~CR2~/ 
\~--~{.- @' ~ 

I 

\ ' 
\\ ~ j/ 

.".)r,\ I I / 
@ s"6 \ '~I/ 

\~ ~// 
/ ~ 1iJ'... 1.: -',I \ _---
t P--- - -j -

\. / 
_/ 

CQ, 

FIG. 1. Decomposition of the rand k spaces. 
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(c) J(k) has continuous derivatives of at least third 
order in the components kl' k2' k3 of k. 

(d) J(k) and all its derivatives to third order are 
functions of rapid decrease,1s i.e., functions which 
vanish when k -4- 00 faster than any positive power of 
Ilk, i.e., 

(k(n J(k) is bounded 
I 

aml+m2+m3 I 
ak'J'lak~2ak;n3 

for arbitrary integers n and for integers rnl, rn2 , and 
rn3 such that ° ~ nIl + m2 + rn3 ~ 3. We now define 
.At, as the space of functions which are finite sums of 
functions in the spaces {.At,' (n)}, each space defined for 
an arbitrary direction n, i.e., .At, is the span of the 
union of the family {.At,'(n)}. Using the properties of 
the Schwartz spacelS S of testing functions, in partic
ular, that S is dense in L 2, it can be shown that our 
space offunctions .At, is not empty and is, in fact, dense 
in V. Using a standard argument from the theory of 
Hilbert space, we are able to assert the existence of an 
operator on the whole of the Hilbert space Je of 
L2~functions as the unique continuous extension of an 
operator shown to exist and to be bounded on .At,. 

The strategy to be used in proving Theorem I con
sists in decomposing configuration space into three 
disjoint regions :Rl±), i = 1,2,3, and proving that, for 
arbitrary <Dol E .At,' (n), 

lim 11~:±)[e-iHt'Y~:) - U~±)(t)cI>of]11 = 0, (25) 
t-4±OO 

i = 1,2,3, where ~l±) is a projection into region 
:Rl ±). The region :Rl ±) = :Rl is bounded by a sphere of 
radius R centered at the origin of configuration space. 
(Since the configuration and momentum spaces are 
isomorphic, we consider them superimposed in Fig. 
1.) The remaining two regions depend on the special 
subspace .At,' (n) being considered, in particular, on the 
values of 0 and n describing the geometry of .At,' (n). 
Thus, for a given .At,'(n), :R~-) is bounded by:Rl and a 
cone which is coaxial with the one defining :R.; and 
whose generators make an angle 0 = 0' + b with the 
common axis n. Region :J{~-) is the complement of 
:111 u :Jl~-). The decomposition just described will be 
useful when the limit t -4- - 00 is being considered. 
On the other hand, when the limit t -4- + 00 is being 
considered, it will be convenient to decompose con
figuration space into the regions :R;+) , i = 1,2,3, 
which are defined as the reflections in the origin of the 
corresponding regions :R; -). 

Clearly, (25) is equivalent to (21) when (21) is 
restricted to the elements of .At,' (n) c .At,. One can 
immediately remove this restriction from (21) by 
recaIIing that .At, consists of finite linear combinations 
of the functions in {.AL'(n)}. 

We now prove several lemmas on the evanescence 
of the prepared, the asymptotic, and the scattered 
states in a Coulomb field. 

Lemma I: ForfE V and for ;J~l == ~i-) == ~i+), 

lim II~le-iHol<Dofll = 0, (26a) 
t-+±oo 

lim II;J\e-ilIt'Y~7JII = 0, (26b) 
t-+±oo 

and, for f E .At" 

lim 11~1 U~±)(t)<Dofll = 0. (26c) 
t-±oo 

Proof" Since R is arbitrary but finite, Eqs. (26a) and 
(26b) state that a particle moving as a free particle 
(Ho = -/'}..f2rn) or as a particle scattered in a Coulomb 
field eventually disappears from any finite region of 
space. In addition, (26c) makes a similar statement 
about a particle whose propagator is given by U~,U(t) 
and whose state is in .At,. The result (26a) has been 
proved elsewhere,lo and is included in the lemma for 
the sake of completeness. 

The proof of (26b) can most readily be carried out 
with the aid of two results from Ref. 15, where it is 
shown that, forfE V, 

t~~oo II U D(t)<Dof(r) - (~)\c(r, t)J(~r) II = 0, (27a) 

lim Ile-ilIt'Y~~) - U D(t)<DOfll = 0, (27b) 
t-±oo 

where Xc is a function of absolute value I and U D(t) is 
the unitary operator defined in (22). By combining 
these two results, we obtain the relation 

t~~oo II ~[e-ilIt'Y~)(r) - (~)\c(r, t)J(~r) ] II = 0, 

(28) 

where ~ is an arbitrary projection into a measurable 
region of configuration space. With ~ = ~ 1 and f E .AL, 
the result (28) is equivalent to (26b) , since one can 
always choose It I large enough so that the argument of 
1 in (28) is outside the support of 1 

To complete the proof of this part of the lemma, we 
must show that (26b) holds for arbitrary f E L2. But 
this follows immediately from the fact that .At, is dense 
in V, and from the bounded ness of the operators ~ 1 

and e-ilIt . For, given any f E V and E > 0, because 
.At, is dense in V, and because of (15), there is agE .AL 
such that II'Y~~) - 'Y~;)II < E. Furthermore, because 
g E.AL, there is a T such that, for It I > T, 

II At'Y(;) II < E , 



                                                                                                                                    

1406 D. MULHERIN AND I. I. ZINNES 

where At = :J\e-iIlt and IIAtl1 :::;; 1. Therefore, 

IIAe'Y~7)11 = IIAt('¥~7) - '¥~;» + At'¥~;)11 
< II '¥(±) - '¥(±) II + II A '¥e±) II < 2€. - Cf cg t cg _ 

QED 

The proof of (26c) follows from an estimate of the 
integral in (19) withfE ..At/(n). Integrating by parts17 

with respect to k = Ikl and making use of the support 
properties of the functions in .;1(,' (n) lead one quite 
readily to the estimate18 that, for f E .;1(,' (n) and, there
fore, also for f E .;1(" 

IU~±)(t)<1>of(r)1 :::;; (ar + blln r I+c)/Itl, 

where a, b, and c are constants independent of t. Inte
gration of the square of the rhs over :ill in configura
tion space leads immediately to (26c). 

We now prove an extension of what may be called 
the local evanescence theorems of Lemma I, to dis
tinguish them from the following long-range evanes
cence theorems. 

Lemma 2: ForfE .;I(,'(n), 

lim 11:1'~±)e-iHtqrctll = 0, (29a) 
t-±oo 

lim 11:1'~±) U~)( t)<1>Otll = O. (29b) 
t--+±(() 

Proof: The proof of (29a) follows from (28) with 
:1' = :1'~±), since, when r E :/{~±), t :( 0, and f E .;1(,' (n), 
mr/t, the argument of], falls outside the support ofl 

The proof of (29b) is straightforward, but tedious, 
and is, therefore, only outlined here.18 As before, 
choose f E .;1(,' (n), insert its transform] in (19), and 
integrate twice by parts with respect to k. Using the 
support properties of] and its rapid decrease at in
finity, it is not difficult to obtain the following estimate: 

(±) (±)( m () a In r + b(ln r)2 c Itlln r 
1:1' U t)'V r I < + ----'--'---

2 c Of - (r ± 4pt)2 (r ± 4pt)3 ' 

(30) 

where a, b, and c are constants independent of t and 
r. Integration of the square of the rhs of (30) over 
:R~±) [0« R S r S 00] yields an expression which is 
O(jtl-i ) as Itl-->- co. QED 

In the final lemma, we consider regions :H~±) in 
configuration space. With r E :I{~ ±) and f E .;1(,' (n) so 
that the support of the test function j(k) E :I\~, the 
argument kr ± k . r of the Kummer function appear
ing in the Coulomb scattering state in (11) cannot 
vanish. In fact, the argument of the Kummer function 
can be made arbitrarily large by choosing the value R 
of :1\1 arbitrarily large. This permits use of the asymp-

totic expansion of the Kummer function. Since ,p~±) in 
(13) differs from the asymptotic form of 1p~±) in (14) 
by the conventional scattered wave, it is reasonable to 
expect that in :R~ ±) the scattering states would approach 
the asymptotic states as t -->- ± co. In fact, we can 
prove 

Lemma 3: ForfE .;I(,'(n), 

lim 11:1'~±)[e-iHt'¥~7) - U~±)(t)<1>of]11 = O. (31) 
t--+±oo 

We first find a suitable estimate of 

l(±)(r, t) = e-iHt'¥~7) - U~±)(t)<1>otCr) (32) 

whose norm, taken over :R~±), is required in (31). For 
the proof, we exploit the properties of .;1(,' (n) and 
:R~ ±). The Kummer function appearing in the Coulomb 
wavefunction 1p~±) [see Eq. (11)] is a function of 
kr(l ± cos fJ) where fJ is the angle made by k with r, 
which may be taken as the z axis of a spherical coordi
nate system. The definitions of .;1(,' (n) and :R~±) imply 
that, for r E :R~±) and k E :R~, we have 

o < (I - cos 15) :::;; (I ± cos fJ) :::;; 2 

(see Fig. 1). Therefore, for k> p [in .;I(,'(n), 1 = 0 
for k < p] we can choose r large enough and make 
kr( I ± cos fJ) as large as desired. This value of r 
determines the radius of the spherical region :Rl , and 
also makes it possible to use the asymptotic represen
tation of the Kummer function19.2o : 

lFl (al y I =Tis) 

= [f(y)jr(y - a)]e'F~rri[(=Tis)-~ + ro(al y I =Tis)] 

+ [r(y)/f(a)]e'F(a-y)ui 

x e'fiS[(±is)-(Y-~) + ro (y - IXI y I±is)], (33) 

where s is real and positive, and 

Iro(al y I =T is)1 
< 11 + a - y I e'fhIm(~)ehIIm(Y-~)lf(1 + Re(a». 
- f(a) s[1+Hc(~)l 

Using this expression for the Kummer function 
appearing in (11) and carrying out several integrations 
by parts,18 we obtain the following estimate for [<±) in 
(32). For r E :R~±), 

II (±)( )1 a l + a2 1n r ~ r, t < +, 
r(r ± 2pt) r21tl 

(34) 

where the a's are constants independent of rand t. 
From (34), it follows that 

lim r II(±)(r, tW dr = O. QED 
t .... ±oo Jre:lt 3 t±) 
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We may now combine Lemmas I, 2, and 3 and 
prove Theorem I for f E .At,' (n), and thus, for f E .At,. 
For IE .At,'(n) we have 

Ile-iHt'Y~7) - V~±)(t)<I>otll 

= Ilit !f:±)(e-iHt'Y~y) - U~±)(t)<I>of) II 
2 2 

~ I 11:r!±)e-iHt'Y~y)11 + ! 1I:r:±)V~±)(t)<I>ofll 
i=1 i=1 

+ 11:r~±) j(±)(t)II -+ 0, when t -+ ± 00, (35) 

according to the lemmas. This proves the existence of 
the wave operator Q~±), as defined in (20), on the 
elements of .At, , and supports the identification implied 
in (21) of 'Y~y) as the scattering states associated with 
the prepared (or detected) state <I>of. Further, since 
Q~±) and Q}j=) both satisfy (17) forelementsfE.At" we 
have the relation (24) valid in .At,. 

To complete the proof of Theorem 1, we should 
show that Q~±) is a bounded operator on .At, and, 
therefore, has a unique continuous extension onto Je. 
The quickest way to show this is to exploit the equality 
(24) of Qb-±:) and Q~ ±) on .At,. It is clear from (22) that 
VD(t) is unitary and that, since the domain of Qb±) is 
the entire Hilbert space, IIQb±)11 = 1. Therefore, Q~±) 
is also bounded on .At, and has a unique extension 
Q~±) onto the whole of Je with unit norm. This proves 
(24) and completes the proof of Theorem 1. 

We can now exploit the relation (24) to prove an 
extension of Theorem 1. 

Theorem 2: The operators Q'(±) exist as the unique 
continuous extension onto the whole of V of Q'(±), 
which is defined on .At, by the relation 

Q'(±) = lim eiHtU~)(t), (36) 
t-+±oo 

where H = -11/2m + V, V is Coulomb-like, and 
where U!±)(t) is defined in (19), just as in the pure 
Coulomb case. In addition, Q'(±) are isometries. 

Proof: To carry out the proof, we first note that 

lims U ~(t)U~±)(t) = 1 on.At,. (37) 
t--+±oo 

This follows from (24), (20), and (23), since, for 
!E.At, and V = IX/r, 

II [1 - V ~(t)U~±)(t)]!11 
= II [V D(t) - V~±)(t)JfII 
= IleiHtV D(t)! - 0.<;;1- eiHtU~±)(t)! + o.~±111 
~ II eiHtV D(t)! - 0.<;;111 

+ IleiHtV!±)(t)! - o.!±111 -+ 0 when t -+ ± 00. 

The remainder of the proof rests on the theorem 
proved by Dollardll that Q5~1:) defined in (23) for pure 
Coulomb potentials also exists for Coulomb-like 
potentials and is an isometry on LZ. Applying this 
theorem and (37) to 

eiJltU~±)(t) = eiHtV D(t)U ~(t)U~±)(t) 
-+ Q~) on.At, when t -+ ± 00, 

we obtain the result that (.!'(±) exists on.At" and, on.At" 
we have 

(38) 

Therefore, as before, (.!'(±) has a unique continuous 
extension onto all of V. QED 

III. DISCUSSION 

Theorem 2 guarantees the existence of a wave 
operator, constructed from the pure Coulomb "free 
propagator" U~±)(t), for a wide class of potentials. 
When the charge vanishes [J. = 0 in (13)], U~±)(t) in 
(19) becomes just the conventional free propagator 
exp (-iHot), from which the wave operator o.w 
appropriate to short-range potentials is constructed, 
as can be seen in (I). Therefore, since Q'<±> = Q(±) for 
short-range potentials, we may use the simpler nota
tion o.<±> for the wave operator in all cases considered 
in this paper, and we may define the wave operator by 
(20), with H containing any Coulomb-like potential. 

Theorem 2 is an extension of that part of Theorem 
1 which relates to the existence of a wave operator. 
However, unlike Theorem I, Theorem 2 does not 
relate the scattering state 'Y(±) = o.(±)<I>o to the con
ventional time-independent scattering states 1p(±l in the 
manner shown in Eqs. (9) and (10). However, this 
relationship is guaranteed by Theorem I for the pure 
Coulomb case, and by Ikebe's work13 for those cases 
involving a special class of short-range potentials. 
These results strongly suggest the validity of the con
jecture that this relation is true in general. Moreover, 
the general applicability of U~± let) as the appropriate 
"free" propagator, at least for scattering involving 
Coulomb-like potentials, suggests that the (spatially 
asymptotic) boundary condition required to define the 
conventional steady-state solution is just that employed 
in the pure Coulomb problem. 

Finally, in addition to the evanescence properties 
of the various states considered in the first two lemmas, 
there is another interesting result which pertains to the 
theory of measurements in quantum mechanics. The 
structure of the "free" propagator U~±)(t) exhibited in 
(19), together with the comments in the introduction 
concerning the relation between the prepared, scatter
ing,and asymptotic states, suggests that it may be 
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useful to look upon U~±)(t) as a product of two 
operators: 

(39) 

where Ut = e-iHot is the free propagator for short
range potentials; K(±)().) is defined implicitly by (39) 
and (19); and ). is proportional to the charge. [See 
(13).] Since K(±)(O) = 1, we see that, for)' = 0, 
U~±)(t) becomes just the short-range propagator of the 
prepared as well as the asymptotic states. However, in 
the presence of Coulomb-like potentials, ). "t. O. The 
operator K(±)()') is no longer trivial, and converts the 
prepared state 

<Do/r, t) = (27T)-~ f dkeik.r-ik2tI2m](k) 

into the asymptotic states 

<Dc/r, t) = (27T)-i f dk1>~±)(k, r)e-ik2tI2"j(k). 

Thus, K(±)(A) describes the effect of the scatterer on the 
source and sink of the projectile. 

Whether one can give the asymptotic states pro
duced by K(±)(A) objective significance depends to 
some extent on the validity of the conjecture which we 
made in connection with (16). But in any case, K(±)(A) 
effectively alters the initial and final conditions from 
the free-field conditions to those appropriate for long
range interactions. 
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the Department of Physics of Fordham University in partial fulfill
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We give derivations of integral equations satisfied by the off-shell extension of the scattering amplitude 
(in nonrelativistic potential scattering) defined by the Lippmann-Schwinger equation. The input informa
tion in these equations consists of phase shifts. The derivation is based on the work of R. G. Newton on 
the inverse scattering problem in potential scattering. 

We are concerned in this paper with the determina
tion of 2-body T-matrix elements corresponding 
to nonrelativistic scattering by a local, central poten
tial. In applications to the 3-body problem, for 
example, one needs to know the fully off-shell matrix 
element t(k', k; z), defined as the solution of the 
Lippmann-Schwinger equation 

t(k', k; z) = - ~ v(k' - k) 
47T 

- (2~)3 J v(k' - k")(k,,2 - z)-It(k", k; z) dk", (1) 

where v(k) = f VCr) exp (-ik. r) dr. If VCr) is known, 
then t(k', k; z) may be determined from (1) by inte
grating numerically [or by assuming a separable 
rather than a local form for the potential, in which 
case the solution of (1) becomes a straightforward 
algebraic problem]. We consider here the possibility 
of determining t(k', k; z) from knowledge of scattering 
phase shifts. 

It is known that t(k', k; z) is essentially determined 
once 

t(k', k) = lim t(k', k; k2 + i€) 
€-+O+ 

has, been found. 1 We prove that t(k', k) may be 
derived from a set of integral equations in which the 
input information consists of the scattering amplitude 
j(k, e) at energy k 2 rather than the potential. [j(k, e) 
is the on-shell matrix element t(k', k), k'2 = k 2, 
k • k' = k 2 cos e.] The derivation is based on Newton's 
solution of the inverse scattering problem at fixed 
energy,2-4 the relevant part of which we summarize 
briefly in Sec. 1. The following sections are devoted 
to the derivation of the required equations. 

1. THE INVERSE SCATTERING PROBLEM 

Our notation is essentially that of Newton.4 Let the 
fP!(k, r), 1= 0, 1,2, ... , satisfy the coupled linear 
equations 

00 

where 

! lXdY ul(x) = (!1TX) J!+!(x), L!l'(x) = --; uz(y)ul,(y) 
o Y 

and the numbers C1 , I = 0, 1, 2, ... , are arbitrary 
real coefficients. It can be shown that the functions 
fP/(k, r) satisfy equations of the form 

a2 
( 2 1(1 + 0) ar2 fP!(k, r) + k - VI(r) - /,2 fPl(k, r) = 0, 

with VI(r) a potential which can be determined from 
the coefficients C1• In fact, if 

00 

K(r, r') = I c!fP!(k, r)u1(kr'), (3) 
l=O 

then 

VI(r) = _ 2!!...(K(r, r»). (4) 
kr dr r 

Also from (2), fP!(k,O) = 0, 1= 0, 1,2, .... 
Suppose now that the C1 are determined from the 

condition that the fPl(k, r) have the asymptotic be
havior 

Cfil(k, r) ("oo"J A! sin (kr - t/1T + 01), 1= 0, 1,2, ... ; 

(5) 

then the corresponding potential VI (r) = V(r) has the 
property that the phase shifts arising from it have the 
given values CJ 1 • 

In order to determine the C!, one takes the limit 
r -+ 00 in (2), using 

Lll,(kr) -+ L'?l' = il'-I-IMll " l' ¥: 1, 

= 1Tj2(21 + 1), I' = I, 
where 

Mll' = 0, 1 - l' even, 

= [(1' - 1)(1' + I + 1)]-1, 1 - I' odd. 

Then (2) becomes 

A! sin (kr - !11T + 151) 

00 

fPtCk, r) = ul(kr) - I Lll.(kr)c1'fPl'(k, r), (2) = sin (kr - !17T) - I Ln,c1,A 1, sin (kr - tl'7T + 15/,), 
1'=0 ' 1'=0 

1409 
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From this identity one obtains 

2: MIt,a l , 
__ 7T __ + .:...1' __ _ 

2(21 + 1) a1 tan 01 

where al is obtained from 

~ Mll'a l, + 2: tan oIMII , tan ol,a l, = tan 01 , (6) 
I' 7' 

Because the matrix M = (Mil') does not have a 
unique inverse, Eq. (6) does not have a unique 
solution ai' / = 0, 1,2,···. In fact it possesses a 1-
parameter set of solutions, associated with the 

: existence of a vector v, which is annihilated by M. It 
follows that a I-parameter family of potentials 
will all give rise to the same phase shifts 01 at energy 
k 2• Sabatier3 has proved that if 01 = 0(1-3-<) as 
/---+ 00, for some € > 0, then exactly one of the phase 
equivalent potentials determined by this method 

: decreases as r ---+ CIJ faster than r-tt . This short-range 
. potential decreases as r ---+ CIJ faster than r-2+£ for 
every € > 0, and is presumably the only one of 
practical interest, since every other potential possesses 
an oscillatory tail of the form r-i cos (2kr - 7T/4). 

A class of phase-equivalent potentials larger than 
that found by Newton's procedure has been found by 
Sabatier.5 However, we shall consider here only the 
amplitude t(k', k) arising from the unique "short
range" potential described above. In fact, at two 

. points in the following derivation, we find it necessary 
to assume a stronger condition on the potential V(r) 
than the r-2+£ behavior, namely, we assume that 

100 

r W(r) I dr < 00. 

Since our aim is to derive equations which make no 
mention of the potential, it is unfortunate that we 
have to make this assumption, and it is likely that a 
more delicate analysis would show it to be unneces
sary. On the other hand, the condition is not very 
stringent and is satisfied provided that the potential 
is of constant sign for all sufficiently large r. To show 
this we observe that in this case S~ r \V(r) I dr con
verges provided S~ r V(r) dr converges. [That r V(r) is 
finite at r = ° has been proved by Sabatier.6

] But 

rVer) dr = - - - --' - dr f
oo 2 foo d (K(r r») 

o k 0 dr r 

= _ ~ lim (K(r, r») . 
kr-+oo r 

Sabatier shows3 that K(r, r)/r ---+ IX, a constant, as 
r ---+ 00, so the result follows. 

Finally, we shall need the following estimate of the 
asymptotic behavior of the product CIA I for the short
range potential, derived in Ref. 3 under the assump
tion 01 = 0(1-3-<): 

clA I = 41X/7T + O(l-t-£). 

2. PROPERTIES OF t(k', k) 

Let 1fJI(k, r) be the regular solution of 

(7) 

a2 
( 1(1+1)) or2 1fJI(k, r) + k

2 
- VCr) - r2 1fJI(k, r) = 0, 

(8) 
with the asymptotic behavior 

1fJl(k, r) r-..; ei~! sin (kr - il7T + 01), (9) 

In (8), V(r) is the short-range potential corresponding 
to the phase shifts 01 at energy k 2, where 01 = O(l-H) 
for some € > o. 

Then 
00 

t(k', k) = 2: (21 + 1)tl(k', k)PI(k • k' jkk'), (10) 
I~O 

where 

ttCk', k) = - _1 roo

ul(k'r)V(r)1fJI(k, r) dr. (11) 
kk' Jo . 

If we substitute for VCr )1fJI(k, r) from the differential 
equation (8), integrate by parts, and then use 

TI(k, r) = Ale-i~!1fJl(k, r) (12) 

[as is clear from (5) and (9)], we can express tl(k', k) 
in terms of Tl(k, r). Elimination of the wavefunctions 
Tl(k, r) between this relation and Eq. (2) leads to a 
set of coupled equations for the t I(k', k). This method, 
while straightforward in principle, seems to be rather 
more difficult to justify than the indirect approach 
which we shall adopt. 

Define 

0 11 ,(k, k', k") 

= 2100 

dr ul(kr)ul(k'r) .!!...(ul,(kr)UI'(k"r»). (13) 
o r dr r 

We prove in Appendix A that 

lim fOC) dk" ul,(k"r)011 ,(k, k', kIf) 
• -->0+ J 0 k"2 - k2 

- i€ 

= 7Tloo ds G1,(r, s)ul.(ks) ~(UI(kS)UI(k'S») (14) 
o s ds s 

and 

lim roo dk" ul,(k
lf

r)011'(k, k', kif) 
£-+0+ Jo k,,2 - k'2 - i€ 

= t7Tk(LII.(kr)u l(k'r) - jl-I'£,u:ul'(k'r». (15) 
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In (14), Gl(r, s) is the Green's function for Eq. (8), 
with boundary condition (9): 

1J!l(k, r) = ul(kr) + 1''' Gl(r, s)V(s)1J!l(k, s) ds. (16) 

We wish to evaluate 

p100 fl,(kl/, k)kI/011,(k, k', kl/) dkl/ 
o kl/2 - K2 

in the two cases K = k and K = k'. 
We use the usual prescription 

P«kI/2 _ K2)-1) = (k"2 _ K2 - iE)-l - irrb(k"2 - K2) 

(justified for our case in Appendix B) to obtain 

lim 100 tr(kl/, k)kI/0ll'(k, k', kl/) dkl/ 
.->0+ 0 klf2 - K2 - iE 

- irr tl,(K, k)0 11,(k, k', K). 
2 

The integral is 

_ ! lim [00 dkl/ 0 11,(k, k', kl/) 
k .->0+ Jo kl/ 2 - K2 - iE 

x loodrUr (kl/r)V(r)1J!r(k, r). 

The integrand is bounded for all k", r and less in 
modulus than C Ik"2 - K2 - iEI-1 r-J, so the integral 
is absolutely convergent. The order of integration 
may be changed to give 

1 J'oo - - lim drV(r)1J!r(k, r) 
k .->0+ 0 

X roo dkl/ 0 11,(k, k', kl/)ul'(k"r) . 
Jo kl/ 2 - K2 - iE 

The integral over kIf can be found explicitly (Appendix 
A), and this makes it easy to justify taking the limH-I-o 
inside the integration over r (Appendix B). In the two 
cases K = k and K = k', respectively, we get 

= -ii7Ttl'(k, k)0ll'(k, k', k) 

_ ::!: [OOdrV(r)1J!I,(k, r) roods Gl'(r, s)ul,(ks) 
k Jo Jo s 

x !!... (UI(kS)UI(k'S») , K = k, (17) 
ds S 

= -ii7Ttl'(k', k)011,(k, k', k') - '!!.. roo drV(r)1J!I'(k, r) 
2 Jo 

x [Lll'(kr)ulk'r) - jl-ILC;:,ul'(k'r)], K = k'. 

(18) 

Again, the integral on the right of (17) is absolutely 
convergent, since the integrand is bounded and less 
in modulus than Cs-2r-!, so the order of integration 
may be changed. Using (16) and the well-known 
result 

(k k) k-l io,' . l: tl " = e SIn Ul' , 

we find 

p roo trW', k)kI/0ll'(k, k', kl/) dkl/ 
Jo kl/ 2 _ k2 

irr iot" ~ 0 (k k' k) = - - e SIn Ul' "Il' , , 
2k 

rr iOC) ul,(ks) 
- - ds -- (1J!l,(k, s) - ul'(ks» 

k 0 s 

x ~ (UI(kS)UtCk'S») 
ds s 

= - !!.... eio ,' cos bI'011,(k, k', k) 
2k 

_ ::!: 100 
ds UI'(kS)1J!I,(k, s) !!..-(utCkS)UtCk'S»). (19) 

k 0 s ds S 

Similarly, 

p100 tr(kl/, k)kI/011'(k, k', kl/) dkl/ 
o kl/2 - k'2 

2 

= - 7T kk'tl(k', k)~ll' 
4(21 + 1) 

- :!: roo dr V(r)u l(k'r)L ll,(kr)1J!I,(k, r), (20) 
2 Jo 

where we have used (11) and the result (proved in 
Appendix A) 

0 w (k, k', k') = H'MII ,. 

If we multiply both sides of (19) and (20) by 
cl,Al'e- iOz ', we replace the 1J!1,(k, s) and 1J!1,(k, r) on 
the right-hand side of these equations by CI'CfJI,(k, s) 
and CI'CfJI,(k, r). Now sum over 1', taking the summa
tion inside the integrals over sand r, respectively, on 
the right-hand side. [N.B.: It is only in the justifica
tion of this step, carried out in Appendix B, that we 
use the assumption 

LX'r W(r)1 dr < 00. 

If these interchanges of summation and integration 
can be justified, then our final equations hold-not 
only without this assumption,but even for the long
range oscillatory potentials phase-equivalent to V(r).] 
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Using (3) and (4), we obtain 

~ C ,A ,e-i6t'p [00 fl,(k", k)k"0u,(k, k', k") dk" 
1'=0 I I Jo k,,2 _ k2 

= - .!!... ~ crAI' cos b1,0u,(k, k', k) 
2k 1'=0 

_ ~ [00 ds K(s, s) ~(UlkS)UI(k'S») 
k Jo S ds s 

[In the integration by parts which leads to the final 
integral on the right-hand side, the contributions 
from the end points vanish since K(s, s)/s is bounded.] 

Similarly, using (2), (11), and (12), we obtain 

~c ,A ,e-i6t'pl
OO 

tl,(k", k)k"011 ,(k, k', k") dk" 
I~O I I 0 k,,2 _ k,2 

2 

TT kk't (k' k)c A e-ibt 
4(21 + 1) I, I I 

TT (00 
- - " V(r)uz(k'r)(uz(kr) - IPI(k, r» dr 

2 ~o 

= - ~ A e-i6Z (1 + TTC I )kk't (k' k) 
2 I 2(21 + 1) I' 

TT foo - - V(r)ul(kr)ul(k'r) dr. 
2 0 

(22) 

Subtracting (22) from (21) gives the required 
coupled integral equations for the amplitudes t I(k' , k): 

(k' k) (1 TTC I
) 

t!, + 2(21 + 1) 

ei6t 00 
= --2 ! c1,Ar cos bl,011 ,(k, k', k) 

Alk'k 1'=0 
2ei6t (k2 _ k,2) 00 . , 

+ - ! cl,Are-'bl 

TTAI kk' 1'=0 

X P [OOdk" t1,(k", k)k"011,(k, k', k"). (23) 
Jo (k,,2 - k2)(k,,2 _ k,2) 

Finally, we list some further problems suggested by 
the set of equations (23), with which a certain amount 
of progress has been made: First, do they determine 
a unique set of amplitudes t1(k', k) once the coeffi
cients C1 , A I corresponding to the short-range poten
tial with given phase shifts have been evaluated? 
Secondly, are they of any value in numerical calcula
tions of the tiCk', k)? 

The answers might be clearer if we could write the 
equations as a single integral equation for the 3-
dimensional matrix element t(k', k). This does not 
seem to be possible in any simple way, but it still 

appears that there may be a 3-dimensional form 
of the equations. These questions may be the subjects 
of a further paper. 

APPENDIX A: PROPERTIES OF 0 u{k, k', k") 

We outline the proof of the following properties: 

k2k'k"11 0 u,(k, k', k") = -- ds 
2 -1 

P [I d PI,(t) 
X I(S) Ll t k,2 _ k,,2 _ 2kk's + 2kk"t (AI) 

(the integral over t is a principal-value integral if the 
denominator vanishes for -1 < t < I); 

0 11 ,(k, k', k') = kk'MII " (A2) 

lim [00 dk" u!,(k"r)0u,(k, k', k") 
f-->O+ Jo k,,2 - K2 - if: 

= _ iTT U1.(Kr)joo ds u1,(ks)wl,(Ks) ~ (UI(kS)Uz(k'S») 
K r s ds S 

iTT (K )lrd ul,(ks)ul,(Ks) d (UOI(kS)UI(k'S») 
- - WI' r S , 

K 0 S ds S 

where 
(A3) 

WI(x) = (tTTx)tH~~t(x). 
We assume the following results: 

lim [j(x) [1 - cos R(x - y)] dx = [b I(x) dx 
R-+oo Ja x - y 1a x - Y 

(A4) 

[where the second integral is a principal value if 
Q(. < y < b; the result certainly holds if j(x) is a 
polynomial, the only case we shall use] and 

ul(kr)ul(k'r) lk+k'. (k2 + k,2 - l) 
---.!..O.--'----'-'-~ = t sm prPI dp. 

r Ik-k'i 2kk' 
(AS) 

For the proof of (AI), let 

A(R) = 2 [R dr ul(kr)ul(k'r) ~(Ul,(kr)UI'(klfr»). 
Jo r dr r 

From (AS) 

A(R) = i dr dp sin prPI , p IR ik+k' (k2 + k,2 _ 2) 
o Ik-k'i 2kk 

X p' cos p'rPI , - Pdp' ik+k
" (k2 + k,,2 '2) 

Ik-k"l 2kk" 

= ! dp dp'p'PI 
i

k+k
' ik+k" (k2 + k,2 _ p2) 

Ik-k'i Ik-k" I 2kk' 

(
k2 + k,,2 _ p'2) 

X PI' 
2kk" 

X + . (
1 - cosR(p + p') 1 - cosR(p - P'») 

p + p' p - p' 
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We wish to find lim A(R), as R -+ w. We can take the limit, as R -+ 00, inside the integral over p provided 
the integrand possesses an integrable bound, independent of R. Let 

lk+k" , , (k2 + k,,2 - p'2) (1 - cos R(p + p') 1 - cos R(p - P'») 
p dp PI' + = J + K + L, 

Ik-k"l 2kk" P + p' p - p' 
where 

lk+k" , , (k2 + k,,2 - p,2) (1 - cos R(p + P'») 
J = P dpPI, , 

Ik-k" I 2kk" P + p' 

lk+k" (P' PI,«k2 + k"2 - p,2)/2kk") - pPI ,«k2 + k,,2 - p2)/2kk"») 
K = dp' , [1 - cos R(p - p')], 

I k-k" I p - P 

(
k2 + k,,2 - p2) ik+k" , 1 - cos R(p - p') 

L = pP1, dp . 
2kk" Ik-k"l P - p' 

It is easily shown that 

111 ~ 2(k + kIf -Ik - k"l) _ 2plog (P + k + kIf), 
P + Ik - k"l 

IKI ~ 2(k + kIf _ Ik _ k"l) max 1 p'PI ,«k
2 + k,,2 - p,2)/2kk") - pPI,«k

2 + k,,2 - l)/2kk") I, 
Ik-k"l <,,'<k+k" p - p' 
Ik-k'i <P<k+k' 

ILl < 2p log max PI . 
I

P-lk-k"ll 1 (k
2

+k"2_ p2)1 
- P - k - kIf ITc-k'l <p<kH' 2kk" 

Hence, using (A4), 

0!l.(k, k', kIf) = lim A(R) 
R-+oo 

-"2 p dpPI _ 11k
+

k
' (k2 + k,2 -l) 

Ik-k'i 2kk' 

x ~, . lkH" p'dp' (k2 + k,,2 _ p'2) 

Ik-k"l p2 _ p,2 2kk" 

Changing the variables to sand t given by 

p2 = k2 + k'2 _ 2kk's, p'2 = k 2 + k"2 - 2kk"t 

gives the result stated in (A I). 
In order to prove (A2), we have from (AI): 

"kk'f
1 

fl Pl.(t) 0 w(k, k, k) = - dsPI(s)P dt --, 
4 -1 -1 t - S 

kk'fl = - - dsPI(s)QI'(S) 
2 -1 

kk' [1 - (_I)l-l'] , 

= - 2 (I - I')(l + l' + 1) = kk M u" 

In order to prove (A3), for z not real and positive 
we have 

100dk" ul,(k"r) 0 ,(k k' kIf) 
k ,,2 !l" o - Z 

= -2 (00 dk" ul,(k"r) 
Jo k,,2 - Z 

x 100 
ds ul,(k"s) lI l'(ks) !!:..- (lI l(kS)U I(k' S»). 

o S ds S 

The integrand is bounded for all kIf and s, and less in 
modulus than Ck"-2S-2. The integral therefore con
verges absolutely and the order of integration may 
be changed: 

1
00 

dk" Hl,(k"r) 0 ,(k k' k") 
k ,,2 ll" 

o - Z 

= -2 (oods 1I1'(ks) !!:..-(UI(kS)UI(k'S») 
.10 S ds s 

x (00 dk" ul'(k"r)ul,(k"s). (A6) 
Jo k,,2 - Z 

Now 

1
00 dk" ul,(k"r)UI,(k"s) 

k ,,2 o - Z 

= ~ (rs)tII,+!(rJ -z)KI,+!(sJ -z), r ~ s , 
2 

= ~ (rs)t'I,+!(sJ -z)KI,+!(rJ -z), r ~ s. (A7) 

The square root is defined so that jf z = peiO , 0 < 
() ~ 7T, then J -z = -i(J p)eiO/2, so that 

ll,+!(r J - z) = e-irr
(!' 12+i)JI,+![r( J p )eiOI2], 

KI,+!(rJ -z) = ti7Teirr(!,/2+!>Hi,~~(r(J p)ei8/2). 

If p -+ K2, () -+ 0 + , 

ll'+!(r - z)KI'+i(s - z) -+ ti7TJI,+!(Kr)Hi;;!(Ks) 
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and 

I· l"'dk" ut,(k"r)ut,(k"s) - i7T (K) (K) 
1m 2 2 - ut' r Wt' S, 

£--+0+ 0 k" - K - iE 2K 

r ~ s, 

r ~ s. 

(A3) now follows provided we are justified in taking 
the limz_ K 2+iE inside the integral over s on the right
hand side of (A6). This will be the case if there 
exists an integrable function 'Y(s), independent of E, 

such that,for sufficiently small E, 

I 
ul,(ks) ~(UI(kS)UI(k'S») r"'dk" ul,(k"r)ul,(k"s) I 

s ds s Jo k,,2 - K2 - iE 

< 'Y(s). 

For 'Y(s) one may take the left-hand side with the 
integral over kIf replaced by a suitable constant, since 
the integral is bounded, for sufficiently small E, as a 
function of s, E. To show this one uses the explicit 
expressions for the Bessel functions JI,+![r(K2 + iE)!] 
and H?+![r(K2 + iE)!] and finds that,if E < K2, 

7Tr Kr ( ! () ~ "2 e In! Kr2 )Kl'+~ Kr, r > s. 

Observe that if K = k, since the kernel Gl(r, s) 
defined in (16) is 

G1(r, s) = -(i!k)w1(kr)ul(ks), r ~ s, 

= -(i!k)wl(ks)ul(kr), r ~ s, 

the result (A3) may be written as 

which is Eq. (14). 
Even when K ~ k, the result of (A3) implies that 

= lim l'" dk" ul,(k"r)011,(k, k', kIf) 
Y k,,2 K2 . (-+0+ 0 - - IE 

satisfies 

= 2!: ul,(kr) ~ (UI(kr)Ulk'r») , 
r dr r (A8) 

with the boundary conditions 

y '"'"' -.!!.... 0 11,(k k' K)ei(Kr-tr,,) yeO) = O. (A9) 
r-+oo 2K " , 

When K = k', one verifies explicitly that 

k7T Lll,(kr)ut(k'r) 
2 

satisfies (A8), so that (A9) implies 

where 

y = k7T Lll,(kr)ut(k'r) + AUr(k'r), 
2 

A sin (k'r - tl'7T) + k27T L~r sin (k'r _ I;) 
= ...!. 0 ,(k k' k')ei(k'r-I"lT). 

2k' II , , 

Using the result (A2), we easily find 

A - 7Tk 1i(!-nlTL'" 
- - ell" 

2 

This completes the proof of Eq. (15). 

APPENDIX B 

We justify here some of the operations carried out 
in the derivation of Eqs. (23), namely: (i) the use of 
the prescription 

( 1) 1 . ~(k2 2 • P 2 2 = 2 2 • - 17TU - K ), 
k - K k - K - IE 

(ii) the interchange of lim.-.o+ and the integration 
over r in the equation preceding (17); (iii) the inter
change of summation and integration which took us 
from (19) to (21); (iv) the similar operation which 
took us from (20) to (22). 

Proof of (i): It can be shown that,for each y > 0, 

lim r'" f(x) . dx = P roo f(x) dx + i7Tf(y), 
.... 0+ Jo x - y - IE Jo x - y 

. 100 

f(x) provided that (a) - dx converges for some 
c x 
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c> 0, and (b)j(x) satisfies a Lipschitz condition of 
positive order for each x 2 O. We consider 

pi'" tl·(k", k)k"011·(k, k', kIf) dk" 
o k,,2 - K2 

= 1plOO tl.(.jp, k)011·(k, k', .jp) d . 
2 K2 P o p-

Condition (a) is satisfied, since 

Itl.(.jp, k)011.(k, k', .jp)1 < C/.jp. 

Next, we observe that tl.(.jp, k)0 11.(k, k', .jp) de
pends on p through a term of the form ul'(r.j P )ul·(sJ p)/ 
.j p, which, using (A5), is easily shown to satisfy 

I 
ul·(rJp)ul·(SJp) _ ul.(r.jq)ul·(s.jq) I 

.jp Jq 

< t Ip - ql1 «r + s)! - Ir - sl!), 

< C Ip - ql1 r.js, r ~ s, 

with a similar inequality if r 2s. Hence, from the 
definitions (11) and (13) oftl.(k', k) and 0 ll ,(k, k', kIf), 
we can show that 

Itl.(.jp, k)0!l'(k, k', .jp) - tl·(.jq, k)0ll'(k, k', Jq)1 

< A Ip - q11, 
where 

A < LXl ds JV(s)II'!fI'(k, s)1 (AI + A210g s)Js. 

Here Al and A2 depend only on k and k', and the 
integral converges if V(s) is the short-range potential. 
Hence (b) is satisfied. 

Proof of (ii): Since 

1'" dr 1 V(r)'!fl·(k, r)1 

converges, we have only to show that 

l oo dk" 0 ll·(k, k', k")uz·(k"r) 
o k,,2 - K2 - iE 

possesses a bound independent of rand E. This can 
be done using estimates of the kind obtained in the 
proof of (A3). There we showed that 

i"" dk" 011'(k, k', k")uz.(k"r) 
o k,,2 - K2 - iE 

= -2i
rLJ 

ds ul·(ks) ~(UI(kS)UI(k'S») 
o s ds s 

x [""dk" ul·(k"r)UI.(k"s) . 
Jo k,,2 - K2 - iE 

We estimate the last integral on the right-hand side 
using the explicit expressions for the Bessel functions 
JI'+!(Kr) and HP.h(Kr), and we obtain, introducing 
a fixed length a > 0, 

Il'" dk" ul·(k"r)ul·(k"s) I 
o k,,2 - K2 - iE 

~ 2ae2Ka[KI'+!(Ka)]2, r > a, s > a, 

< TTa Ka () ( 1 _ 2" e Kl'+~ Ka Il·+t Ka2 ), 

r > a, s < a or r < a, s > a, 

~ max [TTr eKTKl'+!(Kr)Ir+!(Kr21] , r < a, s < a, 
O:Sr:Sa 2 

provided E < K2. If the largest of the expressions on 
the right is M, 

I 
[00 dk" 011'(k, k', k")ur(k"r) I 

Jo k,,2 - K2 - iE 

~ M i"" ds \ UI'~S) :s (UlkS)~I(k'S»)i. 
Proof of (iii): We have to show that 

! dl'l°O dr ul·(kr)'!fl'(k, r) ~ (UI(kr)utCk'r») 
1'~0 0 r dr r 

-l"" dr ~ (Ulkr)UI(k'r») ~ d (k) (k ) - "'- I,U r r '!fl' ,r, 
o r dr r 1'~0 

where dl. = crAl'e--i6z·. We prove the result in two 
steps: (a) with '!fl.(k, r) replaced by '!fr(k, r) - ul.(kr); 
(b) with '!fl.(k, r) replaced by ul.(kr). 

(a) Since the justification is trivial for a finite sum, 
there is no loss of generality in replacing I~~o by 
L~=N' where N is sufficiently large that 

[(N + !)(N + £)]1 > TT i"" x JV(x)1 dx. 

We then have the following estimate, given by de 
Alfaro and Regge 7: 

l'!fr(k, r)1 ~ lul·(kr)1 + ~ (Jr)Id(l' + 1)(1' + m-1, 

(Bl) 
where 

frLJ(Js) IUr(ks)1 JV(s)1 ds 
II' < 0 

- 1 - !TT[(l' + t)(1' + !)]-! I"" x JV(x) 1 dx 

~ 21""(JS) 1 ul·(ks) 1 JV(s) 1 ds, [' 2 N. (B2) 
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The proof of (Bl) depends on the following result 
(Ref. 7, p. 190): 

IW!,(kr)u!,(ks)1 :::;; ~ k(rs)![(/' + 1)(/' + !)]-l, 

r ~ s. (B3) 

Other estimates of Bessel functions which we need are 
as follows: 

lu!,(kr)1 $ Cl'!, I' > 0, (B4) 

I u!,(kr)w!,(kr) I $ C(kr)!(l' + l)~, (B5) 

where the constants are independent of rand 1'. (B4) 
is the weakest of the estimates given by Sabatier 
(Ref. 3, p. 1528). If we write 

u!,(kr)w!,(kr) 

= 1T~r ([JI,+~(kr)]2 + iJv+!(kr)Y!'+l(kr)} 

= kr[ff2J2!'+1(2kr cos 0) dO 

+ i LlO

J21'+1(2kr cosh t) dt] 

and use (B4) to estimate the integrals, we obtain (B5). 
Next, we require the following estimates: If nabn is 

bounded, where -t < rx < 1, then 
00 

Observe that (B6) and (B7) remain true if L~~o is 
replaced by L:~N' 

We shall prove that 

for E > 0 arbitrarily small. Step (a) will then follow, 
since 

ICTJ dr l d (Ulkr)UI(k'r»)\ !+< 1 - - r < 00, E < 2' 
o r dr r 

Writing out G!,(r, s) explicitly, we have 

tp!,(k, r) - u!,(kr) 

= _ i. [r w!,(kr)ul,(ks)V(s)tp!,(k, s) ds 
k Jo 

- i. f.oo wl,(ks)u,,(kr)V(s)tpl,(k, s) ds 
k r 

= ieiol'sin b!,w!'(kr) 

+ i. f.oo w!,(kr)u!'(ks)V(s)tpl,(k, s) ds 
k r 

L bn [u n(x)]2 < CXl-lX. 
n~O 

(B6) where we have again used 

The case rx = 1 is slightly different: If nbn is bounded, 
00 

L bn [u n(x)]2 < C + C' Ilog xl- (B7) 
n~O 

Then (B6) and (B7) are proved by noting that 

bnr(n + -i + rx/2)/(2n + 1)r(n + t - rx/2) 

in the first case and bnn(n + 1)/(2n + 1) in the 
second are both bounded, so that the sums on the 
left-hand side of (B6) and (B7) are bounded by multi
ples of 

! (2n + 1) r(n + t - rx/2) (un(x)i 
n~O r(n + t + rx/2) 

r[(l - oc)j2] x1
- a [2X sin p 

= r[(1 + rx)/2] 2a Jo l-IX dp 

< Cx1
-

1X 

foo sin p 
(since -1 - dp converges) and 

o p-IX 

~ (2n + 1) ( (»2 i2X 
1 - cos Pd' 2 

"'" Un X = P - sm X 
n~l n(n + 1) 0 P 

< C + C' Ilog xl, 
respectively. 

1 foo tl,(k, k) = - - ul,(kr)V(r)tp!,(k, r) dr 
k2 

0 

1 ·0' = - e' I sin bl ,. 
k 

It follows from (Bl) that 

lul,(kr)(tpl,(k, r) - ul,(kr»1 

$ Isin bl,llu,.(kr)w!'(kr)1 

1 f.oo + -lu,,(kr)w!,(kr)1 W(s) I (u!'(ksW ds 
k r 

+ llu!,(kr)w,,(kr)1 ! id(I' + 1)(/' + 1)]-i 
k 2 

x 100 

W(s)l-./s lu!,(ks)1 ds 

+ 1. IU!,(kr)1 ~ 11'[([' + t)(/' + !)ri-
k 2 

x 100 

lul,(kr)wl,(ks)llV(s)1 (-./s) ds, [' ~ N, 
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and so, from (B3) and (B5), 

Iul,(kr)(tpl,(k, r) - ul'(kr»1 

~ CbL,(l' + l)!(kr)! 

+ ~ r[(l' + t)(I' + !)]-tJ,oo W(s)1 (u l.(ks»2 ds 
2 r 

+ (~rr[(l' + t)(l' + m-!IL, 

x iooW(S)"UI,(kS)' (.Js) ds 

+ ~.Jr lu,,(kr)1 [(I' + 1)(1' + !)rt 
2 

x iooW(S)llul,(ks)1 (.Js) ds 

+ (~r.Jr lul,(kr)1 [(1' + 1)(1' + m-iII, 

x ioo s !y(s)1 ds, I' ~ N. 

We deal with these terms separately, treating three 
typical cases. Clearly, since dl , is bounded, 

i Idl,1 Cbl,(I' + l)!(kr)i < C' ! 1~-3(1' + l)t(kr)! 
1'=N 1'=N 

< C".Jr. 
From (B6) 

! Idl,1 [(I' + t)(I' + !)rt(UI'(ks»2 < C(ks)i. 
1'=N 

So 

100 

W(S)II~)dl'l [(I' + *)(1' + 1)]-1(ul,(ks»2 ds 

< c(.Jk)J,OO !y(s) I (.Js) ds < c'J,OO ~~< 
r r S 

< C"r-i+< < 00 

and, hence, 

It1dl,1 ~ r[(l' + t)(1' + 1)]-1100 

I V(s)1 (UI'(kS»2 ds 

= '!!: rJ,ooW(s)1 ! Idz,1 [(1' + t)(I' + 1)]-1(ul,(ks»2 
2 r l'=N 

< Cri+<. 

Next, 

I~Nldl'l r[(1' + 1)(1' + !)]-*II.J.ooW(S)IIUI,(kS)1 (.js)ds 

= r 100 

(.js) W(S)II~Nldl'l [(I' + H(I' + f)]-~11' 
x lu,,(ks)1 ds, 

provided the right-hand side exists, and 

~ 2 ~ Idl'l [(I' + 1)(1' + !)r! lul,(ks)1 
1'=N 

x Loo(.jx) Iul'(kx) I W(x) I dx 

= 2 Loo(.Jx) W(X)II~Nldl'l [(I' + t)(1' + m-! 
x lul,(ks)llul.(kx)1 dx, 

provided the right-hand side exists. Now 

{JNldl,1 [(1' + H(1' + !)]-! IUI,(kS)llul.(kx)if 

~ C i [(I' + t)(I' + m-!(ul,(ks»2 
1'=N 

x i [(I' + t)(1' + !)]-i(ul,(kxW 
!'=N 

< (C + C' Ilog sl)(C + C' Ilog xl). 
Since 

i oo 

(.Jx) !y(x)I.j(C + C' Ilog xl) dx < 00 

and 

1OO

(.jS) W(s)I.j(C + C' Ilog sl) ds < 00, 

both interchanges are justified, and 

x looW(s)IIUI,(kS)I(.JS)ds 

< Cr 100 

ds W(s)1 (.Js)[.J(C + C Ilog sl)] 

J,
oo si. s< 

< Cr r ds S2-f. 

< Cri+2<, 

where € is arbitrarily small. 
The remaining terms are similarly dealt with and 

give the same result. Summing up, we obtain 

I Idl,lltpl,(k, r) - ul,(kr)llul,(kr)1 < Cri+<, 
I'=N 

and (a) is proved. 
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For (b) we have to prove 

I d
l
, ['Xl dr ul,(kr)ul,(kr) ~ (UI(kr)UI(k'r)) 

1'~0 Jo r dr r 

= (00 dr ~ d
l
, (UI'(kr»2 ~ (UI(kr)UI(k'r)). (B8) 

Jo 1'~0 r dr r 

It is sufficient to prove the result with dl , replaced 
by 1. Equation (7) shows that dl' = fl' + 4oc/rr where 
fl' = 0(1-1-'). Since, as is shown in Ref. 3, 

00 

L .h,(uz,(kr»2 
I'~O 

is a bounded function of r, the integral on the right
hand side of (B8), with dl' replaced by fl" is absolutely 
convergent. Hence (B8) is valid when dl' is replaced 
by fl" Hence we have to show that 

I 100 
dr ~ (U l ,(kr»2) uz(kr)uz(k'r) 

Z'~O 0 dr r r 

= fOO dr I !!.-(U l ,(kr»2) uZ(kr)ul(k'r). 
Jo z'~o dr r r 

[This differs from (B8) in that we have integrated by 
parts.] Now 

!!.-(UI,(kr»2) _ ul,(kr) ( (k ) _ (k )) 
- UI'_l r UI'H r , 

dr r r 

so that 

r 

XU _,-,-l(k_r...:..)---,ul~(k_'....::r) 
r 

= foo dr ~ !!.- (UI'(krW) ul(kr)uz(k'r) 
Jo Z'~O dr r r 

1
00 dr (k) (k )uz(kr)uz(k'r) 

- U MH rUM r . 
orr 

The result now follows if we can prove that 

lim [""uJf+l(kr)U"likr)uz(kr)uz(k'r) d; = 0. 
M~""Jo r 

Using the estimates of the uJlI(kr) given in Ref. 3, we 

have 

i""dr + C5 2' ---* 0, as M ---* 00. 
M" r 

This completes the proof of (iii), 

Proof of (iv): To prove that 

it is sufficient to prove that 

00 1 L \dz,\\Lw(kr)\\'t'I,(k, r)\ < Cr , 
Z'~O 

(B9) 

since ul(k'r) is bounded and S: r1 \V(r) \ dr < 00. 

Also, since Ll!'(kr)'t'l,(k, r) is bounded, it is enough to 
verify (B9) with L~~o replaced by L~=N' We shall 
suppose that N > I and 

[(N + t)(N + £)]1> rr i""x \v(x)\ dx. 

Then, using (B4), 

i
kr dx 

Lll,(kr) = uzCx)UI'(x) ""2 
o x 

ul,(kr)ul+1(kr) - uZ'H(kr)uz(kr) 

(I' - 1)(1' + 1 + 1) 

uz,(kr)uz(kr) 
+ kr(l' + 1 + 1) 

C'l'-! < Cl,-t- +--
r 

so that, from (B1), 

00 

I \dz,\\Lll,(kr)\\'t'z,(k, r)\ 
I'~N 

<z,t,( Cl'-! + c'~-t) 

x (lul,(kr)1 + ~ .jr[(l' + t)(l' + !)]-tI I } 
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Now 

and 

so 
1 00 ,_I - L I IUI'(kr) 1 < c. 
r!'=N 

Also 

and 

! [,-1[(1' + t)(I' + !)]-l/z' 
Z'=N 

both converge, e.g., 

00 

~ C L (u l ,(ks»2 < C's 
I'=N 

and 

iOO(Js) !Y(S)1
1
t,l'-I[(l' + t)(l' + m-1Iuz.(ks)1 ds 

< C i oo 

s !y(s)1 ds < 00, 

so that 

!~/-I[(I' + t)(I' + 1)]-1/!, < 2 Loods(Js) !y(s)1 

x ! ['-1[(1' + t)(I' + 1)r1Iu!,(ks)1 
Z'=N 

< c i oo 

s !y(s) 1 ds < 00. 

It follows that 
00 

L Id!,II L I!,(kr)II1f'I,(k, r)1 < CJr, 
!'=N 

which proves (iv). 

1 L. D. Faddeev, Mathematical Aspects of the Three·Body Problem 
in Quantum Scattering Theory (I.P.S.T. ,1965), p. 25. 
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In this paper, a model is studied in which it was possible to obtain an expression for the exact solution 
of the master equation for the problem of spontaneous emission in a finite system. The model chosen for 
discussion is that of the Wigner-Weisskopf atom in interaction with a massless boson field, here 1-
dimensional. The solution takes the form of a constant term plus a time-dependent one, expressed as 
the sum of residues at a series of poles along the real axis of a Laplace transform variable. Numerical 
calculations were performed on various aspects of the solution, and although these were too delicate to be 
quite certain around sensitive values of the time, the general picture is clear: After an initial decay to a 
value near zero, the series gave rise at fairly regular intervals to rapid and large fluctuations, the size of 
which never quite attains the initial value, but may nonetheless be large even after very long times. This 
result seems to be in agreement with the observation made by Zwanzig, namely, that for finite systems the 
master equation might demonstrate properties associated with the finite size of the system which 
would become important over certain long-time scales and would be ignored by the use of the customary 
"thermodynamic limit" of statistical mechanics. The relationship between this work and that of 
Montroll and Mazur and of Rubin is also discussed. 

I. INTRODUCTION 

This paper deals with the problem of the descrip
tion by nonequilibrium statistical mechanics of a 
finite system. The model chosen for discussion is that 
of the Wigner-Weisskopf atom: a two-level quantum 
system in interaction with a massless boson field, 
here I-dimensional. The problem was brought up in 
an article of Zwanzig,1 in which he suggested that 
the solution to an equation with the form of what is 
now usually called the Prigogine-Resibois master 
equation might demonstrate properties associated 
with the finite size of a system, which would become 
important over certain long-time scales and would be 
ignored by the use of the customary "thermodynamic 
limit" of statistical mechanics by which systems are 
assumed to have an infinite number of degrees of 
freedom and to be unlimited in extent. A further 
problem raised by Zwanzig in the same article, that 
of the existence of nonexponential behavior in the 
thermodynamic limit, has been discussed in a previous 
paper by the authors,2 hereafter referred to as I. The 
same model-that of the Wigner-Weisskopf atom
was used for the discussion of that paper, and the 
results established there are used extensively in what 
follows here. 

The Hamiltonian for the model [Eq. (I.6)] is 

H = E1OCOC* + E2OC*OC + I [tnwia~a,\ + 1)] 
,\ 

+ I (h~oc*a,\ + h,\oca~), 
,\ 

where E1 is the energy of the ground state of the two
level system II) and E2 that of the excited state 12). 
The fermion operators IX. and IX. ':' are 

IX. = II) (21, 

IX.* = 12) (II. 

The operators for the boson field are labeled by the 
normal modes A, and are defined by their matrix 
elements in the occupation number representation: 

(n,\1 a,\ Im,\) = [2(n,\ + 1)]!okr(m,\ - n,\ - 1), 

(m,\1 at In,\) = [2(n,\ + l)]t okr(m,\ - n,\ - 1). 

The state In,\) is a state with n,\, n= 0, I, 2, ... , 
photons in the Ath mode. The symbol okr( ... ) is a 
Kronecker delta. The h,\ measure the strength of the 
coupling between the atom and the radiation. The 
states of the whole system are taken to be 

Ii; {n,\}) = Ii) II In,\), 
,\ 

with i = 1,2 and n,\ = 0, 1,2,'" , for each A. The 
model will be described by the density matrix p, which 
satisfies the Liouville-von Neumann equation: 

op 1 1 - = - [H, p] = :- [Hp - pH]. 
at in In 

From this may be derived the Prigogine-Resibois 
master equation [Eq. (1.24)] for the diagonal elements 

1420 
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of the density matrix 

a 1t - Po(N, t) = drC(r)po(N, t - r) + ~(t, {p.(N, om, at 0 

(1) 

in which the matrix elements Pv(N, t) of the density 
matrix are given by 

Pv(N, t) = (N + tvl p IN - tv), 
where N and v are shorthand for the set of quantum 
numbers corresponding to each degree of freedom of 
the system. The operators C and ~ are defined in terms 
of a perturbation theory. The particular problem to 
be treated in this paper, as in I, is that of spontaneous 
emission, for which the initial state of the system is 
specified such that the atom is in its excited state. 
Thus, 

Pv(N,O) = okr(v)okr(Np - 2) II Okr(N)), 
A 

where Np is the N number for the atom and the N;. 
are those for the modes of the boson field. In this case, 
the term ~ disappears in Eq. (I), which may then be 
solved by Laplace transform [see Eq. (1.31)] to yield 

Po(N, t) = - 1.- r dze-izt[?f(z) + izr1po(N,0), (2) 
27T Jc 

where C is a contour in the z plane parallel to the 
real axis and above all singularities of the integrand. 
The operator ?fez) is the Laplace transform of the 
operator C(r) of Eq. (1) and is given by Eq. (1.35). 
For the case of spontaneous emission, Eq. (2) takes 
the following form in the lowest order of the pertur
bation theory yielding ?fez), this form coming from 
Eqs. (1.38) and (1.39): 

Po(.N', t) = - l r dze-izta(.N'), (3) 
27T Jc 

where 

1 
a(.N') = - [1 + S(Z)tl 

iz 
with 

( ~ )~ S(z) = ~ 1 - --2 [Z2 - (c Ik;.1 - £)2] . (4) 
;. 4111;.1 

In these expressions, the argument .N' denotes this 
choice of N variables: 

Np = 2, N;. = 0, for all A. 
Further, 

liE = €2 - €1 and c Ik;.1 = W;., 

so that c is the velocity of light. 
We shall consider our system to be enclosed in a 

well of length L. In this way, if L is allowed to tend to 

infinity, the results of I should be recovered. The 
normal modes A are now characterized by their 
wavenumbers k;. as k;. = 27TnjL, where the positive 
integer n replaces A as the label. The specification of 
the problem is completed by a choice of h;.. This will 
be taken, following the arguments of I, such that 

whereoc is a dimensionless coupling constant replacing 
the fine-structure constant of quantum electrodynam
ics in it I-dimensional system. 

In the next section, the expression (4) for 
S(z) will be obtained by performing the summation 
over A and, in Sec. III, it will be verified that the 
result yields agreement with the expressions derived 
in I, for the limit in which L -->- 00. In Sec. IV, the 
Laplace transform solution, Eq. (3), of the master 
equation is examined and some of its properties 
studied. An exact expression for this solution is 
obtained in Sec. V for the limiting case of weak 
coupling, which is in any event the only case legiti
mately treated by the lowest order of the perturbation 
theory leading to the Prigogine-Resibois equation 
(1). This weak-coupling solution, though compli
cated, is seen in Sec. VI to yield in the thermodynamic 
limit exactly the exponential decay usually predicted 
by calculations on large systems. However, since the 
principal object of the present investigation is a 
search for discrepancies from this exponential solu
tion arising from the finite size of the system, in Secs. 
VII-IX a numerical investigation of the solution 
obtained in Sec. V is described. Here, it is indeed 
found that a wide variety of phenomena appears in 
the regime not only where L is small, but where it may 
assume a value up to 104 times the wavelength of the 
radiation in resonance with the energy gap in the 
two-level atom. In particular, the solution predicts 
the possibility of Poincare recurrences in the system 
over very long-time scales. Section X is devoted to 
a discussion of the results obtained in the paper 
and the presentation of conclusions. 

II. SUMMATION OVER NORMAL MODES 

In Eq. (3) it is seen that, to obtain the time depend
ence of Po(J'.(', t), one must evaluate the sum 

where Ih;.12 has been chosen as 1i2occEjL. The sum 
extends over the normal modes of the boson field, for 
which k;. takes the values 27TnjL with n integral. So, 
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explicitly, Eq. (5) becomes 

S(z) = I {1 - ~[Z2 _ (27TC Inl _ E)2J}-1 
n=-oo 4~cE L 

= - 1 - -- (Z2 - E2) 
(

L )-1 
40ccE 

+ 2 I 1 - -"- Z2 - -- - E . 00 { L [ (27TCn )2J }-1 
n=O 40ccE L 

(6) 

One may write the denominator of the summand in 
Eq. (6) in the form 

7T2C 
- (n + r1)(n + r2), 
~EL 

r = ~[-E ± (Z2 - 4~CE)!J. 
1,2 27TC L 

where 

The sum can thus be performed as 

! {1 _ ~[Z2 _ (27TCn _ E)2J}-1 
n=O 40ccE L 

where 
00 1 

,(s, a) = I ( )S 
n=oa+n 

is the generalized Riemann , function (see, for 
example, Ref. 3). This function has a pole, with 
residue I, at s = I, but the difference of the two 
functions in Eq. (7) is regular. This may be seen by 
using Hermites formula3 or by the relation between 
the' function and the y function: 

lim (,(S, a) __ 1_) 
,-+1 s-1 

= -log a + - + 2 Y Y 1 100 

d 
2a 0 (a2 + l)(e2lTli 

- 1) 

r'(a) 
= - rea) 

(8) 

This last expression, the logarithmic derivative of 
the y function, is also called the zeroth polygamma 
function,3 cfo: 

d r'{w) 
cfo(w) = -log r(w) = - . 

dw r(w) 

In terms of cfo, Eq. (7) becomes 

~EL 1 
-2- . -- [cfo(r2) - cfo{r1)]· 

7T C r2 - r1 
(9) 

-Q 

Z PLANE X PLANE 

ia 

a 

-ia 

FIG. 1. The complex (x, z) planes [see the discussion 
following Eq. (11)]. 

As a function of a complex variable w, cfo(w) is regular 
in the right-hand half-plane and has simple poles at 
w = 0, -I, -2, .... It may be analytically continued 
into the left-hand half-plane by the functional relation 

cfo( -w) = cfo(w + I) + 7T cot 7TW. (10) 

It is convenient at this stage to introduce a new 
complex variable x, defined in terms .of the Laplace 
transform z as -

x = (Z2 - 4~Cr (11) 

Clearly, as L -- 00, x -- z. In order that Eq. (11) 
represent a regular single-valued mapping, the (x, z) 
planes will be cut as shown in Fig. 1. The branch 
points then map into one another as 

a = e7Et 
where 

z = a (-; x = 0+, (l2a) 

z = iO+ (-+ x = ia, (l2b) 

z = iO- (-+ x = -ia, (12c) 

z = -a (-+ x = 0-. (l2d) 

In terms of x, the expression (9) is 

~E[cfo(_ ~ (E - X») - cfo(-~ (E + X»)J. 
7TX 27TC 27TC 

(13) 

The first term of the expression (13) is regular, for 
Re x < -E, and the second term, for Re x> +E. 
Using the relation (10), we may write this expres
sion for the three ranges of x as follows: 

for Rex < -E: 

- ~E {cfo(-~ (E + X») - cfo[~ (E - X + 27TC)] 
7TX 27TC 27TC L 

- 7T cot (~ (E - X»)}; (14) 
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for - E < Re x < E: 

_ ocE {4>[..!::... (E + x + 217C)] l7X 217C L 

- 4>[2~c(E - x + 2~C)] 

+ 17 cot (~C (E + x») - 17 cot (~C (E - x»)}; (15) 

for Rex> E: 

_ ocE {4>[~(E + x + 217C)] l7X 217C L 

- 4>(- 2~/E-X») + 7Tcot (~(E+X»)}. (16) 

In the second of these ranges, we may also express 
this quantity in the integral representation given in Eq. 
(8). We obtain for Eq. (6) 

40cEc ( 1 + 1 ) 
L E2 _ x 2 E,2 _ x 2 

+-og -- ---20cE I (E' - X) 16ocEE' 
l7X E' + X 7T 

z = 0, we take 

log (E - Z) = 0. 
E+z 

In Eq. (6) itself, the first term is zero, when L -+ 00. 

To evaluate the limits of (14)-(16), the following 
results are needed: 

for 1m w > 0, lim cot (Lw) = -i, 
L-+ 00 

for 1m w < 0, lim cot (Lw) = +i, 
L-+ 00 

for Re w > 0, 4>(Lw) '" log (Lw), as L -+ 00, 

where the branch of the logarithm is the usual one 
with log (Lw = 1) = 0. With these relations, the 
expression (14) has this limit, as L -+ 00: 

lim (- ocE {log (-~ (E + Z») 
L-+oo 7TZ 217C 

- log [2~c(E - Z + 2~C)] - l7i}), 

since x -+ z, E' -+ E, as L -+ 00. Then, for (14) we 
have 

- log -- + 17T , OCE[ (Z - E) .] 
7TZ Z + E 

(19) 

_ 20cE cot (~(E' + x») + 20cE cot (~(E' _ X»), for (15) we have 
x ~ x ~ 

(17) ocE [lOg (E - Z) + hi], (20) 
where 7TZ E + Z 

E' = E + 27TC/L 
and where the change of variable 11' = 27Tye/L is used 
in the integral. The last two terms of the above 
expression (17) may then be grouped together to 
yield 

2:E sin (LeX) csc (~ (E' + X») csc (~C (E' - X»). 

Similar integral representations may readily be written 
for the other two ranges of x. 

III. THE INFINITE SYSTEM LIMIT 

It is important to verify that in the limit, as L -+ 00, 

the expressions (14)-(16) go over into that which is 
calculated in I for the same problem in the limit of a 
large system. From Eq. (1.44), one sees that the 
expression which corresponds to the function S(z) in 
Eq. (6) is 

2ocE[log (E - Z) + 217iJ, 
l7Z E + Z 

(18) 

where the branch of the logarithm is such that, when 

and for (16) we have 

- - log -- - 117 • ocE [ (Z + E) .] 
7TZ Z - E 

(21) 

The three expressions (19)-(21) all clearly represent 
the same analytic function except perhaps for the 
choice of the branch of the logarithm. When z -+ 00, 

(19) and (21) both behave asymptotically as iocE/z. 
The expression (20) has a different asymptotic behavior 
for 1m z > ° and 1m z < 0. In the former case, the 
expression is proportional to iocE/z, and so in the upper 
half-plane, all three expressions yield for Eq. (6) in 
the limit, as L -->- 00, the result 

- Jog -- + 2m , 2OCE[ (E - Z) 'J 
7TZ E + Z 

(22) 

with 

log -- = 0. (
E - 0) 
E+O 

This is exactly (18). For 1m z < 0, the asymptotic 
expression for (20) is different if one stays on the 
same branch of the logarithm, and so (22) will be a 
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Z PLANE 

-E E 

FIG. 2. The complex z plane [see the discussion following Eq. (22)]. 

single-valued function on the cut plane shown in 
Fig. 2. The cuts are equivalent to those used in I for 
the evaluation of Po(.N" t). 

Although we have now verified completely that 
Eq. (6) does indeed go over to (18) when L -+ 00, it 
is instructive to see how, when z -+ iO+, the expression 
(15) yields a behavior like Z-l when L is infinite. 
This property is of importance because the quantity 

lim (- izS(z)r1 (23) 
z-+iO+ 

yields the first-order relaxation time (exponential 
decay) of the excited state of the 2-level system (see 
Sec. IV of I). Since exponential decay may be expected 
to be a property only of infinite systems, it is of note 
that when L -+ 00, one obtains the usual answer from 
this calculation. First, we see from (12) that z -+ iO+ 
means that x -+ +ia. From expression (15), we have, 
for L -+ 00, 

S(Ia)""- og - + w . 2iCJ.E[1 (L (E' .») 
1Ta 21TC 

- log (~(E' - ia»)]2CJ.E 
21TC z 

x [Sin C~a) csc (~ (E' + ia») 

x csc (~ (E' - ia») J. (24) 

Now when L -+ 00, a -+ 0, but aL -+ 00. Thus, in 
expression (24), the logarithmic terms cancel in the 
limit, and the remaining term tends to 4iCJ.£/z. The 
quantity (23) is thus (4CJ.£)-1, in agreement with Eq. 
(1.48). 

IV. THE CONTOUR INTEGRAL SOLUTION 

The time dependence of Po(.N', t) is given by the 
contour integral as 

Po(.N', t) = - 1. r dze-iztq(.N') 
21T Jc 

= _ -.L r dze-izt(l. 1 ), (25) 
21T Jc iz 1 + S(z) 

for the case of spontaneous emission. Let us write 
Eq. (25) in terms of the variable x defined in Eq. (11): 

Po(.N', t) = - ~ r dx exp [-i(x2 + a2)tt] 
2m Jc 

X x 1 (26) 
x 2 + a 2 1 + Sex) , 

where S has been expressed as a function of x [Eq. 
(17) and corresponding expressions]. To evaluate the 
integral in Eq. (26), the contour C may be closed by 
a large semicircle in the lower half-plane of x. Then 
for the application of Cauchy's theorem, it is necessary 
to examine all the singularities of the integrand, for 
by definition, C is taken above all these singularities. 
One sees at once that there are two simple poles at 
x = ±ia; furthermore, one sees that,because of the 
square root in the exponent, a cut must be made 
between these poles so as to have a single-valued 
function in the integrand. The other singularities 
arise from the zeros of 1 + Sex), and these will be 
considered in detail shortly. We must consider there
fore an integral round the contour of Fig. 3. Because 
the integral vanishes on the large semicircle, Po(.N', t) 
is then obtained by calculating the residues at x = ±ia 
and the zeros of [1 + Sex)], and contributions from 
the branch cut mentioned or any others that arise 
from the properties of Sex). 

It is readily seen that there is, in fact, no contribu
tion from the cut between ia and -ia. The integral 
along the cut is 

-- dx sin [t(x2 + a2
) ]. • ---

2i fia ! x 1 
-21Ti -;a x 2 + a2 1 + Sex) 

= ;(fdY + fadY) sin [t(a 2 
- y2)t] 

X y 1 = ° 
a2 _ y2 1 + S(iy) , 

since it is clear from expression (17), which is the 
relevant expression for Sex) in the region of the cut, 
that S( +iy) = S( -iy). As for the poles at x = ±ia, 
the residue at each is easily seen to be 1/2[1 + SUa)]. 
Since we have to integrate round the poles in a 
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FIG, 3. The contours used in evaluating 
Eq. (26). 

negative sense (Fig. 3), the contribution to Po(.N', t) 
from these is 

1[[1 + SUa)]. (27) 

The expression (27) gives, then, a constant (that is, 
time-independent) contribution to Po(.N', t). The 
behavior of S( +ia), as L ~ 00, has already been 
calculated [Eq. (24)], and it has been seen that it 
becomes infinite with L. This constant contribution 
thus disappears in the limit of a large system, as one 
would expect. In this case, the two poles coalesce 
into a pole of S(z) at z = 0 which, as has been 
remarked [see the discussion following expression 
(23)}, is responsible for the appearance of a finite 
relaxation time. However, because SUa) is not 

singular when L is finite, we have that 

lim [- izS(z)r1 

z-+iO+ 

is formally infinite except for L --->- 00. We may thus 
see that the notion of a relaxation time is meaningful 
only in the limit of a large system. 

It is important to check that SUa) is real and indeed 
positive so that the expression (27) may yield a 
positive contribution to Po(.N', t). It can be shown 
that S(iy) is positive along the entire imaginary axis 
and, in particular, at ia. The proof is not difficult, but 
tedious, and is relegated to the Appendix. 

We must now consider the zeros of 1 + Sex). We 
shall consider these only in the range - E < Re x < 
E, but similar results will pertain in the other ranges of 
x. It is useful to rewrite expression (17) in terms of 
dimensionless variables: 

I: _ Lx 
5"- , 

C 

LE 
1] =-. 

c 

X PLANE 

There results 

In this expression, 1] is of necessity a real parameter 
and it is clear that, when ~ (and so x) is real, S(~) 
itself is real. It is proved in the Appendix that S(;) is 
real for purely imaginary ~ as well, but in general 
S(;) is complex. Thus it is only on the real and 
imaginary axes of ; that I + S(~) may vanish. The 
latter case is also impossible, for S is positive on 
the imaginary axis. On the other hand, since the last 
term in Eq. (28) may be written as 

2~1] 2~1] T cot t(1l - ~) - T eot t(r] + ~), 

it can be seen that S(~) may equal -1 at many points 
on the real axis because there the cotangents are 
rapidly varying functions of ~ which in a short range 
assume all values between - (X) and + 00. The zeros 
of 1 + S(x) have thus been shown to lie only on the 
real axis. 

It should be remarked that, in considering all the 
singularities of the integrand in Eq. (26), one should 
consider whether any branch points arise from the 
logarithms appearing in Sex), especially since it is 
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known that these do appear and are important in the 
limit of a large system (see I). It can be seen, however, 
that this is not the case, since,if Sex) is expressed as 
in (14)-(16) in terms of the poly-y function, the 
only singularities are known to be poles. It may also 
be checked in Eq. (28) and the corresponding ex
pressions for the other ranges of x that the branch 
points of the logarithms which appear always lie 
outside the range of validity of the expressions. 
Taking into account only the zeros of I + Sex), one 
is thus treating all the singularities which are present. 
In the following sections, the contribution to PoCoN', t) 
associated with these zeros will be calculated for the 
limiting case of weak coupling, that is, for oc - ... O. 
This restriction affords a great simplification of the 
analysis and enables us to obtain a description of the 
time-dependent part of PoCoN', t). 

V. THE WEAK-COUPLING CASE 

It has been pointed out in I that, to derive a con
sistent weak-coupling approximation, it is necessary 
to introduce a dimensionless measure of the time 
scaled by the coupling constant oc. As there, we shall 
choose this to be T = ocEt. In the present investigation, 
we have also to deal with the size of the system, 
measured up to now by L or rJ. It turns out,when one 
writes the constant contribution to poe oN', t) in terms 
of IX and ,/},that '/} occurs only in the combination IX'/}. 

This is, in fact, the proper variable to use in the 
present problem, inasmuch as OCrJ = ocEL/c is the 
time, measured by the scaled parameter T, required for 
a wave to cross the system of length L. Were we to 
employ oc and rJ as independent variables then and 

to let oc become very small, some ofthe full dependence 
of the results on rJ would be lost. It is evident that rJ, 
like the time t, must be scaled by oc in order that the 
proper measure of the time required to cross the sys
tem remain finite. For reasons of convenience, the 
actual dimensionless measure of the length of the 
system which we use is 

a = (ocrJ)t. 

In terms of oc, a, and T, Eq. (26) becomes 

poeoN', t) = - ~ r d;' exp (- ~ (e + 40'2)t) 
2vlJC a2 

X ; . 1 . (29) 
e + 4a2 1 + S(;) 

It is useful, as in I, to replace the Laplace transform 
variable ; by 

x/ocE = ;;0'2 = O. 

Then, in the limit of a large system, 0 corresponds to 
the variable; of Eq. (1.52). Using 0, we may write 
Eq. (29) as 

poeoN', t) = - ~ 1 dO exp [-iT(02 + 4/0'2)l] 
2m c 

X 0 . 1 . (30) 
02 + (4/a2

) 1 + S(O) 

We shall now write out S(O) explicitly in the range 
which corresponds to 

-1/oc < Re () < l/oc, -E < Re x < + E, 

and see that our choice of variables enables us easily 
to derive the weak-coupling limit. We have 

2 a2 a2 

+ - sin (a2
() • csc - (1 - oc() . csc - (1 + oc(). (31) 

o 20c 20c 

A check that our choice of variables is reasonable 
may be made here by letting (/ tend to infinity while 
keeping oc and 0 finite. Only the second and fourth 
terms contribute, and they yield 

1..- log (1 - oc()) + 4i/(), 
vO 1 + ex() 

which is just the expression in dimensionless variables 
of the expression (22). Hence, (/2 is a suitable measure 
of the size of the system. 

The weak-coupling limit is obtained by setting 
oc = 0 in Eq. (31). This limit has been discussed 
extensively in I, where it was pointed out that con
tributions to poeoN', t) appear which are not analytic 
in oc, at ex = O. However, these effects arise only if 
one retains in Eq. (31) first-order terms in oc. When 
this is not done, Eq. (J.59a) gives as the weak-coupling 
solution in the infinite limit 

(32) 
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The subsequent calculations in this paper are thus 
accurate to the same order as is Eq. (32) for the large 
system. That is, all complications associated with 
nonanalytic contributions to Po(.N', t) are ignored. It 
should nonetheless be stressed that, although in an 
infinite system nonexponential behavior is associated 
only with the nonanalytic contributions, for the finite 
system being studied here, exponential decay can 
certainly not occur (the relaxation time does not even 
exist), but still no account is being taken of those 
terms in S«() which yield the deviation from the 
purely exponential solution, Eq. (32), in a large 
system. Nonanalyticity at ex. = ° will indeed appear 
in the calculations which follow, but it is due to a 
quite different cause, namely, the finite extent of the 
system. The oscillatory behavior which we shall find 
is thus in no way related to that discussed in I. 

When ex. = 0, only the last term in Eq. (31) remains. 
1t is 

~ sin (a2
(). csc (_!a2

() + (
2

) • csc (+!a2
() + (

2

) 
() 2ex. 2ex. 

-4 sin (a
2

() • (33) 
()[cos (a2jex.) - cos (a2

()] 

It is the appearance of cos (a2/oc) in Eq. (33) which 
brings in the non analyticity at oc = 0, referred to 
above. However, cos (a2/ex.) is always some number 
€ say, lying between -1 and + 1. A consistent 
approximation scheme can be developed therefore by 
treating oc as sufficiently small, so that Eq. (33) is the 
only significant contribution to S«(), and then 
simply treating € as a further parameter of the problem. 

FIG. 4. A graphical illustration of the 
numerical method used to solve Eq. (36) 
for the pole locations. The dotted line 
represents O[cos (a2/rx) - cos (a20)] and 
the full line represents 4 sin (aIO). 

§ 0.0 

-2.0 

-4.0 

That this is a reasonable approach will be demon
strated by the numerical calculations discussed in 
Secs. VIII and IX. The use of the expression (33) for 
S(O) leads to a great simplification of the constant 
term (27) in Po(.N', t): 

1 1 ----=---
1 + S (x = ia) 1 + S «() = 2i/a) 

= (1 + 2a sinh 2a )-1 (34) 
cosh 2a - € 

When a is large, € may be neglected with respect to 
cosh (2a), and Eq. (34) can be approximated by 

1 
(35) 

1 + 2a tanh 2a 
This expression yields the asymptotic behavior of the 
constant term as the system becomes large. It can be 
seen that it falls off fairly slowly as a [= (ex.'I])t] 
tends to infinity. The zeros of 1 + S«() may also be 
located by using Eq. (33) for S«(). They are at the 
solutions of the transcendental equation 

4 sin (a2() = ()[cos (a2/oc) - cos (a2()], (36) 

excluding the trivial solution () = 0, at which (33) 
does not vanish. It can be seen at once that if () 'J) is 
a solution to Eq. (36), so is -()'J)' The solutions 
may be found by various approximate methods, of 
which the simplest is a graphical one where the two 
sides of Eq. (36) are plotted so that the points of 
intersection yield those values of () which satisfy the 
equation. This is illustrated in Fig. 4 and is the 
basis of the computation of the solutions of Eq. (36) 
discussed in Sec. IX. 

0.2 0.4 0.6 
8 
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Within the present approximation scheme, the This expression can be expressed in terms of ()p 

solution (30) for Po(Jf, t) is without trigonometric functions by using the fact that 

(.N' t) - __ 1 r d() . ()2 

Po , - 21Ti Jc ()2 + (4/a2) 

X exp [- i'T(02 + 4/(2)"[]. () - . say, satisfies the quadratic equation [from Eq. (36)] 1 ( 4 sin (a2() )-1 
I; - cos (a20) 

(37) 

If () = ()p is a solution of Eq. (36), then the residue of 
the integrand in Eq. (37) is with the solution as 

()2 
2 p 2' exp [- i'T(O; + 4/(2)!] 

()p + (4/a) 
I; ± 4/()P(1 + 16/(); _ 1;2)! 

q = 1 + (16/();) , 
(39) 

{ 
d (() 4 sin (a

2
() ) J }-l 

X dO - I; _ cos (a2() 9=9. 
1 where the minus sign is to be taken with the smallest 

()2p • exp [_ i'T«()2p + 4/(2)"[] 
----"---=-...;.....-'-2"'--:....-'-2-'----. (38) value of Op and alternate values thereafter and the 
«()2 + 4/(2). {1 _ 4a [€Cos (a fJ p ) - 1]} plus sign with the intermediate values. Putting Eq. 

P [I; - cos (a2()p)]2 (39) in Eq. (38) yields, for the residue at ()1" 

(); . exp [_i'T«()2 + 4/(2)1] .[1 ± a
2

1; (()2 + 16 )1 _ ~(()2 + 16 )J-1 
0; + 4/a2 p (1 - 1;2)1 p (1 - 1;2) 4 P (1 _ 1;2) 

with the above prescription for ±. We may now write the solution (37) in the form 

Po(Jf, t) = (1 + 2a sinh 2a )-1+ 2 2&; . cos ['T«(); + 4/(2)1] 
cosh 2a - I; 9,>00; + 4/a2 

X [1 ± a
2

1; (()2 + 16 )1 + ~ (()2 + 16 )J-1 
(40) 

(1 - 1;2)t p (1 _ 1;2) 4 p (1 _ 1;2) , 

where the summation extends over the positive solu
tions of Eg. (36). Equation (40) is then the complete 
solution to the problem of spontaneous emission in 
the weak-coupling limit. It is the complete solution 
because, in this limit where 0(. -+ 0, the range of 
validity of the expression (31) for S«(), and hence of 
(33), extends over the whole range of (). In the next 
section we shall verify that this solution, though 
complicated, goes over in the limit, as a -+ 00, to 
the purely exponential solution, Eq. (32). 

VI. RECOVERY OF THE EXPONENTIAL 
SOLUTION 

An examination of Fig. 4 reveals that the locations 
of the zeros of I + S(O) are such that there is one 
zero in each range of length TT/a2. In fact, the larger 

values of ()p are well approximated by nTT/a2 (n is a 
positive integer). This can be seen by noticing that as 
the fluctuation of () [I; - cos (a2()] becomes very large 
with e, the range of e within which the value of this 
expression lies between +4 and -4 becomes small 
and close to 

The use of these values of () p should be a permissible 
approximation for large values of n, large values of 
a2 , or in the special case that I; = iTT. Certainly, for the 
purpose of investigating the limit of the solution 
(40) when a -+ 00, it is sufficient to use the values 
nTT/a2 for the e p' If this is done, then the time
dependent term in Eg. (40) becomes 
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This form is of use for the evaluation of the limit of the time-dependent part of Po(J~" t) when (1 -4- 00. 

But if one wishes to consider the case where (1 is not too large, it is better to use the more exact expression 

I 2[(-l)ncos-
1

e + n7lY cos (2.{[(-ltcos-1e + n7T]2 + 4(12}!) 
n~O [( -It cos-1 e + n7T]2 + 4(12 (12 

[ 
+1 (12e ([(-ltCOs-1e+n7T]2 16)I (12([(-ltCos-1e+n7T]2 16 )J-1 

x 1 + (-It + + - +, 
(1 - e2)! (14 (1 - e2) 4 (14 (1 - e2) 

where 
0< cos-1 e ::;;; 7T, cos-10 = 27T. 

When (1 is small, clearly only the exact result, Eq. (40), can be used. 
When (1 becomes large, the two summations in the expression (41) appear as approximating sums to 

integrals. One can in the limit treat n/(12 = k, say, as a continuous variable, and one obtains that the limit of 
a summation is the integral over k of the limit, as (1 -4- 00, of (12 times the summand. The first of the two sums 
becomes, in the limit, 

2 (00 dk . cos (27Th) . [ 2e !. (7T2e + 4 )! + (7T2k2 + 4 )J-1 

Jo (1 - e2) (1 - e2
) (1 - e2

) 

and the second, 

2 (OOdk' cos (27Th)' [ -2e!. (7T2k2 + 4 )! + (7T2k2 + 4 )J-1 

Jo (1 - e2
) (1 - e2

) (1 - e2
) 

Since we know already that the constant contribution to Po(.N', t) vanishes as (1 -4- 00, the final result for 
Po(.N', t) in the limit is 

.N' t - 4 (00 dk cos (27Th)[7T2
k2 + 4/(1 - e2

)] 

poe ,) - Jo -4e2/(1 _ e2)[7T2k2 + 4/(1 _ e2)] + [7T2k2 + 4/(1 _ e2)]2 

= 4 (00 dk cos (27Th) = 2f+00 dk. e21TikT • 

Jo 7T
2k2 + 4 -00 7T2k2 + 4 

(42) 

We may notice that the extra parameter e, which was 
introduced because of the nonanalyticity of S(O) at 
oc = 0, has disappeared from Eq. (42), in accord 
with the statement that the weak-coupling limit 
contained no nonanalytic contributions in the infinite 
limit. Equation (42) is easily evaluated by closing the 
integral in the upper half-plane of k. This is permitted 
by Jordan's lemma, since 27TT > O. The value of the 
integral is calculated from the residue at k = 2i/7T, 
and we get the result 

Po(.N', t) = e-4T
• 

This result is precisely Eq. (32). We have thus proved 
that the solution, Eq. (40), does indeed yield the 
simple exponential solution when (1 -4- 00. 

VII. DISCUSSION OF NUMERICAL 
CALCULATIONS 

The chief interest of the solution (40) lies 
in the information it yields about the behavior of 
systems where (1 is not large. It is of importance to 
know the relative orders of magnitude of the first 
constant term in Eq. (40) and the second time
dependent term at the various stages of evolution 

of the system. In particular, the way in which the 
time dependence approaches or differs from the 
exponential form should be studied over a considerable 
range of the variables (1 and T, on which Eq. (40) 
depends. It will be useful also to see to what extent 
the extra parameter e can influence the result. It is 
only through e that the actual physical value of the 
coupling parameter oc enters the weak-coupling 
treatment. 

To this end, a numerical investigation of Eq. (40) 
has been undertaken. Throughout, oc has been taken 
as small, in the sense mentioned in Sec. V. That is, 
S(O) can be taken to be given by the expression (33), 
and its assigned value is then used to calculate e. This 
is reasonable inasmuch as the contributions to Po(.N', t) 
which are thereby neglected [they come from the 
terms other than the last in Eq. (31)] are proportional 
to at least one power of oc. On the other hand, the 
range of oc for which this scheme is meaningful may 
be discovered by verifying that the neglected terms in 
Eq. (31) are, in fact, small compared with (33) within 
this range. 

In the next section, the first term of Eq. (40) will 
be investigated numerically in detail as a function of 
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(X. and 'YJ. The quantity 'YJ is chosen as the variable 
rather than (1 because it is possible to investigate this 
term, Pc(oc, 'YJ), say, independently of considerations 
of time evolution, and hence it is irrelevant with regard 
to the dynamics whether or not one scales the measure 
of the size of the system. The suitability of 'f} appears 
since it measures length in units of the wavelength of 
the radiation in resonance with the energy gap in the 
atom. On the other hand, (12 measures length in terms 
of the time, as measured by the scaled variable T, 

which it takes for the radiation to cross the system. 
Thus, where there is no time dependence, 0-2 is not 
especially appropriate. A further advantage of using 
'YJ ~s that it is possible to compute Pc, not only from 
its expression in Eq. (40), but also from the complete 
expression in the solution of the master equation 
without approximation on oc. This quantity is [see 
(27) and (6)] 

(43) 
where 

. 40c 
S(ia) =--

40c + 'f} 
00 

+ 2oc'YJ I [7T2n2 
- 7T'YJn + 'YJ(OC + t'YJ)r1• (44) 

n~l 

The quantity (43) is calculated for a range of values 
of oc and 'YJ, and then is compared with the two 
expressions (34) and (35). In this way, not only can 
we find how small oc should be for the weak-coupling 
limit to be meaningful, as discussed above, but also 
see the size of the system beyond which the parameter 
E becomes inimportant. Further, one may hope that 
these limits have meaning for the time-dependent part 
of Eq. (40), since the dynamics of the problem is 

contained entirely in the function S when it is con
sidered over the whole complex plane. 

In Sec. IX, an analysis is made of the second term 
in Eq. (40), PT' say. For this calculation, it is necessary 
to use 0- rather than 'f} to measure the size of the system, 
since the arguments of the previous paragraph are 
no longer pertinent. Numerically, of course, both 
parameters will still be well defined. The calculation 
is performed both with the expression (41), 
which uses the assumption of even spacing of the 
roots of Eq. (36) at OJ) = n7T/0-2 , and also with the 
proper expression, given in Eq. (40), using numeri
cally computed solutions of Eq. (36). We may expect 
that the expression (41) will afford a good estimate of 
PT for sufficiently large (1 and small T, and in this 
way we shall see to what extent this is so. 

VIII. ANALYSIS OF THE CONSTANT TERM 

The first expression for Pc to be computed numeri
cally in this study was (43) by using Eq. (44). It is 
readily seen that the summand in the second term of 
Eq. (44), when considered as a function of n, has a 
minimum at n = 'YJ/27T and that, for values of n greater 
than this, the terms in the sum rapidly decrease in 
magnitude. For this reason, the number of terms 
included in the computation varied from a minimum 
of 100, for small 'YJ, up to a maximum of 100 000, for 
'f) = 10000. In all cases, it could be seen that the 
terms at the point of truncation were considerably 
smaller than the limits of accuracy which have been 
attained in the graphical displays of the results. These 
are the full curves in Figs. 5 and 6 for values of (X. = 
0.1 and 0.01, respectively, and for a range of 'Y} from 0 
to 25. 

1.o....------,-----..,.------"1,-----,-----, 

(""""'" a = 0.01 

0,8 ! 
~ 0.6 

0.4 

0.2L---------5~.0--------~1~0~.0~------~15~.~0------~2~O~.0~----~ 

FIG. 5. A comparison of the 
dependence of p. on 11 obtained by 
using Eq. (34) (dotted line) vs (43) 
with (44) (full line) for the case 
oc = 0.01. 
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FIG. 6. A comparison of the 
dependence of p, on 'YJ obtained by 
using Eq. (34) (dotted line) vs (43) 
with (44) (full line) for the case 
IX = 0.1. 

0.8 

! 
0.4:' 

0.2 

a = 0.\ 

, 

" 

". 

---

5.0 10.0 15.0 20.0 

The next step was to compute Pc using the two 
closed expressions (34) and (35), which are, respec
tively, the weak-coupling limit and its asymptotic 
form for large 1] of (43). Values of Eq. (34) are dis
played. These are the dotted curves in Figs. 5 and 6 
for the same values of IX and range of 1] as before. It 
can be seen that the weak-coupling scheme is ade
quate for 1] greater than around 5. For values of 1] 

less than this, it is clear that terms other than that of 
lowest order in IX become important in (43). 

The weak-coupling approach fails in the regime 1] 

less than 5 not only in the sense that Eq. (44) should 
be used in the expression (43), but also in that for 
consistency higher terms in the perturbation solution 
of the master equation must be included. This point 
will be further discussed in Sec. X. In Table I, a 
comparison is made between the expressions (34), 
(35), and (43) with (44) for IX = 0.1. We see that the 
three expressions yield agreement for 'Y} ~ 100 roughly, 
and hence in this region the effect of the parameter 
€ has become negligible. 

Certain general features emerge from these results. 
First, for any IX, Pc tends to the value t as 1] --+ 0, 

TABLE I. A comparison of the dependence of p, on log!o 11, 

using Eqs. (34), (35), and (43) with (44), for IX = 0.1. 

log!o 'YJ Eq. (34) Eq. (35) Eqs. (43), (44) 

-4 0.3333 1.0000 0.5000 
-3 0.3339 0.9996 0.5006 
-2 0.3388 0.9960 0.5061 
-I 0.3836 0.9620 0.5545 

0 0.6094 0.7385 0.7528 
+1 0.3881 0.3415 0.4093 
+2 0.1361 0.1365 0.1386 
+3 0.0476 0.0476 0.0479 
+4 0.0156 0.0156 0.0156 

when expression (44) is used in the calculation, but 
to the value ~ when the expression (34) is used. These 
limits are apparent from the analytical form of (44) 
and (34). This phenomenon is discussed in Sec. X. 
Then it is seen that Pc, taken as a function of 'Y} for 
fixed IX has a series of maxima, of which the first is 
found where 1] is approximately 2. The variation of 
Pc between these maxima is an indication of the effect 
of the nonanalyticity in IX of the expressions (34) and 
(44) for S(ia), This is the case since the nonanalyticity 
is brought in by the parameter E, neglect of which 
yields the monotonic function (35). The third feature 
is that Pc tends fairly slowly to zero as 1] --+ 00, as 
predicted by (35), and that this expression is in fact 
a good estimate of Pc for values of 'Y} greater than 
around 100. 

IX. ANALYSIS OF THE TIME-DEPENDENT 
TERM 

The computation of PT(7) was performed first of 
all by using the expression (41). The calculation was 
based on a value of 0.1, for IX, and two values of 0'2 

were examined, namely I and 10, corresponding to 
1] = 10 and 'Y} = 100, respectively, for which values, 
as we have seen in the last section, the weak-coupling 
scheme is likely to be valid. The values of E corre
sponding to these choices of 1] are, respectively, 
-0.8391 and +0.8623. The locations of the roots 
() p of Eq. (36) are estimated in the expression (41) to 
be the points mrJO'2 , for positive integral n. Thus, for 
0'2 = I, these roots are at the points mr, and for 
0'2 = 10 at the points T"'omr. The series in expression 
(41) were truncated for n = 1000. An upper bound 
for the errors thus committed can be obtained by 
using the integral which approximates (41) for large 
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0.8 

0.6 

Eo. 
~ 

-0.2 

-0.4 

1.0 2.0 3.0 

a. This integral [see Eq. (42)] is 

4 r"" cos (27Th) dk . 

Jo 7T
2k2 + 4 

This integral is bounded above by its value at 7' = 0: 

4 . 1"" dk 

o 7T
2k2 + 4 

(45) 

If the series in (41) are truncated at n = N, this 
corresponds to setting k = Nja2 in expression (45). 
The upper bound on the error involved in truncation 
is 

0.8 

0.6 

0.4 

E 0.2 
ct: 

0.0 

-0.2 

-0.4 

f"" dk 4a2 

4 22 ""-2-,forlargeN. 
N/,,2 7T k + 4 7T N 

(46) 

5.0 10.0 15.0 

(j = 1.0 

4.0 5.0 

FIG. 7. A comparison of the 
dependence of PrlT) on T using the 
approximately determined pole lo
cations (dotted line) vs the exactly 
determined pole locations (full line), 
for a2 = 1.0. 

In Figs. 7 and 8, the results of the calculation of (41) 
are displayed (the dotted curves) for a2 = 1 and 
a2 = 10, respectively. As a function of 7', PT presents 
an extremely complicated behavior. At T = 0, it has 
a large value which rapidly decays to the neighborhood 
of zero as the arguments of the cosines move out of 
phase. Then, when 7' reaches the vicinity of a multiple 
of a2, the phases line up somewhat and rapid fluctua
tions take place, the exact structure of which is very 
complicated and may well not be reproduced with 
much accuracy by the numerical calculation, even 
though the calculations were done in "double pre
cision." The lining up of phases can never be more 
than approximate, since the periods of the cosines 
are not linearly related in any way. 

/ 

20.0 25.0 

FIG. 8. A comparison of the 
dependence of pT(T) on T using the 
approximately determined pole lo
cations (dotted line) vs the exactly 
determined pole locations (full line), 
for a2 = 10.0. 
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It is possible to obtain numerical values for PT 
based on the exact expression for it given in Eq. (40): 

00 20~ 
PT(T) = ~ 02 + 4/ 2 

n-l n a 

X cos [T(O~ + 4/(2)!] [1 + (-1t a
2

e! 
(1 - e2

) 

(
'02 16)! a

2
(02 + 16 )J-1 

X n + (1 _ e2) +"4 n (1 _ e2) , 
(47) 

where, again, the On are the successive positive roots 
of Eq. (36). In Fig. 4, the graphical method of obtain
ing these roots was shown, and the numerical pro
ced ure used was analogous: The expressions 4 sin (a20) 
and O[e - cos (a20)] were evaluated at each point 
of a very fine mesh, and the points at which these 
two expressions were most nearly equal were taken 
as the roots. In this way, the On up to n = 190 
and n = 600 were calculated for a2 = I and 10, 
respectively. These values were then used in Eq. (47) 
and the results are displayed in Figs. 7 and 8 by the 
full curves. It can be seen that, as we expected, 
agreement between these exact curves and those 
plotted using the expression (41) is better for a2 = 10 
than for a2 = I, and that,in both cases, for small T 

(except very close to T = 0, for a2 = I) agreement 
is satisfactory. Again, in the neighborhood of T = 

an integral multiple of a2
, rapid fluctuations occur, 

but their detailed structure bears little resemblance 
to that given by the expression (41). We may again 
emphasize that the numerical calculation is probably 
too delicate for the results to be certain in these 
sensitive regions. 

It should be verified that at T = 0 

Pc + PT(O) = I. 

This is indeed the case for the two calculations 
described here, for which we have 

and 

for a2 = I, Pc = 0.3881, 

PT = 0.6076, 

for a2 = 10, Pc = 0.1362, 

P1' = 0.8504. 

The apparent slight discrepancy in the latter case is 
accounted for by the error in truncation of the series, 
Eq. (47), after 600 terms, since the error estimate (46), 
which is, of course, equally valid if N is sufficiently 
large for both (41) and (47), is 0.0133. It has been 
remarked that (46) is just the value of the contribu
tion of the neglected terms in Eq. (47) at T = 0, and 
indeed the addition of 0.0133 to PT(O) yields the 

correct result. We may incidentally expect that the 
truncation error in PT' for T > 0, should be con
siderably smaller than 0.0133, since the cosines in the 
neglected terms never are in phase after T = O. 

X. DISCUSSION AND CONCLUSIONS 

In this paper a model has been studied in which it 
was possible to obtain an expression for the exact 
solution of the master equation for the problem of 
spontaneous emission in a finite system, within the 
framework of the weak-coupling approximation. It 
was possible to define dimensionless variables (IX, a, 
and T) and to perform the calculation to all orders in 
both a and T but to zeroth order in IX. The reason for 
this choice of variables should perhaps be stressed 
here: Because we have been interested in a system 
in which true irreversibility may manifest itself in an 
infinite system (even in the weak-coupling limit), it 
was necessary to scale the measures both of the time 
and of the size of the system so that the evolution of 
the diagonal element Po(.N', t) of the density matrix 
be given at all times and so that the time for informa
tion to cross the system be finite no matter what 
approximation be chosen for the coupling. This scaling 
made it possible to define the limit of weak coupling 
in a quite unambiguous fashion. It was further seen 
that the limit of a large system-usually caIIed the 
thermodynamic limit-was obtained by letting one 
parameter only, namely a, tend to infinity. 

The result takes the form of a constant term plus a 
time-dependent one, expressed as the sum of residues 
at a series of poles along the real axis of a Laplace
transform variable. This series could be approximated 
in various ways within certain regimes, and in the 
last section, it was computed numerically in two ways, 
one based on the exact expression, the other on an 
approximate scheme. Although these calculations 
were too delicate to be quite certain around sensitive 
values of the time, the general picture is clear: After 
an initial decay to a value near zero, the series gives 
rise at fairly regular intervals to rapid and large 
fluctuations, the size of which never quite attains the 
initial value, but may nonetheless be large even after 
very long times. The constant term is also of great 
interest. It has already been remarked that the weak
coupling form (34) is all that may legitimately 
be taken from the calculations of this paper, since the 
terms of S (0 = 2i/(2) proportional to IX, 1X2, ••• must 
for consistency be taken only in conjunction with 
terms coming from higher orders in the perturbation 
series leading to the master equation. The constant 
term appears in place of the finite relaxation time 
which characterizes an infinite system. It arises 
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because, as has been seen, the relaxation time for a 
finite system is formally infinite, and it is its disappear
ance as the system becomes large which leads to the 
singularity of S(z) at z = 0, the singularity that 
permits the definition of the relaxation time. 

Along with the absence of time irreversibility in a 
finite system goes, of course, the possibility of Poincare 
recurrences. The numerical estimation of the fre
quency of these is lengthy, and this study will be the 
subject of a forthcoming paper by the authors. In 
theory, however, their existence is apparent from the 
solution (40) of the master equation. It is none
theless certain, as is seen from the possibility of 
retrieving purely exponential behavior in the large 
system limit, that the frequency of recurrence goes to 
zero as the system increases in size. It is of note that 
the calculations leading to Eq. (40) do indeed establish 
the existence of Poincare recurrences in a model which 
is not exactly soluble and in which infinite system 
irreversibility cannot be shown to be the result of 
working in a representation whose quantum numbers 
are not those of the exact normal modes. This is in 
contrast to the work of Mazur and Montroll4 in 
which the complete dynamics of an assembly of 
coupled harmonic oscillators can be given in simple 
mathematical form. The same is true of the detailed 
work of Rubin5 in which the deviation from exponen
tial behavior of the momentum autocorrelation 
function of a heavy particle in a finite crystal is dis
cussed. The spirit of the calculations of this paper is 
nonetheless close to that of both of the studies 
mentioned, and the formal links are obvious. 

In Sec. VIII, the constant term has been examined 
as a function of ex. and 'rj. This particular study 
demonstrated various phenomena clearly. First, by 
maintaining ex. constant and varying 'rj, one produces 
rapid changes in the nonanalyticity parameter E, which 
manifest themselves by the large fluctuations of the 
constant term for small rJ. Then, for 'rJ less than 5, 
the growing importance of contributions proportional 
to ex. (relative to the weak-coupling expression) indi
cates the breakdown of the weak-coupling approxima
tion. Another reason for doubting results for small 
values of 'rj can be found in the time-dependent part 
of the solution. The range of validity of Eq. (31), 
from which Eq. (34) was derived, was 

-ljex. < Re () < Ijex. , 

whereas the location ()l of the smallest root of Eq. 
(36) is about 

7Tja2 = 7T/ex.'rj. 

Thus, unless 'rj > 7T, ()1 lies outside the range of 
validity of the expression which permits its calculation. 

Thus, there are good reasons to suppose that when 'rj 

is too small, the whole concept of weak coupling 
seems to be meaningless. Physically, the cause of the 
breakdown is likely to be that, when the emitted 
photon is constrained to remain in a length less than 
a few wavelengths, it is in effectively constant inter
action with the 2-level system. Thus, the condition 
frequently stated6 as necessary for any weak-coupling 
approach, namely, the existence of widely separated 
time scales for the interaction and for the relaxation 
(here for large change in the density matrix), is no 
longer satisfied. Not only does the interaction time 
scale become effectively infinite, but the time over 
which large variations of the density matrix take place 
becomes very short as 'rj becomes small. 

The constant term in the solution, Eq. (40), has a 
further significance. Since the time average of PI' 
over times considerably longer than that required for 
its initial decay is zero, the average of Po(.N', t) itself 
over such periods is just Pc' This quantity is thus a 
measure of the proportion of time which the 2-level 
system spends in the excited state relative to that 
spent in the ground state. It corresponds in this way 
to the observation that, whereas the spontaneous 
emission problem in an infinite system is essentially 
a problem at zero temperature, as soon as the system 
becomes finite in extent, there is a nonzero tempera
ture which causes the 2-level atom to be in its 
excited state for a finite fraction of the time. It is even 
possible (this is the case when Pc> !) that the tem
perature be negative. 

The next remark has to do with the behavior of the 
time-dependent part of the solution for small rJ. In 
the limit of a very small system, only one term of the 
series, Eq. (47), contributes, namely, the first, for 
which 

lim a2()i 
0'2_0 

is finite. The weak-coupling result in this limit is that 
Pc = t, that PI'(O) = i, and that PT oscillates between 
i and -I, with a frequency which becomes infinite as 
a2 ->- O. This unphysical result is just another mani
festation of the failure of Eq. (34) for too small 
systems. It is interesting to note, however, that if Eq. 
(44) is used to calculate Pc, its limiting value is t, 
and so in this case Po(.N', t) oscillates with infinite 
frequency between 1 and O. This is no more than an 
expression of the uncertainty principle. 

Another feature of the present investigation is that 
it shows how the well-known analytic behavior of the 
Laplace-transform integral for Po(.N', t) in the thermo
dynamic limit appears out of the much more com
plicated structure of the integral in the finite case. 
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Apart from the disappearance of the constant term, 
the frequently stated7•8 remark that a series of poles 
on the real axis in the integral goes over to a Cauchy 
integral with singularities off the real axis is verified. 
The integral in expression (42) is indeed just the 
Cauchy integral limit of the sum (40), and it was 
crucial to the discovery of exponential behavior that 
indeed the integrand in (42) has a pole away from the 
real axis. The problem of the extent to which the 
thermodynamic limit, which approximates (physically) 
a finite system by an infinite one, can be taken as 
valid may be examined in the light of this analytic 
structure. Indeed, it can be seen from the numerical 
res.uIts in Sees. VIII and IX that a system of length up 
to ·100 times the wavelength of the resonant radiation 
is not at all well described by the infinite-system 
solution. If one takes as at least one necessary con
dition for the success of this solution that the constant 
term Pc should be very small, then the expression (35) 
shows that, for (:J. = 0.1, 'Y) must be of order 104 before 
Pc falls to a value of I % of Po(X,O). For weaker 
coupling, the system must be even larger. 

where the logarithm in Eq. (28) has been expressed by 
means of an inverse tangent function whose value is 
to lie between 0 and 7T, for y > O. All the terms in 
Eq. (AI) are clearly real for 'Y}, y > 0, and it is evident 
that the first three terms, T1 , T2 , and Ta , say, are 
negative, and the last, T4 , is positive. We have to 
show, then, that 

T4> -(Tl + T2 + Ta)· 

We may readily find an upper bound for - Ta. 
Since 

~ -t-- =::; 1, for ~ ~ 0, 
e' - 1 

then 

_ Ta S 16oc1j(1j + 27T) 

7T 

x 1''' ~4 + 2e[(1j + 27T)2 _d~] + [e1j + 27T)2 + y2]2 

_ 4cx'Y} 

- (1j + 27T)2 + y2' 

It seems reasonable to state that the question 
raised by Zwanzig1 as to the effect of small-scale 
"noise," of order I/L, has been answered in the 
context of the Wigner-Weisskopf atom. Because of 
the simplicity of the model, it has been possible to 
see how the periodic functions which are character
istic of the solution of a master equation for a 
finite system yield the exponential decay associated 
with an irreversible process in the thermodynamic 
limit. 

ACKNOWLEDGMENT 

The authors are indebted to Professor l. Prigogine 
for a number of interesting discussions. 

APPENDIX 

We have to prove that the quantity S(~) ofEq. (28) 
is positive for all imaginary ~ and any positive 'Y}. 

Since S(iy) = S( -iy) [see expression (17)], it is 
sufficient to prove that S(iy) is positive for positive 
y. Putting ~ = iy into Eq. (28) yields 

(Al) 

So then, 

(Tl + T2 + Ta) < 2 4 
- 2cx1j - r/ + y2 + (1j + 27T)2 + y2 

whereas 

+ ~ tan-1 ( 2y('Y) + 27T) ) 
7Ty (r; + 27T)2 _ y2 

6 1 
~ --; + -, for all r;, (A2) 

y y 

.Ji > sinh y 
2rJ.r; - y cosh2 ty 

tanh ty f II = ---, or a r;. 
~y 

(A3) 

Hence, the result holds if 

tanh ty > 3/y + l ' 
that is, if y > 6.1, roughly. Similarly, for all y < 6.1, 
it can be seen that the result holds if 1j > i7T, roughly, 
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TABLE II. A comparison of Eq. (A2) and the term T./2rt.T}. for 
TJ = 0.0,0.7, and i1T, and for a range of values of y. 

y 

TJ = 0.0 
Value of 

Eq. (A2) 

T. 
2rt.T} 

T} = 0.7 
Value of 

Eq. (A2) 

T. 
2rt.TJ 

TJ = ~1T 
Value of 

Eq. (A2) 

T. 
2rt.1] 

0.0 0.5 1.0 2.0 4.0 6.1 

8.202 2.200 0.690 0.287 0.186 

16.332 4.328 1.313 0.519 0.329 

4.254 2.875 1.889 0.616 0.266 0.175 

8.475 5.725 3.013 1.210 0.514 0.329 

0.957 0.882 0.722 0.449 0.235 0.160 

2.000 1.848 1.522 0.964 0.500 0.328 

for Eq. (A3), being a lower bound for T4/2rt.'Y) , is 
never less than 0.322 in this range ofy, while the 
expression (A2) is equal to 0.160 for y = 6.1, 1) = ~7T. 

Since - T1 , - T2 , and - Ta are all decreasing func-

tions of 'Yj, values of 'Y] greater than t7T will give a 
positive value ofEq. (AI), for y < 6.1. 

It is simplest in the range 0 < y < 6.1, 0 < 'Y] < t7T 

to check numerically that the expression (A2) is 
smaller than T4/2rt.1) , rather than to attempt a more 
sophisticated analysis. Sample results are given in 
Table II, from which the result is evident. Further, it 
is clear that Eg. (AI) is always positive if either y or 
'Y] is zero. 
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A method is described for calculating the reflection of a plane wave of arbitrary incidence from a flat 
surface which has a spatially modulated surface impedance in one particular direction. Choosing a 
sinusoidal form for the modulation, the reflected wave spectrum is calculated. It is shown that, in general, 
for any arbitrary incidence, an infinite number of reflected modes are excited. Also, we find that the 
mode of order n is coupled to modes of order n ± 1. 

1. INTRODUCTION 

Many interesting physical phenomena are associ
ated with reflection and guiding of waves over 
surfaces which have a periodic structure. Many years 
ago, Lord Rayleighl propounded a theory for the 
scattering of sound from a periodic surface with a 
sinusoidal profile. Since then, many related investiga
tions have been pursued and an excellent and 
comprehensive review is found in the book by 
Beckmann and Spizzichino.2 Many of the essential 
features of scattering from periodic nonuniform 
surfaces can be found when dealing with a flat 
surface that has a spatially varying impedance. In 
the present paper, we use such a model and focus 
attention on the case of a plane wave at arbitrary 
incidence with respect to the orientation of the periodic 
striations of the surface impedance. The emphasis in 
the present paper is on the technique used to solve 
the problem rather than the physical applications. A 
number of extensions of the theory are also described 
briefly. 

2. FORMULATION 

We consider a flat imperfectly conducting surface 
of infinite extent. The surface impedance character
izing the boundary is assumed to be periodic in the 
x-coordinate direction, while it is constant in the y
coordinate direction. The region z > 0 above the 
surface is free space. The problem posed is to calculate 
the reflection of a plane wave incident at an arbitrary 
angle. However, to simplify the discussion initially, 
we take the y component of the incident electric vector 
to be zero. 

The boundary conditions on the tangential com
ponents of the electric field E and the magnetic field 
Hare 

Ea; = -17ofl(x)H", 

E'/I = 17oflIHa;, (1) 

at z = 0, where 170 = (flo/Eo)! is the characteristic 
impedance of free space (~ 1207TD in MKS units). 

Thus, flex) is an x-dependent dimensionless surface 
impedance, while fll is a constant dimensionless 
surface impedance. For present purposes, we choose 

!lex) = floO + M cos ax), (2) 

where flo is constant, M is a modulation index, and 
the period of the modulation is 27T/a. 

The y component of the incident magnetic field 
HP is written as 

H; = Hoe-iPa;e-iY"e+ikCo', (3) 

for an implied time factor e+iwt. Here, f3 = kSo cos r/>, 
y = kSo sin r/>, So = sin e, Co = cos e, and k = 
(Eoflo)tw is the free-space wavenumber. We readily 
confirm that (\72 + k2)H; = O. Also, we see that e 
is the angle which the incident wave vector subtends 
with the z axis, while r/> is the angle subtended by the 
plane of incidence and the x axis. 

3. THE HERTZ POTENTIALS 

In terms of electric and magnetic Hertz vectors 
II and II *, the electromagnetic fields in the region 
z > 0 are quite generally obtained from 

E = (k2 + grad div) II - i(floW/17o) curl II*, (4) 

170H = (k2 + grad div) II* + iEow17o curl II. (5) 

In order to match boundary conditions in the present 
problem, it is only necessary that II and 11* have y 
components which we designate II and II* (omitting 
the subscript y). Thus, we can write 

( 
2 (

2
) E" = k + oy2 II, (6) 

17oH" = (k2 + ::2) II*, (7) 

E - o2II + ik oII* 
a; - oxoy oz ' (8) 

o2II* on 
17oHa; = oxoy - ik oz ' (9) 

in terms of the" Hertz potentials" nand n *. 

1437 
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First of aU, we observe that (3) can be obtained 
from a Hertz potential n; given by 

(10) 

where K = (k2 - y2)-lHo. We now write suitable 
expressions for the total "Hertz potentials," keeping 
in mind that the reflecting surface is periodic in the 
x direction and constant in the y direction. Thus, on 
using a certain amount of hindsight, 

+00 

We now multiply both sides of (14) and (15) byeinax 

and integrate, with respect to x, from 0 to 21TJa. At 
the same time, we note that 

~ ei(n-m)ax dx = 0, L
217'a 

21T 0 
if n =;!: m, 

= 1, if n = m, (16) 

where n can be any integer including zero. Then, from 
(15) alone, we discover that 

n = Ke-iy'Ue-i/i", L Bme-ima"'e-ikCmZ 
m=-oo 

and 
(11) Bn = -a1y[(,8 + na)An + ,8~,,]/(k2 - y2 + a1k2C,,), 

(17) 

n * = Ke-iYlIe-i/i", ( eikCoZ + m~oo Ame-ima"'e-ikCmZ ) , 

(12) 

where the summations are to include all integers, 
Bm and Am are coefficients, and 

kCm = [k2 - «(:J + ma)2 - y2]! 

= -i[«(:J + ma)2 + y2 - k2]!. (13) 

We readily confirm that the right-hand sides of (11) 
and (12) satisfy the wave equation. Also, each 
expression varies with y in accordance with e-iYlI as 
specified by the incident wave. In addition, we see 
that appropriate radiation conditions are satisfied as 
Z --+ 00, whether em is real or imaginary. The latter 
occurs when ({3 + ma)2 > y2 - k2, in which case the 
reflected modes are evanescent in the positive z 
direction. 

where b" = 1, if n = 0, and b" = 0, if n =;!: O. This 
tells us immediately that the electric Hertz potentials 
vanish if either or both a1 = 0 and y = O. Also, we 
see, in general, that only electric modes of order n are 
coupled to magnetic modes of order n. 

On applying the orthogonality condition (16) to 
(14), we obtain 

-y(,8 + na)B" + k2C"An - k2Cob" 

= -ao(k2 - y2)(A" + tA,,+lM + iA n_1M) 

- ao(k2 - y2)(bn + i bn+1 M + ib n_ 1M). (18) 

We eliminate B" from (18) by using (17) to yield 

where 

r = 2 
4. APPLICATION OF BOUNDARY CONDITIONS n Mao(k

2 _ y2) 

Using Eqs. (6)-(9) for the tangential fields along 
with (11) and (12) for the potentials, we find that the 
boundary conditions specified by (1) now lead to the 
system 

+00 
L [-y({3 + ma)Bm + k2CmAm]e-imaX - k2CO 

m=-C() 

+00 
X I Am[e-ima", + iMe-i (m-l)ax + tMe-i(m+lla",] 

m=-oo 

and 
+00 

(k 2 _ y2) I Bme-ima", 
m=~oo 

+00 
= -~1 I [y({3 + ma)Am + k2CmBm]e-ima", - ~ly{3· 

m=-oo 
(15) 

and 

r = 2 
- Mao(k2 _ y2) 

X (k2C _ a (k2 _ y2) _ y2(,8 + na){3~l ). 
o 0 k2-y2+a1k2c" 

(21) 

This is an infinite set of coupled equations to solve for 
An. Two special cases of (19) are worth noting. In the 
relatively simple case of normal incidence (i.e., y = 0 
and So = 0), we recover the results given by Lysanov.3 

Then, if we choose the plane of incidence to be in the 
(x,y) plane (i.e., y = 0), we obtain results consistent 
with those given by Oliner and Hessel,4 provided that 
the source plane wave is removed. 
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5. SOLVING THE INFINITE SYSTEM 

To solve the infinite system (19), we first note that, 
for n < -1, we can write 

An_ 1 = _ (r + An_ 2)-1 (23) 
A n-l A ' 

n n-l 

An_~ = _ (r n-2 + An_3)-1, (24) 
A n- 1 A n- 2 

and so on. On inserting (23) into (22), (24) into (23) 
and continuing the process indefinitely, we obtain the 
continued-fraction expansion 

An 1 
--=-

1 r n - ----=---
1 r n- 1 ------

r n-2 - ---==--r n-3 - •• , (25) 

For finite values of the modulation index, the infinite 
fraction may be truncated at a negative integer - N 
which is sufficiently large to achieve the desired 
accuracy. In particular, we can use (25) for n = 2 to 
calculate the ratio A_2/A_1 • 

Working with (19) for n > + I, we find, in a 
similar fashion, that 

_A_n+_l = ___ --=1 __ _ 

An 1 r n+1------
1 r n+2 - ---==--r n+3 - ••• (26) 

which, in particular, can be applied to calculate 
A2/Al to any desired precision. 

We now return to (19) and explicitly display the 
three equations for n = 0, + I, and -I in the form 

Aoro+Al+A_l=r_l, (27) 

AI(r l + X+) + Ao = -1, (28) 

A_I(LI + X-) + Ao = -I, (29) 

where x- = A_2/A_I and x+ = A2/A I · Simple algebra 
now tells us that 

and 
A_I = - (I + Ao)f(l'-l + X-). (32) 

This actually constitutes the final solution of the 
problem since the coefficients En and An are now 
determined in terms of the specified parameters. 

6. SOME SPECIAL CASES 

As a partial check on the results, we can let M 
approach zero,whence (30) reduces to 

Ao = k2CO - l1o(k2 - y2) - y2p2111(k
2 - y2 + I1leCo)-1 

k2CO + 110(k2 - y2) + y2p2111(k
2 _ y2 + I1lk2Corl 

(33) 

and An = 0, if n ~ O. Also, for this special case, we 
see that (17) gives 

Eo = -l1lytJ(1 + Ao)/(k2 - y2 + I1l k 2Co) (34) 

and En = 0, if n ~ O. 
If in addition y = 0, these simplify even further to 

Ao = (Co - 110)/(Co + 110) and Eo = 0, (35) 

which is the expected Fresnel reflection coefficient. 
Another important special case is when the mag

netic field vector of the incident plane wave is parallel 
to the y direction. Then, y = ° and the plane of 
incidence is perpendicular to the y axis. Then, from 
(17), En = 0 as noted previously. The coefficients An 
are still to be found from the coupled set (19), but now 

r n = 2(MI10)-1(Cn + 110) (36) 
and 

L = 2(MI10)-1[Co - 110]. (37) 

Also, as indicated before, this solution is equivalent 
to the one derived by Oliner and Hessel4 for the 
sourceless case (i.e., Ao = 0). 

7. SOME EXTENSIONS AND FINAL REMARKS 

The oblique-incidence solution presented here is not 
quite perfectly general. For simplicity, we set Ell in 
the incident plane wave equal to zero. For an incident 
plane wave of arbitrary polarization, we should allow 
for the existence of both magnetic and electric Hertz 
potentials in the incident wave. Thus, in place of (11), 
we should use 

II = Ke-iYlle-iP", 

X (qeikCoz + m~oo Bme-ima"'e-ikCmz) , (38) 

where q is a constant. The form for TI * given by (12) is 
left unchanged. The reader would now find that (17) 
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is to be replaced by 

Bn = -{!lly(3«(3 + na)An 

- bn [!llk2Coq - (k2 - y2)q - y(3!ll]) 

X [k2 - y2 + !llk2Cn ]-1. (39) 

Then, on completing the derivation, it is found that 
the coefficients An are still given by the coupled 
infinite set (19), but now (21) is replaced by 

r _ = 2[M(k2 - y2)!lO]-1{k2CO + y(3q - !lo(k2 _ y2) 

- y«(3 + na)[(k2 - y2)q + !ll(y(3 - k2qCO)] 

x (k2 - y2 + !llk2Cn)-1}, (40) 

while the equation for r m remains the same as (20). 
The specified polarization of the incident plane 

wave determines uniquely the (complex) constant q. 
Thus, the solution is perfectly general. 

Another extension which is straightforward is to 
allow the surface impedance to have arbitrary periodic 
variation in the x direction. For example, (2) could be 
replaced by 

!lex) = !lo( 1 + ~ Mpe iUP
,"), (41) 

where Mp is the Fourier coefficient for the spatial 

modulation of the impedance variation. For example, 
the summation in (41) could extend from -P, 
-P + I, -P + 2,"', P - 2, P - 1, P, where P 
is finite. Then the derivation proceeds as before, but 
the coupled set given by (19) is now of the form 

A n-P + An- P +1 r n-1'+l + ... + Anr n 

+ ... + An+p_1r n+1'-l + An+p 

= -bs _p '" + r_b n + ... - bx+p , (42) 

where the r's are complicated algebraic expressions 
which reduce to the forms given by (20) and (21) when 
P = 1 and M+l = M_l = tM. 

Finally, we should like to mention that the present 
method can be applied to nonflat periodic surfaces 
provided that the boundary conditions at the actual 
(rippled) surface are transferred to a reference plane 
by an expansion in terms of powers of (height of 
surface)/(wavelength). Clearly, this approach is only 
useful if the expansion parameter is reasonably small 
compared with unity. 
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New York, 1945), 2nd ed., Vol. 2, Sec. 272a. 

2 P. Beckmann and A. Spizzichino, Scattering of Electromagnetic 
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Chap. 2. 

3 Iu. P. Lysanov, Akust. Zh. 4, 47 (1958) [Sov. Phys.-Acoust. 
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4 A. A. Oiiner and A. Hessel, IRE Trans. Antennas Propagation, 
Suppl. 7,5201 (1959). 
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Discontinuity equations are derived for physical-region normal thresholds in all direct and crossed 
channels. The discontinuity is given as a unitarity-type integral with an integrand that contains, as factors, 
the two physical scattering functions corresponding to the two ver'tices of the Landau diagram associated 
with the normal threshold. There is also a third factor, which for the case of a leading normal threshold 
with any number of particles is the Hermitian conjugate of the elastic scattering matrix associated with the 
set of internal lines of the Landau diagram. For non leading normal thresholds below the lowest 4-
particle threshold, the extra factor is defined by an integral equation that resembles unitarity, but has a 
restricted set of intermediate particles. 

1. INTRODUCTION 

This paper is the second in a seriesl devoted to 
calculating discontinuities around physical-region 
singularities of multiparticle scattering functions. The 
aim here is to obtain discontinuity formulas for nor
mal thresholds. These normal-threshold formulas are 
important both in their own right and as the basic 
ingredients of the discontinuity formulas for more 
complicated singularities. 

The main content in this paper consists in the 
derivation of some physical-region identities. These 
identities express, typically, any physical-region 
scattering function as a sum of terms, each consisting 
of a unitarity-type integral over a product of physical 
scattering functions or their conjugates. Each term is 
conveniently represented by a bubble diagram, in 
which plus and minus bubbles represent the connected 
parts of scattering amplitudes and their conjugates, 
respectively, and the lines connecting these bubbles 
represent physical particles. The identities are derived 
from unitarity and cluster properties alone, no 
analyticity property being invoked. Like unitarity, 
these identities hold at all real values of the external 
momentum vectors. Their importance lies in the fact 
that they explicitly display the discontinuity around 
normal thresholds. 

The result that the discontinuity is explicitly dis
played by certain terms in these identities follows from 
certain topological properties of the diagrams that 
represent the other terms, together with some structure 
theorems derived earIier2 that specify the analytic 
structure of bubble-diagram functions. These structure 
theorems say that the bubble-diagram function ME 

corresponding to the bubble diagram B has the fol
lowing properties: ME is singular only at points lying 
on Landau surfaces and only on those Landau 
surfaces L(D) that correspond to Landau diagrams 
D ::JC B. A Landau diagram D::JC B is a diagram 

that is a contraction of a diagram D' constructed by 
replacing the bubbles of B by connected diagrams. 
Moreover, the signs of the Landau <x's of the lines of 
this D' are restricted by the condition that the (in
ternal) lines of diagrams replacing plus or minus 
bubbles must be positive or negative, respectively. 
If only one D ::JC B gives an L(D) passing through 
a point P lying inside the physical region, then the 
function MB can be continued around L(D) near P 
by passing into a well-defined "upper half-plane," 
which can be defined geometrically in terms of the 
diagram that generates P. If several surfaces pass 
through P, then the continuation can be made through 
the intersection of the various upper half-planes, 
provided that this intersection is nonempty. The 
relation between the diagram D ::JC B and the corre
sponding half-plane is such that, if two diagrams are 
identical except for a single over-all reversal of the 
signs of all the <x's, then the two corresponding half
planes are opposite half-planes. Thus, if a point Plies 
on the L(D) of two such D ::JC B, then no continua
tion is possible, in general. The hypothesis of the 
structure theorems is the analyticity property of the 
physical-region scattering functions obtained from 
S-matrix macroscopic causality conditions, as is 
discussed in Sec. 8. 

Our key identity reads, in box notation,l 

(1.1) 

The shaded strips represent sets of any number of 
lines. A plus box represents the scattering matrix S; 

1441 
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a plus circle, its connected part. A minus box repre
sents st; a minus circle its connected part. A plus or 
minus box with a little circle on it represents S or st 
minus its connected part. The subscript c denotes 
connected part. Finally, the box Rc denotes a 
well-defined set of bubble diagrams, each of which 
represents a well-defined integral over a product of 
physical-region scattering amplitudes or their con
jugates. 

The importance of (Ll) arises from the following 
property of Rc: No bubble diagram B in the sum rep
resented by the box Rc supports any Landau diagram 
D' that contracts to any diagram of the form 
D~ (w' ~ w), where 

+ I Dn (w -w) 

(1.2) 

The plus signs on the lines indicate that the corre
sponding Landau IX'S are positive. The similar diagram 
with minus signs on all lines is denoted by D-;; (w' ~ 
w). A diagram of the form D~ (w' ~ w) or D;; (w' ~ 
w), for any positive integer n, is called a w' ~ w 
normal threshold diagram and will be denoted by 
D(w'~w). 

Because the box Rc has the property just described, 
we know from the quoted structure theorems the 
following fact: The function Rc represented by the 
box Rc continues into itself via a "minus-it: continua
tion" past any singularity corresponding to any 
pure-(positive or negative)-IX Landau diagram D 
that contracts to any D (w' ~ w). (The minus-it: con
tinuation is the one opposite to the physical continua
tion. That Rc must continue in this way follows from 
the fact that these pure-IX. diagrams must be pure
minus-IX diagrams.) Using this fact, one immediately 

which is valid just above almost all points on the 
leading threshold T L' The symbol on the left repre
sents the discontinuity of the scattering amplitude 
around T L . Equation (1.3) is a special case of a general 
rule first conjectured and discussed in Ref. 3. 

deduces from (Ll) the discontinuity formula for the 
leading w' --+ w normal threshold, near points lying 
"inside" the physical region. [The "leading" (0' ~ (0 

normal threshold is the multiparticle (n ~ 2) w' --+ w 
normal threshold with the smallest value M L of the 
w' --+ w exchange c.m. energy E (Wi ~ (0). A point on 
this threshold lies "inside" the physical region if any 
neighborhood of that point contains physical points 
lying below the thresholds [i.e., at E(w' ~ w) < M L ] 

and physical points lying above the threshold [i.e., at 
E (Wi --+ w) > M L .] The argument goes as follows: 
Let pi be a point in the physical region lyingjust below 
the leading Wi ~ w normal threshold. The first two 
terms on the right of (1.1) vanish at P'. Let P" be a 
point such that there is a physical-region path pip" 
from pi to p" with the following two properties: (a) 
Every singularity of Rc on pip" corresponds to a 
Landau diagram that can be contracted to a Wi --+ w 
normal threshold diagram ; (b) no singularity of Rc on 
piP" corresponding to a D having both positive and 
negative IX.'S occurs. For any such P" the function RAP") 
is an explicit expression in terms of strictly physical
region scattering functions of the continuation of the 
physical scattering function from pi to P", along a 
path that has a minus-iE continuation around every 
occurring singularity. This is because any pure-IX. singu
larity (i.e., one corresponding to a diagram in which 
all oc's have the same sign) must be a pure-minus-oc 
singularity, around which the function continues via 
a minus-it: rule, and no mixed-IX. singularity lies on this 
path. Since the last term on the right of (1.1) is the 
continuation of the scattering function from P' to 
P", the sum of the first two terms is precisely the 
discontinuity of the scattering function at P" corre
sponding to the path piP". This argument is given in 
more detail, and is generalized, in Sec. 8. 

At points P" sufficiently near almost any point P on 
the threshold, the second term on the right of (1.1) is 
zero. Thus, the discontinuity around the threshold 
singularity alone is given by the first term on the right 
of (Ll). This result is represented by the equation 

WI , 
2 

(1.3) 

The above arguments apply equally well to the 1-
particle w' --+ W normal threshold. In that case, the 
minus box in (1.3) becomes unity and the discontinuity 
formula becomes the well-known pole-factorization 
property.4 
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Results similar to those for the leading normal 
threshold described above are obtained for the non
leading normal thresholds lying inside the physical 
region below the 4-particle threshold in the Wi ---+ w 
channel. [Note added in proof: This restriction to 

WI~W2 6.+ 
I 

w: w~ 

The Pi bar imposes the restriction that the sum of the 
rest masses of the particles associated with the lines 
cut by the bar be not less than the mass Mi associated 
with the threshold T; in question. The -i box is defined 
by the equation 

P. 
I 

+~=o, 
(1.5) 

where the bar on a box signifies that an I box has been 
subtracted off. This equation becomes the unitarity 
eq uation if the Pi bar is omitted, and the - i boxes are 
replaced by minus boxes. Equation (1.4) is closely 
connected to a formula obtained by Olive" for 2-
particle thresholds. 

Equation (1.1) and the similar equation leading to 
(1.4) are physical-region identities. Thus, they may be 
substituted into the plus bubble appearing in the first 
term on the right. In this way, discontinuity equations 
for more complicated singularities can be obtained. 

The main task in this paper is to derive the identity 
(1.1), and ones similar to it, and to substantiate the 
claims made regarding the properties of Rc' This in
volves repeated use of only the unitarity and cluster 
properties; analyticity properties are not involved. 
The first step is to develop a diagram calculus to deal 
with the cluster properties and unitarity equations 
for indeterminate numbers of particles. This is done in 

regions lying below the 4-partic1e threshold is removed 
in the third paper of this series, (UCRL-18512, 
Oct. 1968), in which the general physical-region 
discontinuity formula is derived.] The analog of (1.3) 
reads 

w' 2· (1.4) 

Sec. 2. Sections 3 and 4 establish some terminology 
and place on a firm basis some simple preliminary 
propositions. These two sections can be skimmed on 
first reading. The main proofs are in Secs. 5 and 6. 
Section 7 contains some incidental remarks con
cerning other forms of the results. The discontinuity 
formulas that follow from the identities established in 
Secs. 5 and 6 are described in detail in Sec. 8. 

2. REPRESENTATION OF THE CLUSTER 
PROPERTY 

A box labeled by a symbol and connected to a set 
of lines represents a certain sum of bubble diagrams. 
The lines on the right and left will be called the in
coming and outgoing lines, respectively. A plus (minus) 
box represents a sum over columns of plus (minus) 
bubbles, the sum being over all different ways that the 
given incoming and outgoing lines can be connected to 
each other by bubbles, subject only to the conditions 
that each line touch precisely one bubble and each 
bubble touch at least one incoming line and at least one 
outgoing line. (Each incoming and outgoing line 
terminates at or emerges from, respectively, the bubble 
it touches.) 

An "I" box is constructed by the same rules, with 
the added condition that each bubble "touch precisely 
one incoming line and precisely one outgoing line. No 
distinction is drawn between a plus, minus, or I bubble 
that satisfies this condition. 

The unitary equation 

a~/3=a~/3=aW/3 (2.1) 

is regarded as an equivalence relation connecting different box diagrams. As explained in Paper I, the rule 
for multiplication of diagrams is that topologically equivalent diagrams of the natural product are counted 
precisely once. This leads to the second fundamental equivalence relation 

(2.2) 

where the same choice of ± is to be used throughout. These two fundamental equivalences, when combined 
with cluster properties, will yield our results. 
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Often a set of intermediate lines connecting two 
boxes will not be explicitly shown: the two boxes will 
simply be moved into contact. 

In the above equations and in what follows, sets of 
lines are labeled by Greek letters. These sets are allowed 
to be empty, unless otherwise stated. The equation 
oc = 0 means the set oc is empty, oc ':;/: 0 means it is not 
empty, and oc > 1 means the set has more than one 
line. The lines are considered to run from right to left 
and symbols X+(oc) and X-(oc) denote the sets of 
leading and trailing end points, respectively, of the 
lines of the set oc. 

The cluster properties reside in the definitions of the 
plus and minus boxes in terms of their respective 
bubbles. To exploit these properties, we do not fully 
decompose the boxes into their constituent bubbles, 
but make, rather, partial decompositions into sets of 
terms with different connectedness properties. The 
first of these partial decompositions is expressed by 
the equation 

The first term on the right represents the sum of those 
terms of the left that contain at least one bubble 
touching lines in both OCl and oc2 • The second term con
sists of a sum over all decompositions of the set (3 into 
two sets (31 and (32' Each term of this sum consists of 
the indicated boxes combined according to a product 
rule of composition. This rule gives, for each pair 
consisting of one term from each box, a column con
sisting of the sum of the bubbles of the two members 
of this pair. The validity of (2.3) is proved in Appen
dix A. 

Henceforth, we adopt a summation convention that 
serves to eliminate the summation sign in (2.3) and in 
similar equations that follow. If a set cp appearing on 
the left is partitioned in all possible ways into certain 
sets appearing on the right, then these latter will be 
denoted by <p;: A summation over all partitions of the 
cp into the various cp; is always implied. Occasionally 
the set on the left will already have an index, but the 
rule still applies. For example, OCl is partitioned into 
sets OCt;. 

A second important decomposition rule is 

011~ f3, 

O'~_ f3 = a'2~ Q 
02 - ~2 

02 ~ 

(2.4a) 

al1~/3, 

(2.4b) 

Here 

(2.5) 

is defined to be empty if OC 2 = 0 or OC12 = O. Otherwise, 
it is the sum of all contributions to 

(2.6) 

with the property that each line of OCl2 touches a bubble 
that touches at least one line of oc2 • The box diagram 

aI2~f3 
a - 2 

21 

(2.7) 

is defined to be empty if OCl2 = 0 or OC2l = o. Other
wise, it is the sum of all contributions to 

(2.8) 

that have the property that each line of OC12 touches a 
bubble that touches at least one line of OC 21' and vice 
versa. Equations (2.4a) and (2.4b) are proved in 
Appendix A. 

The decomposition (2.3) also applies to the I box, 
but the first term on the right of (2.3) is then empty. 
Thus, 

a, fl f3 = 
al~f3, 

al~/32 a2 

(2.9) 

and 

~/3, 
a,~f3, 

a I /32 = a2~f32 
(2.9') 

The I box (2.9) or (2.9') is equivalent to the identity 
when postmultiplying a bubble diagram symmetric in 
the set of lines oc or when premultiplying a bubble dia
gram symmetric in the set of lines (3. This follows from 
the definition of the I box and from the fact that in 
products of boxes topologically equivalent contribu
tions are counted only once. Thus, for instance, 

(2.10) 
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even though 

+ ::::x=. (2.11) 

From (2.9), (2.9'), and (2.2) we obtain 

(2.12) 

and 

Qlg(3 I - I 

Q
2 

± (32 

= 
(2.13) 

(The number of lines crossing an interface between 
boxes or represented by a shaded strip is always 
allowed to be zero, unless otherwise stated.) 

Remark 2.1,' Equations completely analogous to 
those discussed in this section, but with the role of 
the incoming and outgoing particles switched, are 
denoted by a primed equation number. We shall use, 
in particular, the equations 

+ 1+ ~
{3 al~{31 

- {32 a2~ {32 

(2.3') 
and 

where the box diagram 

(2.5') 

is defined in analogy with the definition of (2.5). We 

also record for future use the definition 

e = @ - 0· (2.14) 

Manipulations with the unitarity equations and 
cluster properties give equations that are represented 
by bubble diagram equations. The bubble diagrams B 
that occur all satisfy the partial ordering condition 
that the diagrams can be drawn with all lines of B 
directed from right to left. The singularities of the 
corresponding functions MB (defined in I) are con
fined to the Landau surfaces L(D) for D ::JC B, as 
discussed above. 

These diagrams D are simply topological structures. 
They should not be confused with the geometric 
structures Jj obtained from them by mapping each line 
L j of D into a 4-vector .:1 j = (t,jpj. The diagrams Jj 
are a geometric representation of all the Landau 
equations, including the loop equations, whereas the 
diagrams D = B represent only the conservation 
laws. In particular, the significance of the arrows on 
the lines of D arises from the conservation laws 

2 P/'jn = 0; 
j 

since each p~ is by definition positive and the arrow on 
each line L j points to the end at which €jn is + 1, these 
arrows simply indicate the direction of the flow of 
positive energy. This interpretation of the arrows in 
terms of energy flow is independent of the sign of \l.j. 

The lines of a bubble diagram are defined to be 
directed from right to left. The lines in the interior of 
each plus bubble will also be directed from right to 
left, provided that the vector diagram Jj~ is mapped 
into the topological space by a monotonic mapping 
that places points of greater energy further left. The 
interior lines of each minus bubble will be leftward
directed if the opposite rule is used. Thus, if these 
rules are adopted, all the vectors of any D' C B will 
point from right to left, and one has a diagrammatic 
representation of the conservation laws in which 
positive energy flows from right to left. 

The convention just established plays no essential 
role in our arguments. But it makes geometrically 
obvious the fact that each point of any D ::JC B lies 
on a continuous, directed path P that runs from the 
trailing end point of some incoming line of B to the 
leading end point of some outgoing line of B and is 
such that each line segment L j lying on P has the same 
direction as P itself. That such a P exists follows 
analytically from energy conservation and the partial
ordering requirement imposed on bubble diagrams 
(see Sec. 2 of Paper I). 
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3. CUT SETS AND DIAGRAMS THAT CANNOT 
BE CONTRACTED TO POSITIVE-IX NORMAL

THRESHOLD DIAGRAMS 

Consider a transition from the system of m initial 
particles to the system of n final particles. Any separa
tion of the n + m particles into two disjoint subsets 
defines a channel. If the two subsets are precisely the 
initial and final sets, then the channel is called the 
direct channel. If each subset contains both initial and 
final particles, then the channel is called a cross 
channel. If one subset contains only initial or only 
final particles and the other subset contains both 
initial and final particles, then the channel is called a 
subchannel. The three cases are indicated in Fig. 1, 
where we have labeled one of the two subsets of lines 
wand the other w'. By convention the set w does not 
consist only of initial lines, and w' does not consist only 
of final lines. The sets wand w' are further subdivided 
into the terms WI + w2 and w~ + w~, respectively, 
where WI + w~ is the set of final lines and 0.12 + w; is 
the set of initial lines. The sets of external end points 
of the lines of 0.1 and w' are denoted by X(w) == 
X+(w1) + X-(w

2
) and X(w') == X+(w~) + X-(w~), re

spectively. The "w' --+ 0.1 channel" will mean the 
channel labeled in this way. 

The w' --+ w channel energy E (w' --+ w) is 

E(w, (I)') = L p~ - L p~ 
iEI(Wl) jEI(w.) 

= L p~ - I p~, (3.1) 
iEI(w.') jEi(Wl') 

evaluated in a frame where the corresponding 3-
momentum is zero. The set /(oc) is the set of indices 
labeling the lines of oc. Thus, the channel energy 
E (w' --+ w) is the net center-of-mass energy flowing 
from X(w') to X(w). 

Definition 3.1: An (w, w') cut set of a Landau dia
gram D supported1 by the bubble diagram B (i.e., 
D == B) is a (possibly empty) collection C of lines 
of D with the following properties: (1) Every path in 
D that starts in X(w') and ends in X(w) passes along 
the interior of some line of C, and (2) Property (I) is 
not satisfied by any proper subset of C. 

(0 ) (b) 

Proposition 3.1: Let C be an (w, w') cut set of a 
D == B and let C' be the set of all interior points of 
all lines of C. Let X(C, w) and X(C, w') be the parts 
of D connected in D - C'to X(w) and X(w'), respec
tively. Then, 

(i) X(C, w) n X(C, w') = 0 (the empty set), 
(ii) each line of C has one of its end points in 

X(C, w) and its other end point in X( C, w'), and 
(iii) D ,.- C' = X(C, w) u X(C, w'). 

Proof: (i) If X(C, w) and X(C, w') had a common 
point, then X(w) could be connected to X(w') in 
D - C'. But then C could not be an (w, w') cut set, 
contrary to assumption. (ii) The lines of D can inter
sect (by definition) only at their end points. Let Cw be 
the set of lines of C that have an end point in X( c, w). 
Since X(C, w) and X(C, w') are disjoint, every path 
in D from X(w) to X(w') must leave .f(C, w) via a line 
of Cwo Thus, X(w) and X(w') cannot be connected by 
any path in D - C~, where C~ is the set of all interior 
points of all lines of Cw • But then Cw must be just C, 
for if Cw were a proper subset of C, then the second 
requirement on the (w, w') cut set C would be violated. 
Similarly, every line of C must have an end point in 
.K(C, w'). Since .K(C, w) and .K(C, w') are disjoint, one 
end point of each line of C must lie in XC C, w) and the 
other must lie in .f(C, w'). (iii) Suppose there is a part 
of D - C' not connected in D - C' to X(w) or to 
X(w'). Then, by virtue of (ii), this part cannot be con
nected in D to X(w) or to X(w'). But all parts of any 
D ;:)c B are connected in D to external lines of Band, 
hence, to X(w) or to X(w'), by virtue of the condi
tions on D ;:)c B. In particular, each bubble of B 
has both incoming and outgoing lines. The partial
ordering condition on the bubbles of B ensures that 
each bubble lies on a path that starts at some incoming 
line of B and ends at some outgoing line of B. In form
ing D ;:)c E, the bubbles are replaced by connected 
diagrams. Thus, every point of D ;:)c B is connected 
to both the incoming and the outgoing lines of Band, 
hence, to X(w) u X(w'). 

A schematic representation of Proposition 3.1 is 
shown in Fig. 2. 

(c) 

FIG. I. Three types of chan
nels (a) the direct channel; (b) 
a cross channel; (c) a sub
channel. 
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FIG. 2. The topological structure induced 
by an (w, w') cut set C. The directed line 
segments L; E C are shown. The lines are all 
shown directed to the left in accordance 
with the discussion at the end of Sec. 2. 
The .K(C, w) and X(C, w') parts of D :::>c B 
(indicated by the shaded areas of the figure) 
may be disconnected diagrams. Each point 
of .f(C, w)[X(C, w')] is connected in .f(C, w) 
[..f(C, w')] to one or more of the external end 
points X(w)[X(w')] exhibited in the figure. 
Some of the leading end points Lj, Li,' .. ,L: 
of the upward-directed line segments of C may 
lie in X+(w,), some of the trailing end points 
L;, L;" ... ,L; of the downward-directed line 
segments of C may lie in X-(w.), and similarly 
for the lower end points of these lines. The { } 
ordering of the end points (i.e.,L: > L:) is not X + ( ') X - (W 2' ) 
significant. The set C is called a simple (w, w') W, 
cut set (see Definition 3.2) if and only if the set 
of downward-directed line segments [i.e., those "u'..L..L...It..A;..L..L.~L..oI~..L~.&...,jIt..A;..L"""-.4JI 
leading from X(C, w) to X(C, w')] is empty. 

Definition 3.2: A simple (w, w') cut set C is an 
(w, w') cut set C such that every line of C has its 
leading end point in .K(C, w) and its trailing end point 
in .K(C, w'). 

Definition 3.3: A simple positive (w, w') cut set is a 
simple (w, w') cut set having no "minus lines." (A 
minus line is a line of D :::>c B that is an internal line 
of a Landau diagram D~ corresponding to a minus 
bubble b of B. Such lines must carry negative Landau 
IX'S, according to the rules set down in Ref. 1.) 

Definition 3.4: :R(w, w') is the set of all bubble 
diagrams B with the property that no D :::>c B con
tains a simple positive (w, 0/) cut set. 

Definition 3.5: :Jte(w, w') is the set of all bubble dia
grams B for which at least one of the following two 
conditions holds: 

(I) B is not a connected diagram; 
(2) no D :::>c B contains a simple positive (w, w') 

cut set such that .K(C, w) and .K(C, w') are both con
nected diagrams. 

It is evident that 

:R(w, w') c :Re(w, w'). (3.2) 

These definitions isolate the class of bubble diagrams 
that cannot support any D~ (w' -+ w): It is clear from 
the definition of D :::>c B (see Sec. 1 above) that no 
bubble diagram belonging to :Re(w, w') can contain 
any D: (w' -+ w) or any D that contracts to any 
D: (w' -+ w). 

The importance to us of this classification arises 
from the third structure theorem, which ensures that 
the bubble-diagram function MB represented by any 
BE :RAw, w') has a minus-i€ continuation into itself 

around the singularity associated with any pure-oc D 
that can be contracted to any w' -+ w normal-threshold 
diagram. Our principal task will be to prove that certain 
bubble diagrams are equivalent to diagrams belonging 
to :Re(w, w'). 

4. A CHARACTERIZATION OF BUBBLE 
DIAGRAMS THAT SUPPORT NO POSITIVE-oc 
DIAGRAMS THAT CONTRACT TO A w' --+ w 

NORMAL-THRESHOLD DIAGRAM 

The characterization we seek is expressed in terms of 
"paths." A path in D is a continuous directed curve 
composed of an ordered sequence of line segments 
L j of D. Neighboring segments meet at coincident end 
points. Each segment Li of a path P can be independ
ently directed either along the path or against it. The 
direction of the path is specified by specifying its origin 
and its destination. The direction of the line segment 
Li of D is from L; to Li, as already mentioned. 

Definition 4.1: APE :rom (D :::>c B) is a path in 
D :::>c B having the property that each L j lying on P 
is either directed against P or is a minus line (as defined 
in Definition 3.3). 

Proposition 4.1: If every D :::>c B contains aPE 
:rom (D :::>c B) that runs from X+(w~) to X-(w2), then 
B belongs to :R(w, w'), and conversely. 

Proof: If B does not belong to :R(w, w'), then some 
D ::>c B must have a simple positive (w, w') cut set 
C. Any path P from X+(wD to X-(W2) must contain 
lines of C. The first of these lines encountered as P is 
traced out is a nonminus line directed along P. Thus, 
this D ::>c B can contain no P E :rom (D :::>c B). 

To prove the converse, suppose some D::>c B 
contains no P E :rom (D ::>c B) that runs from X+(w~) 
to X-(w2). Then, any path p in this D:::>c B from 
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{ 
, 

WI L' , 
I E 

{ • 
Wi 

I 
E 

8 3 

(X+wD to X-(w2) must have a first segment Lp that is 
both nonminus and directed along the path. Let the 
union of the Lp over all paths p from X+(w~) to X-(w 2) 

be denoted by U L p, and define C = (U Lp) U WI U 

w;. The sets X( w) and X( w') certainly cannot be con
nected in D - C', where C' is the set of interior points 
of C. Some subset e of C is, therefore, an (w, w') cut 
set. Each line of e is a nonminus line with either its 
trailing end point in X(e, w') or its leading end point 
X(e, w). Thus, by virtue of Proposition 3.1, each 
leading end point of e is in X(e, w) and each trailing 
end point is in X( e, w'). Thus, e is a simple positive 
(w, w') cut set for this D :::lC B. But then B cannot 
belong to 3l(w, w'). 

A few examples illustrating Proposition 4.1 and the 
various definitions of Sec. 3 are given in Fig. 3. 
In these examples one should insert various connected 
Landau diagrams for the bubbles. However, the 
results are independent of the form of these diagrams 

W, 

Wi 
I 

FIG. 3. The bubble diagrams 
BI and B2 belong to 3t(w.w'). 
whereas B. and B4 do not. This 
follows from Proposition 4.1: 
For every D :::>c: BI or D :::>c: 
B2 , there is a path P running 
from X+(w;) to X-(W2) such 
that P is in 9' om (D :::>c: BI ) 

or 9'om (D :::>c: B 2), respectively. 
But not every D:::> c: B. or 
D :::>c: B( has a path P running 
from X+(w~) to X-(W2) such 
that P is in 9'om (D :::>c: Bs) 
or 9'om (D :::>c: Bt ). respectively. 
That B. and B. do not belong to 
3t(w,w') may also be seen 
directly from Definition 3.4, 
since the lines Li of B3 and the 
lines L;, L k , and L, of B. are a 
simple positive (00,00') cut set 
for some D :::>c: B3 or D :::>c: B4 , 

respectively. 

D~. We need only the general result that there is a 
path from any incoming line of any D~ to some outgo
ing line such that the direction of the path agrees with 
the directions of all its segments. This follows from 
energy conservation and the fact that energy flows in 
along incoming lines and out along outgoing lines. 
(See the discussion at the end of Sec. 2.) 

5. NORMAL-THRESHOLD EXPANSIONS OF 
SCATTERING FUNCTIONS 

A. Two Basic Identities 

Unitarity can be regarded as an equivalence rela
tionship between different box diagrams. In this section 
certain box diagrams are converted by repeated use of 
unitarity and the cluster properties to certain equivalent 
box diagrams. 

Proposition 5.1: The cluster properties and unitarity 
imply that 

(5.1) 

where the R box represents a sum of bubble diagrams all of which belong to 3l(w, w'). 

Proof: The proposition follows immediately from (2.1) and (2.2) if W 2 = ° or if w~ = 0, in which case 
R = O. Thus, we assume that W 2 and w~ are nonempty. The use, first, of (2.3') and, then, of (2.1), (2.2), and 
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(2.4a') gives 

(5.2) 

(The various summations required by the formulas of Sec. 2 are implied by the summation convention for 
internal lines introduced in Sec. If of Paper I.) Alternatively, the use, first, of unitarity, then, of (2.13), (2.2), 
and again unitarity gives 

(5.3) 

The application, first, of (2.3') and, then, of (2.1), (2.2), and (2.4a') to the first term on the right side of (5.3) 
gives 

+ 
WI w~ I ~_----'r--

Combining (5.2), (5.3), and (5.4), one obtains 

WI8~WI w2 wI 

+ -
wi wi wi + wi wI 

I 2 I 2 I 

wI 

+ 
wi 

2 

+ 

w2 

w~ 

WI 
2 

I 

o ~W2 
wI I 

I + Wi wl2 2 

(5.4) 

(5.5) 
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A rearrangement of terms and an application of (2.2) and unitarity converts this to 

(5.6) 

Equation (5.6) can be iterated. Iterating n times, each time simplifying by means of unitarity and .(2.2), 
one obtains 

The number of iterations n is fixed so that 

E(w, w') < (n + I)Eo, 

where Eo is the rest energy of the lightest particle. The 
definition of the box diagram (2.5') requires that the 
sets C(i and Pi be nonempty; otherwise, the set of 
diagrams containing these sets is empty. 

Let the box diagram on the right of (5.7) be denoted 
by Ho, HI"'" H k ,'" , Hn, Hn+l , where Ho is the 

W2 

+ ••• 
w' 2 

1.1)2 

WI 
2 + .•• 

(5.7) 

first term on the right, HI the second, etc. Any Landau 
diagram supported by any Hi contains a path P E 

~om (D :x: Hi) from X+(w~) to X-(w2), as will now be 
shown. For any Hi but H n+l , each end point of X+(W~I) 
is connected to the trailing end point of some incoming 
line of the leftmost upper plus box by a path whose 
sense is opposed to that of each line of that plus box. 
This follows from energy conservation. (See the dis
cussion at the end of Sec. 2.) This concludes the argu
ment for Ho. For the remaining Hi' 0 < i ~ n, the 
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pathjust constructed can, by virtue of the definition of 
(2.5'), be continued to some point of X+(1X1) by a path 
composed only of minus lines and, hence, lying in 
~om (D ~c Hi)' The same argument allows the path 
to be continued to 1X2' then to 1X3' and so on to X-( ( 2 ). 

Thus, according to Proposition 4.1, all Hi except 
Hn+l belong to :Jt(w, w'). Finally, we consider Hn+l' 

Since the sets (Ji are nonempty, the energy Ea) of the 
set ~ satisfies E(~) Z E(w2) + (n + I)Eo. On the 
other hand, the condition on n is that 

E(w, w') 

== E(Wl) - E(~) + E(~) - E(w2) < (n + I)Eo. 

w' I w' 2 

These inequalities combine to give E(~) > E(w1). But 
then energy conservation implies that the second term 
in the first parenthesis vanishes.6 Furthermore, in the 
first term in the first parenthesis some energy must 
flow from X-(~) to X+(wD. This ensures that there is a 
pathP E~om (D ::JC Hn+1)fromX+(w~)toX-(e). This 
path can then be extended to X-( ( 2) by means of the 
same arguments as before. Thus, all terms on the right 
of (5.7) belong to :'R(w, w'), and Proposition 5.1 is 
proved. 

By (2.14) the first term on the right of (5.1) can be 
written in the form 

w' I w' 2 w' I Wi 
2 

(5.8) 

Then, Definition 3.5 [which implies that B belongs to :Riw, w') ifit belongs to :.R(w, w')], together with (2.14) 
and (5.8), allows (5.1) to be written in the form 

+ 
Wi 

I 

Wi 
2 

(5.9) 

where the Rc box consists of a sum of terms of positive (IX, (J + y) cut set C of any D' ~c B~ is the 
:RcCw, Wi). set of lines IX. 

Our next objective is to show that the second and 
third terms on the right of (5.9) can be placed in the 
last term. To this end we first prove 

Proposition 5.2: The box diagram 

(5.10) 

is equivalent to a diagram B~ such that the only simple 

Proof: Let B~ be the right side of (B4). In each term 
let (XI be the subset of (X connected to the I box. The set 
C evidently contains IX[. For the first term on the right 
of (B4), the set OCr is oc and the required result clearly 
holds. For any D' supported by any other term, the 
definition of (2.5) guarantees that any point of 
X-(IX - O([) lies at the end of some path 
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that starts in X+(f3). [One uses the properties of (2.5) 
to trace a path P' consisting only of minus lines from 
each point of X-eel;) to some point of X-((l;). This path 
can then be extended to a path P" ending at some point 
of X(f3); one uses the properties of (2.5) to get through 
each minus box of the form (2.5) encountered on the 
path from X-(bi) to X(f3). The desired P is the negative 
of P".) No point of such a path P can belong to any 
simple positive cut set. Thus, all points of X-eel) must 
belong to X(C, f3 + y), by the definition of X(C, 
f3 + y). Thus, the only simple positive (oc, f3 + y) cut 
set is oc. 

This proof also shows that for any D' :::JC B~, all 
points of D' - ex lie in X(C, f3 + y). This gives the 
following: 

The R. box is now, and hereafter, a generic symbol 
used to denote any sum of bubble diagrams each term 
of which belongs to Rc(w, Wi). 

Proof: The Corollary to 5.2 applied to the third 
term on the right of (5.9) gives 

(5.14) 

The last step follows from the fact that any simple 
positive (w, Wi) cut set C that leaves X-eel) in X(e, w') 
must make X( C, w) a disconnected diagram. A similar 
argument applies to the second term on the right of 
(5.9). This proves (5.12). The contribution to the 

Corollary to 5.2: Suppose the B} of (5.10) is part of 
some box diagram 

w'8W2 B == I B ,. 
WI w2 

(5.11) 

Then the replacement of Bl in B by the equivalent 
B~ of Proposition 5.2 gives a B' with the property that, 
for any simple positive (w, Wi) cut set C of any 
D' :=JC B', all the points of X-( el) will belong to 
X(C, Wi) if all points of X+(f3) and X-(y) do. In fact, 
all points of D~ - oc, where D~ is that part of D' which 
is supported by B~, lie in X( C, Wi) if all points of 
X+(f3) and X-(y) do. 

Proposition 5.3: The cluster properties and unitarity 
imply that 

(5.12) 

(5.13) 

fourth term on the right of (5.9) coming from the 
connected part of the minus box clearly has no 
positive cut set C that leaves X(C, w) and X(C, Wi) 
both connected diagrams. Thus, it belongs to 3\cCw, Wi) 
and the proof is complete. 

The form of the first term on the right of (5.13) is 
invariant under the crossing (incoming~ outgoing) 
of lines of w or of Wi. However, no analyticity or 
crossing properties have been used to derive (5.13); the 
result is obtained strictly from unitarity and cluster 
properties in the direct channel. 

For E(w, w') less than the lowest 4-particle Wi _ w 
threshold £4' the second term on the right side of 
(5.13) belongs to :it.(w, w). This is proved in Sec. 6. 
Thus, for this energy range Eq. (5.13) reduces to 

£(w, Wi) < £4' (5.15) 
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B. Expansion Exhibiting the Discontinuity of the 
Scattering Function for Nonleading Normal 

Thresholds 

The expression for the scattering function given by 
Proposition 5.3 exhibits the discontinuity function for 
the leading normal threshold in the (w, w') channel. 
To exhibit the discontinuity for nonleading normal 
threshold at channel energy E(w, w') = M i , we use the 
i-box formalism of Paper I. This formalism applies 
only if E(w, w') is below the 4-particle threshold of 
the w' __ w channel. Thus, the following results are 
similarly restricted. 

The basic identity we need is 

OJ OJ 

O=~ + ~ -I i 1- ~, (5.16) 

where Pi and Qi are the projection operators asso
ciated with the mass Mi [see (5.5) of I]. To prove 
(5.16), we first use (2.9), (5.8), (5.5), and (5.19) of I 
to obtain 

o 

and 

Definition (5.44) of I converts (5.17) to 

R P P OJ I p. 
~i = Oi+~-Ij ~I 

o + Gi({I}i_@). 
(5.19) 

Application of (5.18) to the term in parenthesis yields 
(5.16). 

Substitution of (5.16) into (5.1) yields 

+ 

w' 2 

Wi 
2 

(5.20) 

By Proposition 5.2, the second term on the right of 
(5.20) is equivalent to 

Wi 
2 

Some new definitions are now needed. Let 

(5.21) 

denote any simple positive (w, w') cut set composed of 
lines such that the sum of their masses is greater than 
or equal to Mi' Let :R,i(W, w') represent the set of all 
bubble diagrams B with the property that no D :::)c B 
has a cut set Ci. Let 

(5.22) 

represent any sum of terms of :R,i(W, w'). 
Similarly, let 

Ri ( 1)- Ri c w,w = C (5.23) 

represent any sum of bubble diagrams, each term of 
which either is disconnected or does not support any 
Landau diagram containing a cut set Ci such that 
X(Ci, w) and X(Ci, w') are both connected diagrams. 
Evidently, the sets :R,(w, w'), :Rc(w, w'), and :R,i(W, w') 
are subsets of :R~(w, w'). The function corresponding 
to any B E :R,~(w, w') has, by virtue of the third 
structure theorem, a minus-i€ continuation into itself 
past any normal-threshold singularities at E(w, w') = 
M i , which is associated with a w' -- w normal
threshold diagram. 

By the Corollary to (5.2), any simple positive 
(w, w') cut set and, in particular, any Ci(W, Wi), con
tained in a Landau diagram D supported by (5.21), 
must be composed only of lines of that part of D that 
is supported by 

~i 
J j = ~. (5.24) 

The function Ji is defined by Fredholm theory (see 
Appendix B of I). Its analytic structure is, however, 
exhibited by the terms of the formal expansion 

J _hli ~i~i 
i-"'1...!..F-~+~-"·, (5.25) 

Each term in this expansion consists of minus bubbles 
and sets of lines restricted by the Qi bar conditions. 
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Consequently, no Landau diagram supported by any 
term on the right of (5.25) can contain a cut set Ci(W, 
w'). Therefore, (5.21) belongs to :Ri(W, w'), and (5.20) 
can be written as 

(5.26) 

The formula just obtained is the i-box version of 
Proposition 5.1. It can be simplified by further manip
ulations. Alternatively, one can apply (5.16) directly 
to (5.15). Then, one obtains 

The second term on the right can be incorporated 
into the last by virtue of the following proposition: 

Proposition 5.2C: Consider the diagram 

(5.28) 

If the center-of-mass energy of the set IX is below the 
4-particle threshold in the fJ + y --+ IX channel, then 
B2 is equivalent to a bubble diagram B~, having the 
property that for any D':::>c B~ the only simple 
positive (IX, fJ + y) cut set C with connected .f(C, 
fJ + y) is IX itself. 

This proposition, which is similar to Proposition 
5.2 upon which it is based, is proved in Appendix C. 
Combined with the properties of Ji of (5.25), it shows 
that the second term on the right of (5.27) belongs to 
:)t~(w, w'). Thus, we obtain 

The second term on the right has a minus-ie continua
tion into itself, past the normal thresholdatE(w, w') = 
Mi. The first term is, therefore, the discontinuity of 
M+ around this threshold. 

6. ANALYSIS OF THE SECOND TERM 

A. General Result 

In this section the second term on the right of (5.12) 
is further analyzed. That is, various bubble diagrams 

included in this term, but belonging to :)te(w, w'), are 
identified and separated out. 

A generalization of Proposition 5.2 is needed. 

Proposition 6.1: The box diagram 

~ a 8 a-Q, == + y .e~Y .a 
(6.1) 

is equivalent to a box diagram B~ such that, for any 
D' :::>c B~, the only simple positive (IX, fJ + y + ~) 
cut set C containing no line of ~ is the set IX. 

Proof: Equations (2.3') and (2.4a') give 

(6.3) 

Since no line of ~ can be in the cut set C, every line of 
IXI in the first term of (6.3) evidently must be. (By 
definition, no line from any minus bubble can be 
included in this cut set.) Then the Corollary to 5.2 
completes the proof for this first term. For the second 
term the definition of the box diagram (2.5'), together 
with the requirement that each bubble has both in
coming and outgoing lines, ensures that each line of 
IXI is connected to a minus bubble (including trivial 
bubbles) that is connected to a line of ~. Thus each 
line of IXl must belong to C. Each point of X+( e) lies on 
a minus bubble that is connected to a line of ~, and it 
must, therefore, belong to .f(C, fJ + y + ~). Then 
the Corollary to 5.2 completes the proof. 

Corollary 6.1: Suppose that the Ba of (6.1) is part 
of the box diagram B of (5.11). The replacement of the 
two Bl parts of (6.3) by the B~ of Proposition 5.2 
converts Ba to B~ and converts B to an equivalent B' 
having the property that, for any simple positive 
(w, w') cut C of any D' :::>c B', all the points of X-(IX) 
belong to .f(C, w') if all points of X+(fJ), X-(y), and 
X(~) do. Let the part of D' supported by B~ be called 
D~. Then all points of D~ - IX belong to .f(C, w') if 
all points of X+(P), X-(y), and X(~) do. 
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Proposition 6.2: Unitarity and the cluster properties 
imply that 

(6.4) 

The subscript c on !c indicates a sum over connected 
terms only. The condition rx > 1 means the set rx 
must have more than one line. The prime on the 
summation symbol indicates that it includes only one 
of the k! j! topologically equivalent terms coming from 
the relabeling of the sets of initial and final lines. (And, 
as throughout this paper, once the sets of external 
lines are fixed, the sums are only over topologically 
distinct diagrams.) 

Proof' Let the right-hand plus box in the second 
term on the right of (5.12) be expanded according to 
(011) of Appendix 0, with the lines i, j, ... , n of a 
identified with the lines that go to the minus box. The 
terms Gi-+; ... k of (011) give structures of the form 

(6.5) 

One observes that no D supported by any term of this 
structure can have a simple positive (w, w') cut set C 
such that X(C, w') and X(C, w) are both connected 
diagrams. For if X(C, w') is connected, then the lines 
i,j, ... , k must evidently belong to X( C, cu'). But then 
by Corollary 6.1 all the points of X-(rx) must belong to 
X(C, w'). This means that X(C, w) cannot be a con
nected diagram. A similar argument applies to the 

left-hand circled plus box of (6.5). Thus all the con
tributions associated with the G~"'k terms of (011) 
give terms that belong to :Rc(w, w'). The remaining 
term becomes the second term on the right of (6.4), 
after the contribution coming from the connected part 
of the minus box is shifted to Rc. This completes the 
proof of Proposition 6.2. 

B. Special Cases 

Case 1: E(w, w') below the 4-particle threshold. 

In this case the conditions on the second term on the 
right of (6.4) cannot be met. This proves (5.15). 

Case 2: E(w, w') below the 5-particle threshold E5 • 

It is shown in Appendix E that for this case (6.4) 
gives 

E(w, w') < E5 • (6.6) 

The first two terms on the right contain all the singu
larities associated with positive-rx Landau diagrams 
that can be contracted to any D~ (w' -* w). The 
positive-rx double-cross diagram, obtained by shrink
ing the bubbles of the second term on the right to 
points and assigning plus signs to the lines, is such a 
diagram. It is readily confirmed that the positive-rx 
contributions to the double-cross diagram from the 
sum of the first two terms in (6.6) are equal to the 
positive-rx contributions from 

(6.7) 

The significance of the results obtained in this 
section is this: The function represented by Rc in (6.4) 
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or (6.6) must, by virtue of the third structure theorem, 
continue into itself in a well-defined way around any 
Landau surface L( D) corresponding to a pure-a D that 
contracts to a w' -+ w normal-threshold diagram. 
Moreover, for such cases this well-defined continua
tion is the minus-iE (i.e., nonphysical) continuation. 
Thus, the discontinuity corresponding to any path 
P' pI! that encounters only singularities of these types in 
Rc is precisely the first two terms on the right of (6.4) 
or (6.6). 

7. SHEET CONVERTERS 

Below the lowest 4-particle threshold E: in the 
channel fJ + y -+ a, one obtains from (5.18), (5.10), 
and Proposition 5.2 the result 

(7.1) 

where B~ is the right side of (B.4) and satisfies the 
following proposition. 

Proposition 7.1: Let oc and fJ be sets that satisfy 
oc + fJ = a + fJ, oc c a and oc (l fJ = O. The only 
simple positive (oc, fJ + y) cut set C of any D' :::>c B~ 
is OC. This proposition is a trivial extension of Proposi
tion 5.2. 

By virtue of Proposition 7.1 and the third structure 
theorem, we know that the function represented by the 
connected part of B~ has a minus-iE continuation into 
itself around any singularity associated with any 
diagram D' :::>c B~ that can be contracted to any 
fJ + y -+ oc normal threshold diagram. Using the 
properties of (5.25) and B~, one finds a similar result 
for the second term on the right of (7.1): The connected 
part of the second term on the right of (7.1) has a 
minus-if: continuation into itself around any singu
larity in the interval 

Mi S E(a, fJ + y) < E~ 
associated with any diagram D' :::>c B~ that can be 
contracted to any fJ + y -+ oc normal-threshold dia
gram. Let the set of singularities just described be 
called Si(OC, fJ + y). 

Since the connected parts of both terms on the right 
of Eq. (7.1) continue into themselves via a minus-iE 
rule around all singularities of S;(OC, fJ + y), and since 
(7.1) holds identically throughout the physical region, 
the connected part of the left side must continue into 
itself via the same rule. If Mi is chosen greater than the 
physical threshold in the fJ + y'-+ a channel, so that 

the physical region includes points where 

E(a, fJ + y) < M i , 

then the connected part of either side of (7.1) can be 
identified as the continuation of the scattering function 
from physical points E(a, fJ + y) < Mi to points in 
E(a, fJ + y) > M i lying underneath the cuts asso
ciated with the singularities of S;(OC, fJ + y). Con
tinuability past other singularities is not guaranteed, 
however .. 

The result just obtained is represented by the equa
tion 

Pi 

~0Y+~~Y=;~Y' 
(7.2) 

where the right side represents the continuation of the 
scattering function to the underside of the cuts asso
ciated with the singularities of Si(OC, fJ + y). {Some 
terms on the left of (7.1) are transferred to the right 
by the methods of Appendix C [see (C3)] in order to 
get (7.2). The symbol -i in the right-hand term is 
simply i in Refs. 1, 2, and 5.} 

The restriction that M i be above the lowest physical 
threshold in the channel fJ + y -+ a means that the 
lines a of (7.2) can be considered cut by a Qi bar. One 
would also like to have this equation with a Pi bar on 
these lines, since the formula could then be inserted 
into the discontinuity formula (5.29). 

To obtain this result, one must use the pole-factoriza
tion theorem4 in (5.26). We do not pursue the matter 
here, but only remark that the formulas in terms of the 
i boxes are the more useful ones anyway. For the ex
pression in terms of functions on other sheets intro
duces, in effect, new unknown functions. And there is 
a different new unknown function for each choice of 
the "other" external lines [for example, those in the 
sets fJ and y of (7.2)]. The i-box formula gives the dis
continuity directly in terms of physical functions 
alone, and the i box is independent of the "other" 
lines. 

8. ANALYTICITY PROPERTIES 

The phase-space factors in unitarity equations have 
singularities. Corresponding singularities must appear 
in some scattering function. These latter singularities 
can combine with phase-space singularities to yield 
still other singularities of scattering functions, and so 
on. It has been shown7 that all singularities generated 
in this way by unitarity must lie on Landau surfaces. 
The first part of our (maximal) analyticity assumption 
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is, accordingly, that all physical-region singularities 
of scattering functions lie on Landau surfaces. 

Physical-region singularities lying on Landau sur
faces are physically interpretable in terms of the 
notion that momentum-energy is transferred over 
macroscopic distances only by physical particles. In 
particular, if the singularities of scattering functions 
are confined to Landau surfaces, then transition 
amplitudes can be shown to fall off faster than any 
power of a scaling parameter T, unless the trajectory 
regions defined by the wave packets of the initial par
ticles can be connected to those of the final particles 
by a network of physical particles. S In the limit of large 
T, the distances involved become infinite. If one in
vokes the macroscopic causality requirement that the 
transition amplitudes fall off fast unless all the particles 
of the network move forward in time, then the singu
larities are confined to the positive-IX branches of the 
Landau surfaces.s Moreover, the scattering functions 
on the two sides of these surfaces are analytically con
nected by a path that moves into a certain well-defined 
upper half-plane.s This rule of continuation is called 
continuation via a plus-iE rule. Continuation through 
the opposite half-plane is called continuation via a 
minus-iE rule. 

The work of Ref. 8 establishes also that, if several 
Landau surfaces intersect, then the rules of continua
tion are compatible in the following sense: If the var
ious intersecting Landau surfaces are all associated 
with diagrams that are contractions of anyone single 
parent diagram, then the intersection of the various 
upper half-planes is nonempty and, hence, a region of 
continuation exists; if the diagrams corresponding to 
one subset of the surfaces intersecting at point K have 
a common parent, but no two that include one of the 
remaining diagrams have a common parent, then in a 
neighborhood of K the scattering function can be 
decomposed into a sum of functions, each having only 
certain of the singularities and having a well-defined 
rule of continuation past these singularities. 

The above results provide a rule for continuation of 
scattering functions around all known combinations of 
intersecting singularity surfaces. To include any pos
sible others, we assume that singularities that are 
"unrelated at K" are "independent at K." Singularities 
"unrelated at K" are singularities corresponding to 
diagrams that have no common parent whose surface 
contains K. Singularities "independent at K" are 
singularities at K that can be separated into different 
terms of an expansion of the scattering function. The 
assumption that unrelated singularities are independent 
ensures that there is a well-defined rule of continuation 
past all combinations of intersecting surfaces of singu-

larities of the scattering function. This rule is called the 
"general iE rule." It ensures that an integral over a 
scattering function can be defined locally as a sum of 
contour integrals that detour around singularities in a 
manner determined by the plus-iE rules for the in
dividual singularity surfaces. 

The general iE rule is the hypothesis of three 
"structure theorems" proved in Ref. 2. These theorems 
provide the analytic basis of the present work. The 
first structure theorem says that the function corre
sponding to a connected bubble diagram B can have 
singularities only on the Landau surfaces correspond
ing to Landau diagrams D ~c B. A diagram D ~c 
B is a diagram that can be obtained by inserting 
connected Landau diagrams for the bubbles of Band 
then contracting some (or no) lines. The second 
structure theorem says that these diagrams D :)c B 
can be further restricted by demanding that the IX'S on 
the lines of D ~c B that are interior lines of plus or 
minus bubbles of B have plus or minus signs, respec
tively. The third structure theorem gives the rule for 
continuation around the singularity associated with a 
given D ~c B. It says that if C [D] is the only Landau 
surface passing through a point K, and if the momenta 
pj and Feynman r:J.j of the internal lines of the corre
sponding Landau diagram are given uniquely by 
continuous functions iij(K) and pj(K) for points on 
qD] near K, then the function represented by B con
tinues into itself when continued around C [D ~c B] 
near K by a path in the upper half-plane of the variable 

The sum is over all internal lines, and p;(K) is any set 
of pj consistent with the conservation laws at K. [A 
number of useful equivalent expressions for a(K; K) 
are given in Ref. 2.] The signs of the r:J./K) in (8.1) are 
fixed according to the rule given above: r:J.'s from lines 
lying inside plus (minus) bubbles are positive (nega
tive). By virtue of the third structure theorem, the 
function represented by any bubble diagram B always 
has a well-defined continuation into itself past the 
singularity surfaces near a point P, unless there are 
several D ~c B with surfaces qD] that intersect at P 
and have incompatible rules for continuation. 

The position of a Landau surface corresponding to 
a given D is not changed if the signs of all its r:J.'s are 
reversed. But the rule for continuation past the corre
sponding singularity is reversed. Thus, if both these 
D are supported by some B, then the third structure 
theorem fails to provide any (single) path of continua
tion for this function. This is precisely what happens 
at a threshold: The singularity surface corresponds to 
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two D ::>c B that specify opposite rules for continua
tion. Accordingly, the function represented by B on 
one side of the threshold is not analytically connected 
to the function represented by B on the other side. 

It should be emphasized that the contours of inte
gration in the definitions of bubble-diagram functions 
are always fixed to be real, except for the infinitesimal 
distortions away from the singularities of the scattering 
functions of the integrand: One never distorts (by 
finite amounts) any contours, but always uses the 
originally defined (almost) real contours. Thus, when 
we say that a function corresponding to a bubble 
diagram B continues into itself, we mean the function 
defined by B with real undistorted contours of inte
gration continues into the function defined by B with 
real undistorted contours, always excepting, of course, 
the infinitesimal distortions required by the definitions 
of scattering functions. 

Our procedure has been to derive universal physical
region identities of the form M+ = T + R, where M+ 
is the physical scattering function, T is a threshold 
term that vanishes below the threshold t corresponding 
to a certain positive-IX normal-threshold diagram D+, 
and R is a function that has no singularity correspond
ing to any Landau diagram that can be contracted to 
D+. Let D- be the diagram obtained from D+ by 
reversing the signs of all the IX'S. The singularity surface 
corresponding to D- also lies at the threshold t, but 
the continuation past it is via the minus-i€ rule. Thus, 
if the only singularities of R near some point P on t 
are ones corresponding to D+ or D-, then R must have 
a minus-i€ continuation into itself past t near P, since 
the construction of R rules out singularities corre
sponding to D+. 

Because T vanishes below threshold, R is equal to 
M+ there. Thus, R is an explicit expression in terms of 
physical amplitudes (i.e., scattering functions at 
physical points) of a function that equals M+ below t 
near P, but has a minus-i€ continuation into itself past 
t near P. Since M+ has a plus-i€ continuation into 
itself past t, the discontinuity around t near P is just T. 

In the argument just given, it was assumed that each 
singularity of R near P corresponds to one of the 
threshold diagrams D+ or D-. The argument can be 
extended easily, however, to the case in which each 
singularity of R near P corresponds, merely, to some 
pure-(positive or negative)-IX diagram that contracts to 
D+ and D-. Those contracting to D+ are ruled out by 
the construction of R, while those that contract to D
must be pure-negative-IX diagrams. Therefore, Ragain 
continues into itself around t near P via the minus-i€ 
rule. Since only a finite number of pure-IX singularity 
surfaces enter any bounded region,9 the point P can be 

taken to lie on no pure-IX surface other than t. Then, 
the plus- and minus-i€ continuations are simply into 
the upper and lower half E (w' - w) plane, respec
tively. 

The above arguments cover only singularities 
corresponding to pure-IX diagrams that contract to D+ 
or D-. However, for almost every point P on t, the 
contraction condition can be ignored, because, for 
almost every P on t, there is a neighborhood N(P) of P 
such that each pure-IX surface that intersects N(P) 
corresponds to a diagram that contracts to D+ or D-. 
This follows from the general theory of pure-IX sur
faces developed in Ref. 8. That theory tells us that, 
apart from a set of points .;\{,o (of zero measure on t) 
where certain external lines are parallel, the set of 
points lying on positive-IX surfaces are the union of a 
set of (codimension 1) analytic manifolds, only a 
finite number of which pass through any bounded 
region. Thus, for almost every point P on t, there is a 
neighborhood N(P) of P that intersects no Landau 
surface except those that coincide with t. The general 
theory also tells us that the normal to the surface at any 
point P, lying onjust one surface, uniquely determines 
the positions of the external lines of the geometric 
Landau diagram D(P) that generates this point P. 
This means that any pure-IX diagram, whose singularity 
surface contains a P lying on no Landau surface except 
t, must be such that all the lines w intersect at one 
point and all the lines w' intersect at another point. 
But any pure-IX diagram of this kind can be contracted 
to D+ or D-. Thus, for almost all points P on t, R 
has minus-i€ continuation into itself around t near 
P, provided R has no mixed-IX singularities passing 
near P. 

A theory of mixed-IX Landau surfaces analogous to 
the theory of pure-IX Landau surfaces developed in 
Ref. 8 is not available. It seems likely, however, that 
almost every point P on t will have a neighborhood 
that contains no singularities except ones corresponding 
to diagrams that contract to a normal or pseudonormal 
(w' - w) threshold diagram. lO Let us assume this 
is true. 

It also seems likely that, in equations derived from 
unitarity and cluster properties alone, there will be no 
systematic cancellations between pure-IX and mixed-IX 
singularities. That is, if one side of such an equation 
has only pure-IX singularities in some neighborhood 
N(P), then so should the other side. In particular, we 
do not expect singularities associated with normal
threshold diagrams to be canceled by singularities 
associated with pseudo normal-threshold diagrams, 
since these will be moved relative to each other by 
small variations of the masses. The absence of such 
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cancellations will also be assumed. (These assump
tions are either implicit or explicit in all derivations 
of discontinuities from unitarity.) 

These two assumptions allow us to conclude that R 
has no mixed-oc singularities in a neighborhood N(P) 
of almost any point P on t. Energy conservation pre
cludes the possibility that T has any pseudonormal
threshold singularities near t. Then, since M+ - T 
has only pure-oc singularities in a neighborhood N(P) 
of almost every P of t, so must R. 

A more extensive study of the mixed-IX singularities 
is needed, but that is a subject in itself. 

APPENDIX A: PROOF OF DECOMPOSITION 
RULES 

Every contribution to the left side of (2.3) that is not 
contained in the first term on the right is a column of 
bubbles, none of which is connected to both OCI and 
1X2. Any such term occurs as a contribution to the 
second term on the right. No two different contri
butions to the left can occur as the same contribution 
to the second term on the right. Thus, the left side is 
contained in the right. Every contribution to the 
second term on the right occurs as a contribution to 
the left. No two different contributions to the second 
term on the right can occur as the same contribution 
to the left. No contribution to the second term on the 
right is contained in the subset of those contributions 
to the left that constitute the first term on the right. 
Thus, the right side is contained in the left side. There
fore, the two sides of (2.3) are identical sets of dia
grams. 

Each contribution to the left side of (2.4a) is con
tained in one and only one term on the right. This 
term is one in which 1Xl2 is the subset of IXI consisting 
of lines connected to bubbles that are connected to 
OC2 and in which {32 is the subset of {3 consisting of lines 
connected to bubbles connected to OCl2 U oc2. A given 
contribution to the left occurs as precisely one contri
bution to this unique term in which it appears. No two 
different contributions to the left occur as the same 
contribution on the right, and every contribution on 
the right occurs at least once on the left. Thus, the two 
sides of (2.4a) are identical. A completely similar 
argument proves (2.4b). 

An illustration of the decomposition formulas is 
provided by considering the 3 -+ 3 box 1=0=4 2 + 5. 

3 6 
(AI) 

, --f'+'"k, f3, 
2~ 

3~P2' 
(A2) 

The first term on the right of (A2) is then by definition 
the sum of bubble diagrams 

~3IEi + L. §:0= + L~~, 
i i 

(A3) 

where the sum sign labeled "i" has the same signifi
cance as in I (see the first paragraph of Sec. 4 of I). The 
second term on the right of (A2) is 

~ :ffi::: ~ + ~ -m--:: ~ + ~ -J±l=y-:. 
3 -- 6 3:::::::::::X= 6 3 ~6 

(A4) 

The expressions (A3) and (A4) add up to the usual 
cluster expansion of the 3 -+ 3 box [Eq. (4.4) of I], 
as we see by substituting the expansion of the 2 -+ 2 
box [Eq. (A8) of I] into (A4). 

APPENDIX B: ITERATION OF CERTAIN BOX 
DIAGRAMS 

In this appendix, the box diagram BI defined by 
(5.10) is converted to an equivalent box diagram B~ 
used in the proof of Proposition 5.2. 

Equations (2.3) and (2.12) give 

a~y= 
~~ 

= 

a~y 
~~ 

Use of unitarity and then (2.4a) converts this to 

(Bl) 

For the case OCI = {I, 2}, OC2 = {3}, and {3 = {4, 5, 6}, This equation can be iterated by replacing the last 
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factor of the last term by the entire right side. An n
fold iteration gives 

n+1 

(B3) 

Let the number of iterations n be at least equal to the 
number of lines n(ex) of the set ex. Then, the last term 
on the right side of (B3) is an empty set, since the 

APPENDIX C: PROPOSITION 5.2C 

Consider the diagram 

82==:&Y == a~y. (CI) 

If the center-of-mass energy of the set (1. is below the 
4-particle threshold in the channel {3 + y ~ ex, then 
B2 is equivalent to a bubble diagram B~ such that for 
any D' :::lC B~ the only simple positive «(1., (3 + y) cut 
set C with connected X(C, (3 + y) is (1. itself. Moreover 
D' - ex lies in X(C, fJ + y). 

Proof' The arguments establishing Proposition 5.2 
apply equally well to the connected part of BI , which 

definition of (2.5) implies that, if any of the sets 
exl, ex2, ... , exn+l is empty, then no diagram satisfying 
the required conditions exists. Thus, for any n ~ n(ex), 
we have 

o.~r. 

~I - -+ Y 
{3 + I 

8
1 

~. onm 
o - + Y. 

". + H)n f3 + I - + - + "8n 
8 8. 

I I 2 '" n 

(B4) 

If the set ex is empty, then all terms of the right side 
of (B4) except the first are empty. Thus, the right side 
of (B4) is, in this case, 

a@Y2 = f3~Y. (BS) 
f3@Y1 

Equation (B4) is therefore a trivial identity for n(ex) = 
O. If n(ex) = I, Eq. (B4) is 

(B6) 

is 

(C2) 

If ex is taken to be a single line, the second term on the 
right of (C2) drops out, and Proposition 5.2 proves the 
proposition. If the center-of-mass energy of the set (1. 

is less than the 3- or 4-particle threshold, respectively, 
then the second term on the right of (C2) is 

(C3) 
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or 

~
' + Y, a~' + Y" 

+ a - + ,{ -
p + Y a z " + Yz 

2 2 "'z 

(C4) 

respectively. (Topologically equivalent contributions 
to the right side are to be counted only once.) The only 
simple positive (oc, f3 + y) cut set C of any of the bubble 
diagrams of (C3) or (C4) such that X(C, f3 + y) is con
nected is the set oc. This follows at once from Definition 
3.1, Proposition 3.1, and from the fact that no line of 
C can be a minus line. Proposition 5.2, applied to the 
left side of (C2), completes the proof. 

Corollary: Suppose B2 of (C1) is part of B of (5.11). 
Replacement of B2 by the B; of the proposition con
verts B to B'. Let C be any simple positive (w, w') cut 
set of any D' :::>c B'. If X(C, w') is connected, then 
all points of X-(oc) belong to X(C, w') if all points of 
X+(f3) U X-(y) belong to X(w'). 

Proof: The above proof still applies, if the X+(f3) U 

X-(y) belong to X(w'). 

APPENDIX D: THE PRINCIPLE OF INCLUSION 
AND EXCLUSION AND AN EXPANSION ON 

UNCONNECTED LINES 

Let A be a set such that each member of the set 
either does or does not have the property "i." The 
subset of A consisting of members that have the 
property "i" are designated by Ai' The subset of A 
consisting of members that do not have the property 
"i" are designated by Ai, i = 1,2, ... , n. Then, 

A = Ai + Ai. (01) 

By a repeated application of (01), we obtain 

A = Al + Al 

= AI2 + A~ + Ai + A12. (02) 

It follows from (01) also that 

A~ = Al - A12 • (03) 

By the definition of Ai and by (01), 

A~ = (A - A1)2 = A2 - A12 • (D4) 

Substituting (03) and (04) into (02), we obtain 

A = Al + A2 - Au + A12. (05) 

Equation (05) can be generalized to the formula 

A = ! Ai - ! Ai; + ... - (-1)" ! Ai;··· k 
i i<j i<j<···<k 

where s is the number of subscripts in A" .. . and where 
each summation runs from 1 to n. [For a proof of 
(06), see Ref. 11.1 

We consider now a plus or minus box of the form 

(D7) 

where a consists of precisely n lines. Let the property 
"i" be the property that line i of a is connected in G± to 
no line of a - i == a - {i}. Let G'j= be the subset of 
diagrams of G± with the property i. Then, G'j= has the 
form 

(J § f3 i -:fD. .n I 
G± = + n - I·

ill 
(08) 

. - - - (J-I 
I f3 + .n 

i f3z - 2 

This is because each term of G'j= occurs as one and only 
one term on the right, no two different terms of G,/, 
occur as a single term on the right, and each term 
on the right occurs at least once in 0";. Similarly, 
for i ~ j, 

etc. The term G±12·· . n is the term of G± such that each 
line i of a is connected in G to some line of a-i. Thus, 
it has the form 

(010) 

where the prime on the summation symbol indicates 
that only one of the k! topologically equivalent dia
grams, obtained by reordering the bubbles, is to be 
counted and the condition ar ¥= 1 means that the set 
ar has two or more lines. That is, the sum is over all 
ways of partitioning the set a into sets a. ¥= 1, the set 
f3 into the sets f3k' and the set 0 into the sets Ok' as 
specified by the summation convention of Sec. 2. 

Let °G± be G± minus its connected part. The expres
sion given above for G± also applies to °G±, except 
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that the sum of columns of bubbles on the right of 
(010) does not include a column consisting of just one 
bubble. Since oGt ... k = G:J ... k' the application of 
(06) to the function °G± yields 

°G± = l, Gt - l, Gt 
i j<i 

+ ... + (-1)' l, G~"'k 
i<j< ..• <k 

+ (-1) nGi2"'n + °G±l2"'n, (011) 

W

" 

I w
lI w

21 

+ + 
I'" 

w'2 "'22 '2 

where the Gi~' .. k are of the form indicated in (09) and 
°G± 12' .. n is given by (010) with the restriction k > 1. 

APPENDIX E: THE DOUBLE-CROSS TERM 

In this appendix, we prove Eq. (6.6). If E(w, w') is 
less than the 5-particle threshold, then the columns of 
plus bubbles in the second term on the right of (6.4) 
each consist of precisely two bubbles, and this term, 
denoted by B6 , is given by 

I 
"'21 

+ 
I w
22 

I 
''''22 "'12 

"'II 

+ 
"'12 

"'12 ~2 
"'22 

where topologically equivalent diagrams are to be 
counted only once. 

Only the last bubble diagram on the right of (El) 
can contain a simple positive (w, w') cut set C such 
that X(C, w) and K(C, w') are both connected. This 
follows directly from the properties of cut sets estab
lished by Proposition 3.1. In particular, any D ::>c B 
is divided by C into three disjoint sets X( C, w), 
X(C, w'), and C, the first two of which must be con
nected. Since C' contains no minus lines, the part of 
D contained in any minus bubble must belong to either 
K(C, w) or K(C, w'). This precludes the possibility 
that the other one is connected, in the case of the 

I wli 

I 
"'21 

(El) 

fourth and fifth terms on the right of (El). For the 
third term, the requirement that K(C, w) be connected 
implies that either (i) lines a and c belong to .f(C, w) 
or (ii) lines band d belong to K( c, w). The re
quirement that K(C, w') be connected implies that 
either (i/) lines a and b belong to K(C, w'), or (ii ') Jines 
c and d belong to K(C, w'). These conditions are 
incompatible with the requirement X(C, w) fI K(C, 
w') = O. Except for the last term, the remaining 
bubble diagrams of the right side of (El) are ruled 
out in the same way. The last term does not belong 
to :Jt.(w, w'); the lines intersected by the dotted curve 
are a simple positive (w, w') cut set. 
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In the framework of limitable dynamical groups, a group 

D! = D' @ SO(N)I, D' = GHN) (2 Sp(2N, R), 

is discussed. It is shown that the physical representation U(D;) describes interacting nonrelativistic 
particles of arbitrary spin in N dimensions, with linear combinations of second-order polynomials in 
momentum and position operators Pi, Qi with i = 1, ... , N. and spin-flip operators as Hamiltonians. 
G'Jt(N) is the central extension of the inhomogeneous, pure GaIilei group, and SO(N)I a rotation group 
in N dimensions. Sp(2N, R) is the noncompact form of the symplectic group. It is proven that there 
exists no irreducible unitary representation of D' describing particles with spin s > O. Hence it was 
necessary to enlarge D' to D;. The physical free-particle group DO C D; possesses projection parts in 
Sp(2N, R) as well as in SO(NY To calculate them, we decompose the physical representation U(DO) by 
group-theoretical methods such that the angular momentum splits into a spin and an orbital part. DO is 
isomorphic to the central extension of the inhomogeneous Galilei group. The physical representation 
U(D!) is calculated by the postulate that U(D!) and U(DO) can be limited into each other, and that mass 
and spin conservation hold. The limitation is realized as a group contraction leading to a nonfaithful 
representation of the contracted group. We prove that U(D!) is uniquely determined by mass and spin 
of the free particle which is obtained if the interaction in D: is turned off. Furthermore, the generators are 
identified as functions of Pi, Qi, and spin-flip operators. Hence the limitation postulate leads to the physi
cal representation of the abstract group D! and to the identification of the described physical system. 

INTRODUCTION 

1. The complete and pure group-theoretical descrip

tion of interacting systems by limitable dynamical 

groups proposed in the previous paperl (hereafter 

referred to as I) is applied to nonrelativistic particles 

with arbitrary spin. Our approach is based on the 

following observation. Suppose that U Ph(D!) is the 

unitary, irreducible, physical representation of a group 

D! in the sense that interacting spin particles are 

completely described by U Ph(D!). Denote the known 

dynamical group of free spin particles and its physical 

representations by D~ and Ul'h(D~), respectively. Then 

it is plausible to require that the interaction contained 

in D; can be turned off, which implies that U Ph(DD 
can be limited into Ul'h(D~), 

U Ph(DD ~ U Ph(D~), 

such that mass (m) and spin (s) are constant during the 

limitation. The reverse process, i.e., the extension of 

Uph(D~) to U1'h(D;), 
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In the framework of limitable dynamical groups, a group 

D! = D' @ SO(N)I, D' = GHN) (2 Sp(2N, R), 

is discussed. It is shown that the physical representation U(D;) describes interacting nonrelativistic 
particles of arbitrary spin in N dimensions, with linear combinations of second-order polynomials in 
momentum and position operators Pi, Qi with i = 1, ... , N. and spin-flip operators as Hamiltonians. 
G'Jt(N) is the central extension of the inhomogeneous, pure GaIilei group, and SO(N)I a rotation group 
in N dimensions. Sp(2N, R) is the noncompact form of the symplectic group. It is proven that there 
exists no irreducible unitary representation of D' describing particles with spin s > O. Hence it was 
necessary to enlarge D' to D;. The physical free-particle group DO C D; possesses projection parts in 
Sp(2N, R) as well as in SO(NY To calculate them, we decompose the physical representation U(DO) by 
group-theoretical methods such that the angular momentum splits into a spin and an orbital part. DO is 
isomorphic to the central extension of the inhomogeneous Galilei group. The physical representation 
U(D!) is calculated by the postulate that U(D!) and U(DO) can be limited into each other, and that mass 
and spin conservation hold. The limitation is realized as a group contraction leading to a nonfaithful 
representation of the contracted group. We prove that U(D!) is uniquely determined by mass and spin 
of the free particle which is obtained if the interaction in D: is turned off. Furthermore, the generators are 
identified as functions of Pi, Qi, and spin-flip operators. Hence the limitation postulate leads to the physi
cal representation of the abstract group D! and to the identification of the described physical system. 

INTRODUCTION 

1. The complete and pure group-theoretical descrip

tion of interacting systems by limitable dynamical 

groups proposed in the previous paperl (hereafter 

referred to as I) is applied to nonrelativistic particles 

with arbitrary spin. Our approach is based on the 

following observation. Suppose that U Ph(D!) is the 

unitary, irreducible, physical representation of a group 

D! in the sense that interacting spin particles are 

completely described by U Ph(D!). Denote the known 

dynamical group of free spin particles and its physical 

representations by D~ and Ul'h(D~), respectively. Then 

it is plausible to require that the interaction contained 

in D; can be turned off, which implies that U Ph(DD 
can be limited into Ul'h(D~), 

U Ph(DD ~ U Ph(D~), 

such that mass (m) and spin (s) are constant during the 

limitation. The reverse process, i.e., the extension of 

Uph(D~) to U1'h(D;), 
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must also be possible and compatible with the selection 
rules for m and s, and the result must be unique. 
Hence, starting with U p,,(D~) and turning on some 
known interactions t (the so-called interaction type t), 

we obtain the physical representation of D!. The 
corresponding Hamiltonians Ht are assumed to be 
elements of the Lie algebra of U p,,(D!). It was shown 
that these limitations severely restrict the group as 
well as its physical representations. 

2. The dynamical group D~ of the free particle 
moving in N :::;; 3 dimensions was given by the central 
extension GE(N) of the inhomogeneous Galilei group 
G(N) in N dimensions. D~ is independent of s; hence 
the spin index was dropped. Any irreducible repre
sentation U{GE(N»[m.v.s] is labeled by three numbers 
(m, V, s), by the eigenvalue i' m of the center in the 
Lie algebra of GE(N), by the eigenvalue V of the 
Casimir operator 

N 

C};~ = HoC + t I,N, 
i=1 

and (for N = 3) by the eigenvalue of the second-order 
Casimir operator V of the little group SO(3) of GE(3). 
The physical identification of m and s as mass and spin 
was straightforward. V corresponds to a physically 
inessential constant in the energy operator H o; there
fore, V = ° is chosen and one has Up ,,{GE (3» = 
U(GE(3»[m.o.s]. For N > 3, a formal particle is defined 
via U(GE(N»[m.O.s], with s being now the spin content. 

3. A limitable dynamical group for spinless particles 
was constructed by embedding GE(N) in 

Dt = G~(N) Q< Sp(2N, R), 

with G~(N) being the central extension of the pure, 
inhomogeneous Galilei group in N dimensions, and 
Sp(2N, R) being the noncompact form of the sympletic 
group. By our limitation postulates, U p,,(Dt) is a 
Nelson extension of U(G~(N»[m] and uniquely given 
by m and s = 0. The interaction type t of Dt, i.e., the 
Hamiltonians in the corresponding quantum-me
chanical description, is identified as the set of second
order polynomials in Pi' Qi' i = I, ... , N. 

4. We present now a similar model for particles with 
arbitrary spin. In Sec. 1, the free-particle group GE(N) 
and its physical representations U{GE(N»[m.o.s] are 
discussed again. It is shown that a tensor product 
between U(GE(N»[m.o.O] and an irreducible repre
sentation U{SO(N))fS] of the spin group [little group 
for GE(N)] with spin content s is unitarily equivalent 
to U(GE(N»[m.o.8]. This decomposition is the group
theoretical analog of the quantum-mechanical pro
cedure of solving in the first step, the free-particle 
problem without spin and attaching, in the second 

step, the spin to the particle. The same method of 
introducing the spin is applied to the dynamical group 
Dt. It is shown (Sec. 2A) that Dt possesses no repre
sentation limitable into an s = ° representation of 
GE(N). Therefore, Dt is enlarged (Sec. 2B) to 

D~ = (G~(N)Q< Sp(2N, R» @ SO(N)I, 

such that the rotation subgroup SO(N) of the physical 
free-particle group DO has projection parts in Sp(2N, 
R) as well as in SO (N)I. DO is isomorphic to GE(N). 

D! is a limitable group. Its physical representation is 
calculated via a limitation between U p,,(DD and 
U(GE)[m.o.s], and is shown to be unique. The limitation 
is realized by a group contraction. The identification of 
the interaction Hamiltonians Ht contained in U p,,(D!) 
leads to a similar result for Dt. We find Ht as a linear 
combination of second-order polynomials in Pi' Qi' 
i = 1, ... ,N, and of a set of spin-flip operators. 
The application of the approach to relativistic systems 
is discussed (Sec. 2C). 

1. SPIN DECOMPOSITION FOR THE DYNAM
ICAL GROUP OF THE FREE PARTICLE 

The spin part in U{GE(N»[m.o.s], s > 0, is separated 
such that the physical angular momentum splits into 
a spin and orbital part. The same result is obtained 
if GE(N) is replaced by 

DO(N) = (G~(N)Q< SO(N» 0 p[SO(N)], 

(0 is defined in Sec. lA3) with p[SO(N)] being the 
image of SO(N) C GE(N) under a fixed isomorphism 
p. DO is isomorphic to GE(N). The irreducible repre
sentations of DO(N) labeled by em, 0, s] are physical 
and DO(N) can be used as dynamical group for free 
particles. 

A. Spin Separation in Quantum Mechanics 

1. In U{GE (N))[m. o.8], spin and orbital angular 
momentum of the free particle are described by the 
same group simultaneously. The angular-momentum 
operators are given as generators of the physical 
rotation group SO(N)p", i.e., of the group describing 
rotations of the coordinate frame as it was indicated 
in Sec. 1 C2 of I. This unified description is satisfactory 
from the principal point of view. However, a generali
zation of our oscillator model to spin particles needs 
a formal separation of spin and orbital angular 
momentum, at least for free particles. 

2. In the usual quantum-mechanical treatment, this 
splitting is a natural consequence. We recall briefly the 
method. Let ~1 be the Hilbert space of the spinless 
system. ~1 carries a reducible representation of SO(3) 
with generators dij = i(PiQj - PjQi), i, j = 1, 2, 3. 
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The spin is introduced by enlarging .Dl to .D = 

.Dl X .D2' with .D2 = .D[S] being a [des) = 2s + 1]
dimensional irreducible representation space of SO(3) 
with generators Ifi' (A product space .D = .Dl X .D2 
of two Hilbert spaCeS.Dl and .D2 is defined as the closure 
of the finite linear span of all formal products!i . t-ta of 
basis elements!i E f>l' t-ta E .D2' The elements of .D are 
denoted by If, t-t). The inner product is defined as 
<f, t-t I 1', t-t') = (f I I')<t-t I t-t'), with (f If') and <t-t, t-t') 
being the inner products in f>l and .D2' Note that 
If 1 ,t-t) + If2' t-t) = If 1 + !2, t-t> and If, t-tl) + If, t-t2) = 
If, t-tl + t-t2) holds. Operators A in f> acting as 
A If, t-t) = IA!, At-t> are denoted by A = Al X A2, 
e.g., the unit operator by I = 11 X 12') f> is a Hilbert 
space over vector-valued functions with d components. 
Hence two different SO(3) representations appear 
which are not yet related to each other, and a direct 
product of two SO(3) groups SO(3) @ SO(3)1 is 
represented in f>: 

U(SO(3) @ SO(3)1) = U 1(SO(3)) X U 2(SO(3)1), 

acting as (J E .Dl' fl E f>2), 

U(SO(3) @ SO(3)111!, fl) 

= I (U l (SO(3»)f), (U 2(SO(3ifl»' 

The essential point now is to identify the physical 
rotations group SO(3)P" in SO(3) @ SO(3)1 which 
coincides obviously neither with SO(3) nor with 
SO(3)1. Hence it lies crosswise as a subgroup in the 
direct product. It is suitable to define SO(3)ph via its 
Lie.algebra 

acting in f> as 

dii I!,#) = (Iii X 12 + II X 1[j) I!,fl). 
3. To characterize SO(3)ph without using its Lie 

algebra, let R E SO(3) and R1 E SO(3)1 be param
eterized by a set (R) and (R1) of rotation angles. 
Then SO(3) @ SO(3)1 contains elements (R, R1). Con
sider now an isomorphism p mapping SO(3) in 
SO(3)1, 

R ->- p[R] E SO(3i, 
p 

such that 

(p[RD = (R), 

i.e., Rand p[RJ are parameterized by the same set 
(R). Then SO(3)ph is obtained as 

SO(3)ph = SO(3) 0 p[SO(3)], 

where 0 means not the direct product, and with Lie 
algebra 

The elements of SO(3)ph are given by (R, R1 = R). 
(The above discussion contains a redefinition. A 
straightforward calculation leads to 

SO(3) @ SO(3)1 ~ SO(3) ~ SO(3)Ph 

~ SO(3)! 0 SO(3)Ph. 

Starting with SO(3) 0 SO(3)P", we see that that 
implies that a redefinition exists such that a direct 
product decomposition with factors isomorphic to 
SO(N) is possible. This is a special case of more 
general redefinition theorems. Note that also represen
tations of SO(3) and SO(3)ph exist in f>; however, they 
are not related to physical rotations). 

B. Spin Separation in Up,,(GE(N» 

1. An angular-momentum decomposition in 

U(GE)[m.o.s], s > 0, 

is also possible and is related to a specific group
theoretical property of GE(N). Let GE(N) be parame
terized by r = (0, R, U, V, 'T) [r E GE(N)] with real 
numbers ° and 'T, N-dimensional vectors U and v, and 
(R) being a set of rotation angles describing elements 
of SO(N). GE(N) can be written as a semidirect pro
duct, 

and also as 

with 

G~(N) = {(O, 1, u, v, 'T)}, G1 = {CO, 1, u, 0, 'T)}, 

G2 = {(O, R, 0, v, O)}. 

The Lie algebra GE(N) is spanned by skew-symmetric 
generators {C, d;i = -dj ;, Pi' Q;, H; i,j = 1,'" , 
N} of the corresponding subgroups (0,1,0,0,0), etc. 
Then the following decomposition holds: 

Lemma 1: Let U(GE(N»[m.o.s] and U(SO(N))[S] be 
irreducible unitary representations of GE(N) and 
SO(N) in representation spaces f>[m.o.s] and f>[S]. 

(i) f> = f>[m.o.8] can be decomposed into 

.D = .Dl X f>2' f>1 = f>[m.O.O], f>2 = f>[s], 

such that U(GE(N»[m.o.s] is unitarily equivalent to 

u(e, R, u, v, 'Tym,o,s]£'U1(e, R, u, v, 'T)[m.O.O] X U
2
(R)[S] 

or 

U(GE(N»[m.o.s]QUl(G~ 0 sO(N)i m •o.o] 

x U 2(p[SO(N)]l'J, 

i.e., to a tensor product between an irreducible unitary 
representation of GE(N) with s = 0 and an irreducible 
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unitary representation of its little group SO(N) which 
is mapped by a fixed isomorphism p-l into the SO(N) 
subgroup of GE(N). 

(ii) The Lie algebra U(GE(N»[m,o,s] in ~ is of the 
form 

C = CI X 12 , 

di; = lu X 12 + II X P [Iu], Ii; = (i(PiQ; - P;Qi»l, 

Pi = (Pi)1 X 12, Qi = (Qi)1 X 12, H = (H)1 X 12, 

whereas p[Jii], i,j = 1, ' .. , N is the Lie algebra of 
U(p[SO(N)])[8]. The statement is equivalent to the 
desired spin separation. Iii X 12 is the orbital part and 
II X p[lij] the spin part of the angular momentum. 

II X U2(p[SO(N)])[8] ~ U(SO(N»[S] 

can be interpreted as the spin group which is extracted 
from U(GE )[m.o,8] such that the remaining part con
tains an s = 0 representation of GE(N), It is worth
while to note that a similar decomposition for physical 
representations of the Poincare group does not exist. 

2. A proof of Lemma 1 uses some details from the 
construction of U(GE(N», We refer to the discussion 
in Appendix B of! (see also Ref. 2). Consider GE(N) = 
G1 ex G2· Denote by {X(gl)} = G1 the character 
group of G1 , and by C(m, V) equivalence classes or 
orbits of G1 in GE with elements Xa(gl) , IX = 
(m, tm-1p2 + V, p), which are uniquely labeled by 
an N-dimensional vector p, The numbers i· m and 
V are, as above, eigenvalues of the center C 
in GE(N) and of cWo The set of all little groups 
Gt,V c G2 ; i.e., the set of all groups leaving invariant 
at least one character Xa(gl) is given by 

{CO, R, 0, m-1(p - Rp), O)}, 

The little groups are independent of the m, V, p in the 
sense that they are all isomorphic to SO(N). Take p 
fixed, Then {CO, R, 0, m-1(p - Rp), O)} is the invariance 
group of Xa(gl), oc = (m, tm-1p2 + V, p). An irre
ducible representation U(G;",V)[8] in ~2 = ~[8] with 
basis {I,u), ,u = 1, ... , des)} is given by matrices 

L~~,(R; p) 

with fixed p. Xa(gl) is a representation of G1 • It is 
convenient for our application (V = 0) to use Xa/g1) 
with 1X0 = (m, 0, 0). We consider now the tensor 
product 

XaO(g1) X L~~,(R; p) 

and choose as the little group just the invariance 
group of XaO(gl) , i.e., L~sJ,(R; 0) abbreviated as 
L~J,.(R). Then 

Xa.(gl) x L~,..(R) 
is a representation of G10 G;"'o in ~2' We decompose 

GE in cosets GE/(G/x G;"'O) c G2 modulo G/x G'{"o. 
Each of them is labcled by p and contains clements 
of the form (R) 

gp(R) = (0, R, 0, -m-1Rp, 0) E GE /(G1 Q< Gr'v). 

We take in each coset a representative elementgp , i.e., 
an element with a suitable choice of R. 

The representative of the transformed coset r' gp(R) 
is denoted by grp with r = (0, R, U, V, T) E GE and 
rp = R-1(p - my). (In Appendix B of I, rp was 
denoted by Pr .) Now, dropping the index g in Appen
dix B of I, the representation space ~ = ~[m,0.8] of 
U(GE ) is spanned by vector-valued-functions f with 
components fl" ,u = 1, . , . , des), defined over cosets, 
i,e.,!,. = figp) = fip). HencefE ~ can be written as 
I!(p),,u) or 

~ = ~1 X ~2' ~2 = $[8]. 

~1 is the space of square-integrable functionsf(p) and 
~2 carries U(G;",0)[8]. In an improper basis /p, fl.) in ~ 
with (p,,u I p', ,u') = (j,u,u?r'V(p - p'), matrix elements 
of U(r)[m,0,8] are given by 

(p,,ul u(rYm,O,sJ Ip', ,u') 

( -l)L[sJ ( -1)( 1") = Xao gpg1gp ,.p.' gpg2grp rp, ,u p,,u , 

where r = glg2' 
3. Now we start with the proof. 
(i) The above representation depends explicitly on 

the choice of the representative gp in each coset. 
Different representative systems lead to different basis 
systems in ~. Hence it is plausible to look for a choice 
of gp such that the matrix 

L [sJ( -1) 
p.p.' gpg2grp 

becomes independent of (R) in r = (0, R, 0, V, 7'). 
The possibility is shown by putting R = 1, i.e., 

gp = (0, 1, 0, -m-1p, 0). Hence gpg2g;-,1 = (R) and 
U(r)[m,o,s] can be written in ~ = ~1 X ~2 as 

with 

and 

u(rYm,o,sJ = u 1(r) X U2(R), 

(pi U1(r) Ip') = Xao(gpg1g;1)(rp I p') 

(,ul U 2(R) l,u') = L~~.(R). 

(ii) We now take the set {UI(r)} which is independ
ent of the representation of G;"'o, and consider the 
representation of GE which is constructed using the 
trivial representation of G,{,'o, i.e., from U(SO(N»[O]. 
Then 

~ = ~1 and U(r)[m,O,O] = U1(r) 

holds. There is (up to unitary equivalence) only one 
irreducible representation labeled by [m, 0, 0]. Hence 
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a unitary matrix fJ1 exists in f>1 with 

{Ul(r)}Q;Ul(G~N»[m.o.oJ. 

The set {U2(R)} is, by construction, an irreducible 
unitary representation of an SO(N)l group. But the 
transformations in this group are not independent of 
the SO(N) transformations given by {(O, R, 0, 0, On in 
U1(r). If r contains (R) as SO(N) part, the same 
transformation occurs in U2(SO(N)I). Let (RI) be a 
parametrization of SO(N)I and let p be a fixed iso
morphism between SO(N)l and {CO, R, 0, 0, On, i.e., 

(0, R, 0, 0, 0) -')0 p[Rl E SO(N)I 

such that (R) = (p[RJ). Then 

{U 2(R)} ~U 2(p[SO(N)])[S1 

holds, with fJ", being a unitary matrix in f>z. The 
statement of Lemma 1, part (i), is obtained by putting 

0= 01 X O2 , 

(iii) The Lie algebra is derived via Stone's theorem. 
Take a I-dimensional subgroup of GE(N) param
eterized by (IX). Then the corresponding generator 
ia is defined on a dense set of analytic vectors ::D'U: 

lim a.-1(U(a.)[m.o .• ] - I) If, ft) = ia If, ft), 
""'0 

If, ft) E ::Da;. 

Because the subgroups with generators C, Pi' Qi' H, 
i = 1, ... , N, do not contain R, we have, e.g., for H 
that 

(U(r)[m.o.sJ - I) = U1(r)[m.o.sJ x 12 - II X 12 

and hence, also, 
H= (H)l X 12 , 

The same decomposition holds for C, Pi' Qi' 
(iv) The derivation of the remaining generators 

needs a property of unitary representations U(L) of 
a Lie group L on a product space f) = f>1 X f>2' If 
any U(I), IE L splits in f> into 

U(l) = U1(1) X U,i/) , 

with {U1(l)} and {U2(l)} being unitary representations 
of Lin ,i)l and f)2' respectively, then one has, for the 
generator i· a of a I-dimensional subgroup {U(IX)} on 
the domain ::D'U, 

i· a If, ft) = lim (1X-1(U1(1X) x U2(iX) - II x 12) /J.ft» 
,,"'0 

= lim (/1X-1(U1(1X) - I1)f,ft) 
,,"'0 

This leads to a special form of i . a with projection 
parts (i . a)1 and (i' a)2 in ,i)1 and ,i)2' respectively: 

i· a = (i. a)l x 12 + II X (i' a)2' 

(v) Returning to our example, we have immediately 

di; = (di;)l X 12 + II X (dij)2' 

The form of (dij)1 = Iii was already derived in Paper 
I. {(di;)2} is the Lie algebra of U(p[SO(N)]), i.e., 

(d;;)2 = P[lij]· 

This concludes the proof. 

C. An Alternative Formulation for GE<N) 

1. In the preceding section, a spin separation was 
obtained in representations U(GE(N»asaconsequence 
of Lemma 1. For later applications it is useful to start 
not with GE(N) , but with an abstract group DO(N) 
which already exhibits this separation in an obvious 
way. To construct DO(N) , we use the fact that, in 
general, a dynamical group is unique only up to 
isomorphisms, and we replace GE(N) by an isomor
phic copy such that the spin group behaves in irre
ducible representations similarly as a direct factor. 
From Lemma 1 it is plausible to choose 

DO(N) = (Gi;(N) 0 SO(N» 0 p[SO(N»), 

where p denotes the isomorphism in Lemma 1. Ob
viously DO(N) f:::::I GECN). DO(N) is subgroup of 

DO(N) c (G~(N)0 SO(N» ® SO(N)l, 

containing two rotation groups from which the physi
cal one is selected as discussed in lA2. Because 
DO(N) f:::::I GE(N), Lemma 1 implies that the irreducible 
representations of DO(N) are of the following form: 

U(Do(N»[m.o.s] = U(G~(N» X SO(N»£m.o.O] 

X U(p[SO(N)])£IJ. 

2. DO(N) can be chosen as a dynamical group for 
the free particle. It works for all m > 0 and s. Irre
ducible representations labeled by [m, 0, s] are physi
cal. The interpretation of p[SO(N)] as a spin group 
and of U(SO(N» C U(G~(N) Q< SO(N»[m.o.o] as an 
orbital angular-momentum group is a result of Lemma 
1. Summing up, we have 

Lemma 2: Let DO(N) be the group 

DO(N) = (Gi(N) Q< SO(N» 0 p[SO(N)]. 

with p[SO(N)] being the image of a fixed isomorphism 
p of {CO, R, 0, 0, O)} c GE(N). 
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(i) DO(N) is isomorphic to GE(N). 
(ii) DO(N) is a dynamical group for the free particle. 

Its physical representations are given by 

U(Do(N)i m.o.s] = U(GE(N)[m.O.aJ X U(p[SO(N)])[s]. 

2. A DYNAMICAL GROUP FOR INTERACTING 
PARTICLES WITH SPIN 

It is shown that the p-Hmitable dynamical group 

Dt = G~(N) Q< Sp(2N, R) 

cannot describe particles with spin. Therefore, Dt is 
enlarged to 

D; = Dt 
@ SO(N). 

The physical representation U PlIeD!) is uniquely p
limitable into the physical representation of the free
particle group and is determined by the mass and spin 
of the system. The relation between limitable groups 
and some recent work on dynamical groups is dis
cussed. 

A. Spin Content of Dt = G~ 0 Sp(2N, R) 

1. We want to generalize our model with dynamical 
group Dt and a Nelson extension [J(Dt) of U(G'J,;(N»[m] 
as a physical representation to particles with spin. At 
first sight, it seems plausible to use Dt, but use 
another irreducible representation Oll,,(Dt) as the 
physical one. Oll,,(Dt) is exposed to our limitation 
postulates. Then the free and the interacting system 
are described in the same Hilbert space. 0lll/(Dt) is 
an irreducible representation in the space S5[m.O.s] of 
the free particle. The limitation between Op,,(Dt) 
and U(GE(N»[m.o.s] is formulated as a restriction. 
Then 

0ll,,(Dt) -+ U(GE(N»[m.o.s] 

leads to a condition for the restriction O(GE(N» of 
O",,(Dt) to GE(N), 

O(GE(N» = U(GE(N»[m.o.s]. (1) 

2. A representation of this type is possible only for 
s = 0 because of the following: 

Lemma 3: A unitary representation O(Dt) of Dt in 
S5 = ~[m.o.81 with a restriction O(GE(N» to GE(N) c: 

Dt, given by 

O(GE(N» = U(GE(N»[m.O.8], 

exists only for s = 0 and is unitarily equivalent to 
the Nelson extension of U(G'J,;(N»[m]. 

Proof: 

(i) $5 = $5[m.o.s] is decomposed in 

$5 = $51 X $52' $51 = $5[m.O.O], $52 = $5[']. 

The dimension des) of $52 is finite. O(Dt) splits into 

O(Dt) = 01(Dt) x 02(Dt) 

and [see Lemma 2, part (iv)J any generator din O(Dt) 
is of the form 

d = dI X Ia + II X da• 

(ii) O(GE) = U(GE)[m.o.s] implies that the project 
tion part of the subalgebra G~ in S52 vanishes. The 
projection part (dij)2 of the generators of the physical 
SO(N) subgroup in GE(N), being a subgroup of 
Sp(2N, R) C Dt, form a d(s)-dimensional representa
tion in $52' Hence at least a group S with 

SO(N) c: S c Sp(2N, R) 

is represented in S52' Because des) is finite, we infer 
from the unitarity of U(Dt) that S is compact and 
that the projection parts of at least all noncompact 
generators of Sp(2N, R) vanish in $52' For Sp(2N, R) 
being simple implies that also the compact generators 
vanish. Hence the representation of p [SO (N)] is trivial, 
and s = 0 holds. 

(iii) A proof of the last part of the lemma is con
tained in Paper I, Sec. 3C3. 

3. A representation with the above restriction prop
erties exists at most for des) = 00. But the simple 
physical interpretation of U(Dt) via a limitation 
procedure fails in this case. A more involved method 
is beyond nonrelativistic quantum mechanics and may 
be useful for relativistic examples, e.g., if one abandons 
mass and spin conservation for interacting systems or 
if a tower of I-particle systems is used instead of a 
single particle. 

B. D; = Dt(N) @ SO(N) as p-Limitable 
Dynamical Group 

1. Now, the problem is to construct a group D! or 
its Lie algebra D; possessing a unitary irreducible 
representation limitable into 

U(GE(N»[m.O.sl, s > O. 

As in Sec. 3C of Paper I, we choose for D! an embed
ding of the Lie algebra Do of the free-particle 
group DO :=::::; GE(N), i.e., 

The limitation 

(2) 

is given by a restriction of O(O!) to the subalgebra 
DO and can be realized as a group contraction between 
representations if 

0(00) = U(DO)[m.o. s] 
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holds. We denote by {d~} a basis in D°, and decompose 

D! into the subalgebra DO and a subspace 15 spanned 

by {t4}, 0: = D° + 6. Consider the algebra D![€] 
spanned by 

{d~, €di }, real € > o. 
D![€] is isomorphic to D! = 0;[1], but 

O(D:[€]) -::: 0(0°) = U(Doim.0.8], (3) 

as is easily checked and well known.3 The process is 
a p-limitation. The same contraction yields in the 
abstract algebra 

D![€] ---+ 0': = An-no 4 D°, 
e-"O '-I 

with An-no being an (n - no)-dimensional Abelian 
ideal, and n, no denoting the dimension of Dt and D°. 
The above contraction connects a representation of 
D! with a nonfaithful representation of 0' ! and leads 
to a convenient class of limitation procedures for 
which, in general, no corresponding mechanism exists 
in the abstract algebra. 

The result is collected in the following: 

Lemma 4: Let II and l2 be two Lie algebras with 
l} C lz. Denote by V(ll) and W(l2) representations of 
II and lz. Then V(ll) and W(l2) are connected via an 
Inonii-Wigner contraction 

W(l2) ---+ Vel}) 

if and only if the restriction Well) of W(l2) to its 
subalgebra II is given by 

Well) = V(ll)' 

The contraction is a p-limitation. 
2. Now let D! = R 0- lo be a Levi decomposition 

of D!. Using our result In I for the embedding of D°, 
we want R to be minimal in the sense that it contains 
generators from G'J;;(N) only. There are three possi
bilities: Ri , i = 1, 2, 3. One of them, R2, leads to a 
trivial result. We choose RI = G~(N). This choice is 
justified also if one demands that the spin less group 
Dt is subgroup in D;. Then lo is given by 

lo = sp(2N, R) EB NI, 

with NI being the algebra of an arbitrary semisimple 
group NI and 

D! = Dt E8 NI and D! = Dt ® N I
. (4) 

The trivial NI leads back to Dt. 
3. Using the limitation (1), we determine the un

known part NI such that 

(5) 

is the restriction to the physical DO subalgebra. [The 
restriction of a representation U(L) to a subgroup 
L' c L is denoted by U(L'). The same notation is used 
for algebras.] There are a lot of subalgebras in D! 
which are isomorphic to D° but not physical. For a 
location of the physical, suppose that 

D° C Dt cD!. 

Then Lemma 3 applies and leads to s = 0. Hence 
DO has a projection part in NI. 

To arrange the model as simple as possible, we 
choose for the restriction O(Dt) the spinless repre
sentation already known from Paper I, Sec. 3C: 

O(Dt) = 0(Dt)[m1• (6) 

Then the spin part is contained in NI, which means 
that SO(N)I c NI or NI = SO(N)I EB N2, with N2 
being arbitrary and semisimple. We drop the direct 
factor which can be used to describe internal sym
metries and arrive at 

D! = Dt ® SO(Nl. 

The Lie algebra 0; = (G~ G- sp(2N, R)) EB SO(N)1 
is spanned by 

{C, Pi, Qi} = G~; {Sii} = sp(2N,R) 
and 

{d{i = -dfJ = SO(N)I, 

and the generators of the physical SO(N) subgroup of 
Sp(2N, R) are denoted by {dij = -dii } = so(N), 
i,j = I, ... ,N. s E sp(2N, R) is a generator with 
[s, dij] = 0, and {raJ are basis elements of sp(2N, R) 
not contained in {dii , s}, r:t. = 1, ... , n; 

n = tN(N + I) - 1. 

If U(sp(2N, R) is mapped by an isomorphism a into 
the set of skew-symmetric second-order polynomials 
in Pi' Qi (see Paper I, Lemma 3) the generator s is 
identified by a(s) = L!l P:. 

The essential point is now the identification of the 
physical sub algebra D°. Because of (6) and of Lemma 
I, O(Dt) contains an irreducible representation of a 
subalgebra G E, isomorphic to D°, given by 

u(GE)[m.o.ol, G
E 

c Dt cD;. 

GE is not the free-particle group. Its generators 

GE = {C, Pi' Qi' S, du} 

can be identified with those of the physical GJ;; c D° 
and with the orbital part of the angular momentum, 
respectively. Hence {dM is the corresponding spin 
part and the representation of SO(N)1 is irreducible 



                                                                                                                                    

1470 H. D. DOEBNER AND O. MELSHEIMER 

with spin content s. Therefore, we choose 

DO = {C, Pi' Qi' s, di ; + d[;; i,j = 1,"', N} cD;. 

As a by-product, the physical representation of D! is 
obtained with a representation space [U(Dt)[ml is 
irreducible] 

i> = i>l X i>2' 
0ph(D!) = U1(Dt)[m1 X U2(so(N)Iisl. (7) 

4. The physical representation is unique in the sense 
that there is up to unitary equivalence only one irre
ducible representation O(DD with restriction property 
(5) or the equivalent (see Lemma 4) limitation (3). For 
the proof we use arguments similar to those for the 

i'dentification of DO. Consider the restriction O(GE ): 

With (5) and with Lemma 1, 

O(GE) = u(GE)[m.0.01 

holds, and Lemma 3 implies the unique result 
O(Dt) = U(Dt)[ml. The representation space i> splits 
into i> = i>l X i>2 and 

O(DD = U1(Dtim] X 02(so(Nf). 

By the application of Lemma 1, the above so(N)1 
representation is obtained. We remark that the spin is 
attached to the spinless interacting particle similarly 
to how it is attached to the spinless free particle. 

5. 0ph(D!) is labeled uniquely by m and s, 

OpiD!) = U(D!)[m.sl. 

The mass and the spin of the free particle is obtained 
if the interaction is turned off. Because DO and 
U(Do)[m.o.ol remain constant during the limitation, the 
center C E DO c D! is identified as the mass operator, 
and the eigenvalue of the remaining Casimir operators 
of DO, except C~~, are interpreted as spin content. 
Hence mass and spin conservation hold during the 
limitation, which means that the interaction can be 
turned off without changing the mass and the spin of 
the particle. 

6. For the contraction of D! with respect to DO, we 
introduce a new basis in 

D! = {C, Pi' Q;, s, dij + d{j, rl%' dE;}, 

and consider 

D![€] = {C, Pi' Qi' S, dij + dfi' €rl%' €dIj}. 

Then Lemma 4 implies 

U(D![€])[m.sl;::: U(Do)[m.o.sl. (8) 

The p-limitation is unique (see the definition in I, Sec. 
2C3) because of the uniqueness of the physical repre-

sentation and because mass and spin conservation 
holds. 

7. The last part of our discussion concerns the 
interaction type I, i.e., the set of Hamiltonians con
tained in U(D!)[m.s1• Because of our assumption that 
any HE I is also a generator in U(D!)[m.s1, the inter
action type is spanned by a basis of D!. It is convenient 
to select in I the set (' of those generators which are 
not contained in DO, i.e., all generators related to the 
free particle. Then I' is given by 

t' = {rl%' d{j}. 

The interpretation of € in (8) as interaction strength 
is obvious. The contraction can also be formulated 
such that different interactions Hi E I, i = 1, ... ,p, 
are porportional to different interaction strengths €i' 
However, then the condition that Ei -+ 0, i = I, ... ,p, 
is a p-contraction4 needs some care. The identification 
of '1% is known from Paper I because '1% E U(Dt)[ml. The 
d[; are spin matrices acting only on the spin variable. 
They are independent of space-time coordinates and 
lead to spin-flip processes. Hence we have 

(' = {(PiQj + QjPi), PkP I , QiQ;, d{;; 
i,j, k, 1 = 1,"', N, k ¢ 1; P!.; m = 2,"', N}. 

(9) 

8. We end this section with a collection of our 
results: 

(i) 

D! = (G~iN) 0 Sp(2N, R» ® SO(Nl 

is a p-limitable dynamical group. There is only one 
irreducible representation Oph(D!) which is p-limitable 
via a group contraction into an irreducible representa
tion of the free-particle group DO identified as sub
group of D! in (6), 

0ph(D![€]) ---+ U(Dolm.0.s1• 
.... 0 

Hence the p-limitation is unique. The physical 
representation is given by 

U(D!lm.81 = U(Dt)[m] X U(SO(N)IiSl, 

with iJ(Dt)[m) being the Nelson extension of U(G1t:)[m). 
(ii) Mass and spin of the free particle are conserved 

during the limitation and determine the physical 
representation uniquely which describes particles with 
mass m and spin s in N dimensions with Hamiltonians 
given in (9). 

C. Discussion 

1. The groups Dt and D; are examples of a pure and 
complete group-theoretical description of interacting 
nonrelativistic systems. The approach starts with the 
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abstract group. With physically motivated principles as 
restrictive conditions, the physical representation and 
the described interaction were calculated. 

2. An application of the method to relativistic 
systems may be possible if mass and spin conservation 
are replaced by other assumptions, e.g., conservation 
of the total electric charge, and if the definition of the 
free particle is extended such that a tower of particles 
with given mass and spin is included as it was indicated 
already in 2A3. In general, such principles lead to a 
selection for the physical dynamical groups and their 
representations. We refer to a recent fruitful proposal 
for noncompact dynamical groups and the physical 
identification5- S of certain matrix elements as form 
factors and transition probabilities. 

It will be shown elsewhere that the identification of 
the form factor in terms of generators from SO(3, 1) 
and SO(4,2), and the physical representation 
U Ph(SO(3, 1» and U Ph(SO(4, 2)) used in Refs. 6 and 7 
can be justified via a limiting procedure which may 
correspond to a turning off that part of the interaction 
which causes the electromagnetic structure. 

The choice of the physical representation of SO(3, 1) 

JOURNAL OF MATHEMATICAL PHYSICS 

is related to Lemma 2 in Paper I because so(3, 1) is 
constructed from second-order polynomials of a finite 
number N' of creation and annihilation operators, or 
of Pi' Qi' i = 1,"', N'. Hence so(3, 1) is a subalgebra 
of sp(2N', R) and only those irreducible representa
tions can occur which are available by the Nelson 
extension O(Dt)[m] with m = 1. 
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Using Littlewood's theorem, we derive branching rules for the restriction of U(n) to the special orthog
onal group SO(n), for the case of a 3-row Young diagram. The special cases n = 4, 5 are treated by use 
of Murnaghan's modification rules. 

The general method of deriving branching rules for 
U(n) :::> SO(n) [that is, the rules that determine which 
representations of the n-dimensional rotation group 
SO(n) are contained in the representations of U(n)] 
is provided by Littlewood's theorem,l supplemented 
by Murnaghan's modification rules. 2 However, no 
explicit expressions exist in the literature for a case as 
general as a 3-row diagram of U(n).3-S In this paper 
we derive the U(n):::> SO(n) results for a 3-row 
diagram and comment how the results may be ex
tended to m rows, m < n. 

The branching rules for U(n) :::> SO(n) have appli
cation in nuclear physics. In the Kramer and Moshin
Sky6 generalization of the Elliott7 shell model, one must 

construct state vectors in the chain U(n):::> Sen), 
where Sen) is the symmetric group in n dimensions. 
The state vectorS for U(n) :::> O(n) is an intermediate 
step in the SU(n) :::> Sen) chain, and the branching 
rules for n = 4 are important for the derivation of 
the general U(4) :::> U(2) (8) U(2) state vector,9 useful 
in the Wigner supermultipletlO and quasispinll models. 

We shall present the derivation in two steps: 
U(n) t O(n)[U(n) restricted to o (n)] , using Little
wood's rules, and then the essentially trivial re
duction [U(n) t O(n)] t SO(n). Before starting, we shall 
briefly discuss the irreducible representations of U(n), 
O(n), and SO(n). 

To each Young diagram Yh t h2 '" "n' where hi is the 
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abstract group. With physically motivated principles as 
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jth-row length and hI ~ h2 ~ ... ~ hn ~ 0, there 
corresponds an irreducible representation n r ",h., .. lin 

of U(n). 
An irreducible representationI2 of O(n), nD~,m2'" m ' 

is specified by the highest weight (mI' m2, ... , m
1
,), 

where n = 2p or 2p + I as n is even or odd, respec
tively. Since mI ~ m2 ~ ... ~ mp, the weights of 
O(n) specify a partition and, hence, a Young dia

gram Ym,m2"' mp' 
The weights of SO(n) for n even may have the last 

component negative; i.e., for n even, the condition 
mI ~ m2 ~ ... ~ mp is replaced by ml ~ m2 ~ 
... ~ Impl· Here 2PDm,m2"'mp and 2PDm1m2 ... -mp are 
nonequivalent and have the same dimension, this 
being half of the dimension of 2p D~lmv'" mp if mp :;i: 0 
and the same dimension if mp = O. 

The branching problem for U(n)! O(n) for irre
ducible representations of U(n) , characterized by 
diagrams having at most three rows, consists of 
finding the numbers v mlm2" . mr such that 

For n ~ 6, the solution of the branching problem is 
provided by Littlewood's theorem. We shall consider 
separately the modifications necessary when n = 4, 5. 
For 3-row diagrams, the theorem states 

n Dm,m2'" mp E nr"'h2h3 ! O(n) iff 3 integers 

PI,P2"" ,Ps such that 

From the rules for forming outer products, we 
immediately see that r, s ::;; 3. The multiplicity v~~~:m3 
is just the number of ways of forming Y"'''2h3 from the 
product diagrams. That is, if g~1,;,;;n3 is the number of 
times Y"I"2h3 is contained in Y m,m2m3 @ Y2P,2P22Pa' then 

(1) 

We take the outer product Y m, m2m3 ® Y2P12P22Pa' 
adding to the diagram Ym,m2ma' 2Ft symbols a, 2p2 
symbols b, and 2ps symbols c. This is illustrated in Fig. 
1, where 

Xl + X2 + X3 = 2PI, 

YI + Y2 = 2p2' 

(2a) 

(2b) 

From the rules for outer products and the requirement 
that Yhlhah3 E Y m,m2ma ® Y2p,2pa2P3' we obtain the fol
lowing independent relations: 

ml ~ m2 + X 2 , (3a) 

m2 ~ ma + xs, (3b) 

m2 + X 2 ~ ma + Xa + Y2 (3c) 

m, x, 
~~==========~~~============~ f ) r-"--l L....L...I "'--_______________ ...:....:.~_L_ILJI 00'" 0 

X,+X2+ X3=2p" Y'+Y2=2P2 

FIG. I. The outer product Ym'Jnaln3 ® YZP,b2IP3' 

(from condition that no two of the same added 
symbols appear in the same column); 

Xl ~ YI, 

Yl ~ 2pa, 

Xl + X2 ~ YI + Y2 

(4a) 

(4b) 

(4c) 

(from the condition that we have a lattice permuta
tion); and 

ml + m2 + m3 + 2Ft + 2P2 + 2Pa = hI + h2 + ha, 

(5a) 

m2 + X 2 + YI = h2' 

m3 + Xs + Y2 + 2ps = hs 

(5b) 

(5c) 

(from the condition that the product yield Y" h " ). 
, 2 3 

Using Eqs. (2) and (5), we may express Xl, X 2 , Yl' 

and Y2 in terms of the other variables and eliminate 
them from the inequalities (3) and (4). The conditions 
Xl, X2, Yl ,Y2 ~ 0 then provide additional inequalities 
on the remaining variables. After some rearrangement, 
we finally obtain 

min (h2 - 2p2' ha - 2p3) ~ ma + Xa 

~ max (h2 + h3 - hI - 2P2 - 2pa, ha - 2p2), (6a) 

hI - 2Ft ~ ma, 

2Pl - 2P2 ~ Xa , 

(6b) 

(6c) 

min (hI + Xs - 2Pl, h2 + ha - 2P2 - 2ps - ms - xs) 

~ m2 ~ max (h2 + ha - 2Ft - 2P2 - 2Pa - ma, 

ma + Xa, h2 + Xa - 2PI), (6d) 

ml = hI + h2 + ha - 2Pl - 2P2 - 2P3 - m2 - ma· 
(6e) 

To use expressions (6), one considers a diagram 
Y2PI2P.2v3 such that 2p, ::;; hi' and then computes ma 
and Xa from (6a)-(6c), m2 from (6d), and finally ml 

from the equality (6e). For given hI' h2' and ha, one 
obtains numbers plp2pa, mlm2ma, and Xa, and the 
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multiplicity of n Dffl1m2ffla is just the number of different 
sets of such numbers with the same rnlrn~3 values. 

For n ~ 6, the irreducible representations of O(n) 
corresponding to the diagrams Y m1 ffl •ma occurring in 
Littlewood's theorem were just the irreducible repre
sentations nDm1m.ma' For n < 6, this is no longer true, 
since p is now, at most, 2. The following correspond
ences, based on Murnaghan's modification rules,2.13.14 
furnish the irreducible representations of O(n) oc
curring in Littlewood's theorem for p = 2: 

(i) U(4)! 0(4): 

for rn3 = 0, Ym1m•O---+ D m1m., 

for rn3 =;t. 0, the following conversions: 

Y m1 m •1 null (to be omitted) if rn2 > 1, 

Ym111 ---+ D m1o , Ym1m•2 ---+ -Dm1m2 , 

y ffllffl2 m a null when rn3 > 2; 

(ii) U(5)! 0(5): 

for rn3 = 0, Yffl1m.O---+ Dm1m2 , 

Y m1m•1 ---+ D m1m., Ym1m.ma null rn3 > l. 
In terms of the multiplicities, we then have for 

case (i) that v;::~~·ha is the number of solutions of (6) 
with rn2 = rn3 = 0 plus the number of solutions of (6) 
with rn2 = rn3 = 1, while V;:::~'~l is the number of 
solutions of (6) with rn3 = 0 minus the number of 
solutions of (6) with rn3 = 2. For case (ii) v;:::~:;o is 
the number of solutions of (6) with rna = ° plus the 
number of solutions of (6) with rn3 = 1. 

The final step is furnished by the branching rule 
for O(n) ! SO(n): 

2PD;"lffl2"'mP! SO(2p) = 2PDml"'mp' rnp = 0, 

= 2p D m1 ... mp + 2p D ml .•• -fflp , 

rnp > 0; 

2P+l Dm' ... m remains irreducible upon restriction 
1m2 :p 

to SO(2p + 1). 

We then see that the multiplets ~~~:m3 in 

are given by 

n = 2p ~ 6, 
and 

n = 2p + 1; 

For the special case n = 4, 

ACKNOWLEDGMENT 

We would like to thank Professor M. Moshinsky 
for pointing out the usefulness of Littlewood's 
theorem. 

1 D. E. Littlewood, The Theory of Group Characters (Oxford 
University Press, London, 1958), p. 240. 

• F. D. Murnaghan, The Theory of Group Representations (The 
Johns Hopkins Press, Baltimore, 1938), pp. 282ff. 

3 M. Moshinsky and V. S. Devi, J. Math. Phys. 10,455 (1969). 
These authors have employed Littlewood's theorem to determine the 
branching rules and the state vector for U(3) ::::> 0(3). 

4 M. L. Whippman [J. Math. Phys. 6, 1534 (1965)] has surveyed 
branching rules for groups of low rank useful in elementary particle 
physics. 

5 Branching rules for SU(3) ~ SO(3) and SU(4) I SO(4) were 
first derived by G. Racah, Rev. Mod. Phys. 21, 494 (1949). 

6 P. Kramer and M. Moshinsky, Nucl. Phys. 82, 241 (1966). 
7 J. P. Elliott, Proc. Roy. Soc. (London) A245, 128,562 (1958). 
8 M. L. Brunet, Bull. Am. Phys. Soc., Ser. 11, 14,503 (1969). 
• M. Brunet and M. Resnikoff, J. Math. Phys. 11, 1474 (1970). 

10 E. Wigner, Phys. Rev. 51, 106 (1937). 
11 K T. Hecht, Phys. Rev. 139, B794 (1965) and Nucl. Phys. 102, 

11 (1967); Sing Chin Pang, Dept. of Physics, University of Michigan, 
Ann Arbor, Mich., Technical Report, November, 1967. This latter 
reference has a complete bibliography. . 

12 H. Boerner, Representations of Groups (North-Holland Pub
lishing Co., Amsterdam, 1963). 

13 Murnaghan, Ref. 2, has the modification rules for r = v + 2. 
14 F. D. Murnaghan, The Unitary and Rotation Groups (Spartan 

Books, Washington, D.C., 1962), pp. 129ff. This book contains im
plicit modification rules for p ~ r ~ 2p. 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME II, NUMBER 4 APRIL 1970 

The Representations of U(4) ~ U(2) @ U(2) 

M. BRUNET AND M. RESNIKOFF* 

Department oj Physics, State University oj New York at Buffalo, Buffalo, New York 14214 

(Received 14 April 1969) 

The state vectors ~s~ociated with an irreducible representation of U(4) restricted to the subgroup 
U(2) ® U(2) are explIcItly constructed for the general4-rowed Young diagram, employing Littlewood's 
rules and a theorem of Cartan. Expressions are given for the degeneracy of a U(2) ® U(2) state in U(4) 
and the s~t of U(2) ® U(2) states obtained are shown to .be independent and complete. Operators which 
break .thls .degener~cy are constructed, and the behaVIOr of the state vector under the conjugation 
operatIons IS also discussed. The results are useful for the nuclear quasispin and Wigner supermultiplet 
models. 

1. INTRODUCTION 

The decomposition of unitary groups with respect to 
the canonical chain of subgroups U(n) ~ U(n - 1) ~ 
... ~ U(l) is well known in the literature. l Its 
importance stems, of course, from the physical 
applications of SU(3), where the isospin subgroup 
SU(2) is fully contained. There are other physical 
applications, however, which employ noncanonical 
decompositions. In the nuclear-shell model proposed 
by Elliott,2 U(3) is restricted to the angular-momentum 
subgroup 0(3). The mathematical implications of the 
U(3) ~ 0(3) problem have been investigated by 
several authors.a Kramer and Moshinsky,' in an 
extension of the Elliott model, have studied the 
restriction of U(n) to Sen), the symmetric group in n 
dimensions. 

In nuclear physics, particularly in Wigner super
multiplet theort and quasispin models,6 frequent use 
is made of the noncanonical decomposition U( 4) ~ 
U(2) ® U(2). The reduction of U(n) or SU(n) with 
respect to the product of subgroups U(mn) ~ U(m) ® 
U(n) , has not been extensively studied, though this 
decomposition presently has much greater physical 
application. In high-energy physics, the restriction 
of SU(6) to the subgroup SU(3) ® SU(2) is of major 
importance. 7 

In addition to the physical implications, there is 
considerable mathematical interest in the problem of 
restricting U(mn) to U(m) ® U(n). The subgroup 
U(m) ® U(n) does not provide sufficient row labels to 
uniquely specify a state of U(mn). Thus, a given state 
of U(m) ® U(n) occurs in a representation of U(mn) 
with a certain degeneracy'll. The problem then is to 
determine which representations of U(m) ® U(n) 
occur in a given representation U(mn), the degeneracy 
'II, and the operators from the full group U(mn) which 
break this degeneracy. 

It is the purpose of this paper to answer the above 
questions for the particular problem U(4) restricted 

to the subgroup U(2) ® U(2). We shall, in addition, 
explicitly construct the state vector. This state vector 
may then be used to calculate the general U(4) ~ 
U(2) ® U(2) coupling and fractional parentage coeffi
cients,8 though this calculation is not carried out in 
this paper. 

The calculation of the highest-weight state-vector 
for U(4) restricted to U(2) ® U(2) proceeds as 
follows. The branching rules for U(4) ~ 0(4) are set 
down in Sec. 2, providing a reduction of the lowest
dimensional representations of U(4) with respect to 
U(2) ® U(2). The highest-weight states associated 
with certain of these low-dimensional reduced U(4) 
representations we shall call the fundamental states. 
Then, using a theorem of Cartan,9 we construct the 
most general state of highest weight as a product of 
fundamental states. The fundamental states are inde
pendent, though certain products of fundamental 
states are dependent. We show that the general state 
vector of highest weight, subject to these dependency 
conditions, yields a complete set of states. In Sec. 3 
we associate each fundamental state uniquely with a 
polynomial of the C4 vectors Zi = (z~, ... ,zt), i = 
I, 2, 3, and thus construct the explicit polynomial 
state vector and the operators which break the 
degeneracy of the U(2) ® U(2) states. 

2. THE FUNDAMENTAL STATES; 
STATE VECTOR 

An irreducible representation of U(4) may be 
labeled by the partition (hI' h2' ha, h4), hI ~ h2 ~ 
ha ~ h4 ~ 0, or by a 4-rowed Young diagram where 
hi is the number of boxes in the ith row. Alternatively, 
we label a representation with the numbers Al = 
hI - h2' .1.2 = h2 - ha, Aa = ha - h4' and A, = h" 
the overhang of successive rows of the Young diagram. 
With no loss of generality, we take h4 = 0 in the 
following discussion and discuss the trivial modifica
tions of the state vector for h, -:;6. 0 at the end of Sec. 3. 

1474 
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An irreducible representation of U(2) ® U(2) is 
labeled by the partitions (h, "'1), (h, "'2), where 2j is 
the overhang of the first row, and ft is the number of 
boxes in the second row of the two-rowed Young 
diagram. A representation of U(4) labeled by (AI A2 Aa) 
shall be written !lA,)..).3' and the polynomial of highest 
weight associated with this representation P(Al' A2 , Aa). 

The general U(4) representation may be constructed 
using Cartan's theorem9 : An irreducible representa
tion is determined by the highest weight,lO which is 
always simple. The highest weight of a Kronecker 
product of representationsll !l A ;.;. ®!l;.';,';,' of 

123 123 

highest weight is the representation !l;. H;' "). ", where 
1 • 3 

A; = Ai + A;, i = 1, 2, 3. An analogous theorem 
holds for the U(2) representations. Cartan's theorem, 
applied to the polynomials of highest weight in the 
restriction U(4) to the subgroup U(2) ® U(2) , reads 

P(AlA2Aa; jlj2)P(A{A~A~; jU;) 

= peAl + A{, ,12 + A;, Aa + A~;j1 + j{,j2 + j~). 
(2.1) 

Since the weights are linear forms with real coefficients, 
the result for the U(2) subgroup indices follows. 

Using Eq. (2.1), we may obtain the most general 
highest-weight by taking products of certain of the 
low-dimensional U(4) ~ U(2) C8l U(2) highest-weight 
states.12 . 13 We shall call these states the fundamental 
states,14 since they cannot be obtained as a product of 
otn.er low-dimensional highest-weight states. 

The fundamental states may be constructed directly 
from the branching rules for U(4) ~ 0(4) r-.J 0(3) ® 

0(3) from Brunet and Resnikoff. l5 For convenience 
we set down the results here. A representation of 
0(4) may be written Dm m , but for purposes of 

1 • 

stating the branching rules we write Dm m m and 
1 • 3 

make the appropriate modifications to the two-

weight representation below. The multiplicity v(hi , rn;) 
of an 0(4) representation Dm m m in a U(4) repre-

1 2 3 

sentation !l).;.;. is the number of solutions of the 
1 • 3 

inequalities: 

min (h2 - 2rz, ha - 2Pa) ~ rna + Xa 

~ max (h2 + ha - h, -2P2 - 2pa, ha - 2P2), 

hI - 2P1 ~ rna ~ 0, 2(P1 - P2) ~ Xa ~ 0, 

min (hI + xa - 2ft, h2 + ha - 2P2 - 2Pa - rna - xa) 

~ rn2 ~ max (h2 + ha - 2ft - 2P2 - 2Pa - rna, 

rna + Xa, h2 + X3 - 2ft), 

rn1 = hI + h2 + ha - 2P1 - 2P2 - 2Pa - rn2 - rna· 

(2.2) 

The multiplicity of Dm m , rn2 ¢ 0, in !l;. ;.;. is the 
1 3 1 2 3 

number of solutions of (2.2) with rna = 0, minus the 
number of solutions with rn3 = 2. The multiplicity 
of Dm 0 in !l;.;.;. is the number of solutions with 

1 1 2 3 

rn2, rna = 0, plus the number of solutions with rn2, 
rna = 1. All other solutions are null. Using Eq. (2.2), 
we have listed in Table I the possible lower-dimen
sional states which will be useful in the following 
discussion. 

Using Eq. (2.1), we may obtain the highest-weight 
state associated with the representation P'lA2Aa; jlh) 
by taking products of the fundamental states 
Sl' ... , Sla listed in Table I. This polynomial 
P(A1A2Aa;jlj2) may be written 

where 

la 
P(A1A2Aa;j1j2) = Tn. = II (Si)n" 

i=l 

Al = n1 + na + 2n5 + nlO + nn + n12 + n1a , 

,12 = na + n4 + 2n6 + ns + n9 + n12 + n1a , 

(2.3a) 

Aa = n2 + n4 + 2n7 + nlO + nn + n12 + n1a, (2.3b) 

TABLE I. Low-dimensional V(4) =:> V(2) ® V(2) representations. This table displays the possible V(2) ® V(2) representations 
O'lA.A3 ;hj.) contained in V(4) representations, and the C. polynomials Si corresponding to a fundamental state. 

S1 = (1,0,0;!,!) 
S. = (0,0, 1; !. !) 
S3=(I,I,0;!,!) 
S.=(O,I,I;!,!) 

(0,1,1; t,!) = (0,0,1;!, !)(O, 1,0; 1,0) = S.S. 
(0,1,1; !, t) = (0,0,1, !, !)(O, 1,0; 0,1) = S.S. 

S. = (2,0,0; 0, 0) 
(2,0,0; 1, 1) = (1,0,0; i,!l" = (S1)' 

S. = (0,2,0; 0, 0) 
(0,2,0; 2, 0) = (0,1,0; 1,0)2 = (S.)2 
(0,2,0; 1, 1) = (0,1,0; 1,0)(0,1,0; 0,1) = S.S. 
(0,2,0; 0, 2) = (0, 1,0; 0,1)' = (S.)2 

S, = (0,0,2;0,0) 
(0,0,2; 1,1) = (0,0,1;!,!l" = (S.)2 

S. = (0, 1, 0; 1, 0) 
S. = (0, 1,0; 0,1) 

S 10 = (1, 0, 1; 10) 
S11 = (1,0,1;0,1) 

(1,0,1; 1,1) = (1,0,0; t, !)(O, 0,1; t,!) = SIS. 
S12 = (1, 1, 1; 1,0) 
S13 = (1, 1, 1; 0, 1) 

(1,1,1; 21) = (1,0,0; i, i)eO, 1,0; 1,0)(0,0,1; i, i) = S,S.S, 
(1, 1, 1; 20) = (1, 0, 1; 1, 0)(0, 1, 0; 1, 0) = SlOSS 

(1,1,1; 1, 1) = (1,0,0;!, t)(O, 1, 1; t,!) = SIS. 
= (0,0,1;!, ml, 1,0; t,!) = S,S3 
= (1, 1,0; 1,0)(1,0, 1;0, 1) = S,SlI 
= (0,1,0;0,1)(1,0,1; 1,0) = S,S,o 

(1,1,1;0,2) = (1,0,1; 0,1)(0,1,0; 0,1) = SuS. 
(1,1,1; 1, 2) = (1,0,0;!, !l(O, 1,0; 0,1)(0,0,1; i, H = SIS,S, 
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and 

2jl = n1 + n2 + ns + n4 + 2(ns + nlO + nI2), 

2j2 = n1 + n2 +ns + n4 + 2(n9 + nll + n1S)' (2.3c) 

Equations (2.3b) and (2.3c) are obtained by simply 
adding the weights according to the prescription (2.1). 
The partitions ftl , ftz do not provide further conditions 
on the integers ni , as shown in Sec. 3. 

The highest weights ji' i = 1, 2 are integer or half
integer depending on the parity of Al + As. The sum 
of AI' As is 

Al + Aa = (nl + n2 + ns + n4) 

+ 2(ns + n7 + n10 + nn + n12 + n1s), 

using Eq. (2.3b). We see that if Al + A3 is even (odd), 
n1 + n2 + ns + n4 is even (odd), and 2ji' using (2.3a), 
is even (odd). 

The highest-weight polynomials (2.3a) are not yet 
independent, without further conditions upon the 
integers n i • The reason is that certain products of 
fundamental states are dependent on other products 
of fundamental states. By considering products of 
fundamental states and comparing the results to the 
branching rules (2.2), the following products can be 
shown to be dependentl6 : 

(SS)2, (S4)2, SSS4' (SI2)2, (SIS)2, S12S1a, SIS4, S2Sa, 

S10S11 , SlS2S6' SlS12 , SlSlS' SSS12 , S3S1S' S11S12 , 

S2S1S, S2S12 , S4S13 , S4S12 , SlOS13' (2.4) 

The explicit functional dependence will be established 
in the next section where the polynomial form of the 
fundamental states is given. 

All of the products in (2.4) may be re-expressed in 
terms of products of other fundamental states, and 
are to be eliminated in Eq. (2.3a). Equation (2.4) 
therefore implies further conditions on the integers 
ni' Since (Si)2, i = 3, 4, 12, 13 is dependent, this 
implies that the term in (2.3a) with n i = 2 may be 
re-expressed. Thus, we get from (2.4) the following 
conditions: 

n i = 0, 1, i = 3, 4, 12, 13. (2.5a) 

The remainder of the products (2.4) have the form 
SiSj or SIS2S6' This implies that whenever the 
exponents ni and nj are both greater than zero, the 
term may be re-expressed until either ni or nj is zero. 
Hence the terms nin j ¥= 0, meaning both ni and nj ¥= 0, 
is eliminated from Eq. (2.3a). This eliminates the 
fonowing terms: 

nan4 ¥= 0, nl2n1a ¥= 0, nlOnll ¥= 0, n1n2n6 ¥= 0, 
(2.5b) 

(2.Sc) 

n1n12 ¥= 0, nan12 ¥= 0, nlln12 ¥= 0, 

n1n13 ¥= 0, n3n13 ¥= 0, (2.5d) 
n2n1a ¥= 0, n4n13 ¥= 0, nlOn13 ¥= 0, 

n2nl2 ¥= 0, n4n12 ¥= 0. (2.5e) 

Equations (2.3b), (2.3c), and (2.5) are constraints on 
the integers.n i . For a given (A1A2Aa;jlj2), the number of 
sets of integers solving these equations is the degeneracy 
v(A;jd2), the number of times a representation of 
V(2) @ V(2) occurs in a representation of V(4). 

It remains to determine whether the construction of 
independent polynomials Tn' as discussed above, 
provides a complete set of V(2) @ V(2) states. We 
must verify that the sum over V(2) @ V(2) states, 
times the degeneracy V(A;jlj2) with which each 
V(2) @ V(2) state occurs, yields the correct number of 
V(4) states, for a given partition A, 

I (2jl + 1)(2j2 + I)V(A;jljz) = N(A), (2.6a) 
where 

N(A) = -(2(A1 + 1)(A2 + I)(As + 1)(Al + A2 + 2) 

X (A2 + As + 2)(A1 + A2 + A3 + 3). (2.6b) 

In terms of the integers n i , we must show that 

I (n1 + n2 + ns + n4 + 2(ns + n10 + n12)+l) 
ni 

X (nl + n2 + ns + n4 + 2(n9 + nu + nls)+l) = N, 

(2.7) 

subject to the constraints (2.3b) and (2.5). This is a 
counting operation, but it is a nontrivial calculation. 
To sum Eq. (2.7), it is desirable to apply condition 
(2.5) and separate the sum into several cases: 

(i) n12 = 1 implies ni = 0, i = 1,2,3,4,11,13, 

(ii) n1s = 1 implies nj = 0, j = 1,2,3,4,10,12, 

(iii) n12' n1s = 0: 
(a) n4 = 1 implies n1 , na = 0, 

(b) ns = 1 implies n2 , n4 = 0, 

(c) ns , n4 = 0: 

(1) n1 = 0, 

(2) n2 = 0, n1 > 0, 
(3) n6 = 0, n1, n2 > o. 

(2.8) 

All integers n i not equal to zero in Eq. (2.8) are 
summed in Eq. (2.7), according to the constraints 
Eq. (2.3b). The classification Eq. (2.8) incorporates 
all the conditions Eq. (2.5), except the condition 
nllnlO ¥= 0, which further divides the above cases into 
nll = 0, nlO > ° and nll ~ 0, nlO = 0. We note that 
if Al + Aa is not even, terms (i) and (ii) are not present. 
The summation is carried out in the Appendix for Ai 
even, and does indeed reduce to (2.6b). 
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We note that case (i) of Eq. (2.8) has six independ
ent integers ni , i = 5, 6, 7, 8, 9, 10. Applying the con
straints (2.3b) and (2.3c), we reduce the number of 
independent integers ni to one. This result also holds for 
case (ii). In case (iii), there are eight integers n i ¥:- 0. 
The condition, nIOnll ¥:- ° eliminated, implies that there 
are seven integers. Applying the constraints (2.3b) and 
(2.3c), we reduce the number of independent integers ni 

to two. It is well known that, at most, two operators 
are required to break the degeneracy and characterize 
the polynomials completely.I6 

Given Tn. as the complete set of independent 
highest-weight U(4):::::> U(2) ® U(2) states, we may 
write the general U(4) :::::> U(2) ® U(2) state-vector in 
the form 

IA1A2A3;jri2)T = L An.(T)Tni' (2.9) 
ni 

where the index T distinguishes between degenerate 
U(4) :::::> U(2) ® U(2) states and the number of sets of 
integers ni for a given (A1A2A3;j1j2) is V(A;jlj2 )(see 
Sec. 4). 

3. U(4) ::;) U(2) ® U(2) POLYNOMIAL 
STATE-VECTOR 

The state vector associated with an irreducible 
representation of U(4) may be constructed as a 
polynomial function of the C4 vectors Zi = (zjt), ... , 
Z~4», where i = 1, ... ,4. In terms of the vectors Zi' 
the U(4) generators may be written 

m 0 
C~P = ~ z'! - IX (3 = 1 ... 4 (3.1) .k t:l p' , " ,=1 UZi 

where m ::;; 4 is the number of nonzero rows of the 
U(4) Young diagram. If we instead contract the upper 
indices IX and (3, we may form the operators C;;: 

C ~~o_ 0 .. 1 
ij = £., Zi - = Zi • -, I, ) = ,"', m. 

~=1 oZ'j OZj 
(3.2) 

Since the operators Cij and generators C~(J commute, 
the operators Cij may be used as Casimir operators to 
construct the state vector associated with an irreduc
ible representation of U(4) , labeled by a Young 
diagram. MoshinskyI7 has proved that, if the state 
vector Ih, IX) satisfies the conditions 

Cii Ih, IX) = hi Ih, IX), i = 1, ... , m ::;; n, (3.3a) 

Cij Ih, IX) = 0, i <j, (3.3b) 

the state Ih, IX) corresponds to an irreducible repre
sentation of U(n). The parameters IX are the row 
labels. The general form of the solution of Eqs. (3.3) 
for U(4) is 

Ih, IX) = (~~~~:t4 L Ch,lZl»),1(~12Y'2(~123»),3, (3.4) 
hi; 

where the ~~; are the 2 x 2 antisymmetric forms, 
~i; = ziz; - z~z~ and di;l are the 3 x 3 antisym-

metric forms d:;l ~ det (:; :~ :~) , 
Z1 z~ z~ 

and ~m! is the determinant of the 16 coordinates z; . 
Each factor in Eq. (3.4) is a product of factors 

4 

(Zl»),' == IT (zft 1U
, 

U=l 
and similarly for the other products suitably ordered, 
with 

4 6 

!hiu = Ai' i = 1,3, and Lh21' = A2. 
U=l U=l 

The row labels IX are determined by the subgroup 
U(2) ® U(2) , up to the degeneracy v mentioned in 
Sec. 2. We denote the U(2) ® U(2) subgroup with 
the parameters (hft1ml) , (hft2m2) , where the m i are 
the weights - ji ::;; mi ::;; ji' The explicit U(2) ® U(2) 
generators in terms of the vectors Zi are8.1S 

(J1)o = HCll + C33 - C22 - C(4), 

(J2)o = H Cll + C22 - C33 - C(4), 

(11)+ = C12 + C34, (J2)+ = C13 + C24, 

(11L = C21 + C43, (J2L = C31 + C42, 

and the trace operator 

Tr = Cll + C22 + C33 + C44 

(3.5a) 

(3.5b) 
(3.5c) 

= Cll + C22 + C33 + C44 • (3.5d) 

It is sufficient to consider the highest-weight U(2) ® 

U(2) state m1 = j1' m2 = jz, in the following, an 
arbitrary-weight state m1 , m2 being obtained with 
the lowering operators (3.5c). 

The fundamental-weight states Sk are obtained 
from the general U(4) state Eq. (3.4), by requiring 

(Ji)+Sk = 0, i = 1,2, k = 1,"',13, (3.6a) 

(Ji)OSk = jiSk' (3.6b) 

where jI ,jz for each Sir are listed in Table I. We then 
get the explicit fundamental-state polynomials Si as 

Sl = z1, S2 = ~123, S3 = Zl~14 - Zl~23 i'- 2Z3~12, 

S4 = ~14~123 + ~23~123 _ 2~13~124, 

S5 = ZlZ4 - Z2Z3, 
S6 = (~23)2 + (~14)2 - 2~12~34 - 2~13~2\ 

S7 = ~123~234 - ~124~134, Ss = ~12, S9 = ~13, 
SIO = z1d 124 - z2d 123 , Sll = zl d 134 + z36.123 , 
S12 = Zl~14~124 - zl~24d123 + z2d23d123 

_ z2d12d134 + z1d12d234 _ z2d13d124, 
S13 = zld14dl34 + 2Z1~34d123 _ Z2~13~134 

_ z3d13d124 + z3~23dI23. 
(3.7) 

The lower indices have been suppressed. 
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Given the explicit polynomials Si' we may deter
mine the relations between products of polynomials. 
We use the following identities: 

zi/1ik + zk/1ii = zi/1ik, i <j < k, ijk = 1,'" ,4, 

/112/134 + /114/123 = /113/124, 

/114/1123 + /112/1134 = /113/1124, (3.8) 

/124/1123 + /112/1234 = /123/1124, 

zl/1234 _ z2/1134 + z3/1124 - z4/1123 = O. 

We then obtain the following relations between prod
ucts of polynomials: 

(SS)2 = (Sl)2S6 - 4SsSsSg, 

(S4)2 = (S2)2Sa - 4S7SSS9, 

S3S4 = -(S9S12 + SsS13)' 

(S12)2 = S6(S10)2 + 4S5S7(SS)2, 

(S13)2 = Sa(Sn)2 + 4S5S7(Sg)2, 

SlS4 = S9S10 - SsSn, 

(3.9a) 

(3.9b) 

S2SS = - (S9S10 + SsSu), (3.9c) 

S10Sn = (S2)2S5 - (Sl)2S7, 

SlS2Sa = S9S12 - SSSlS, 

SlS12 = 2S2S5SS + S3SlO' 

S3S12 = 2S4S5SS + SlS6S10' 

SlS13 = -2S2S5S9 + S3Sn, 

S3S13 = 2S4S5S9 + SlS6Sn, 

SnSu = -(SlSSS7 + S2S4S5), 

S2S13 = S4SU - 2S1S7S9 , 

S4S13 = 2S3S7S9 + S2SaSu, 

S2S12 = -S4S10 + 2S1S7SS' 

S4S12 = 2S3S7SS - S2SaS10' 

S10S13 = -SlS3S7 + S2S4S5' 

(3.9d) 

(3.ge) 

(3.9f) 

The explicit state-vector is then given by Eq. (2.9), 
where Si are the polynomials (3.7). The state vector 
for h, 7'= 0 is Eq. (2.9) multiplied by the 4 x 4 deter
minant (/1~=)h4. The degeneracy 'jI and the highest 
weights h, j2 remain the same, but partition numbers 
PI' #2 are altered. 

We note, finally, a relation between the U(4) trace 
and the highest weights hand j2' Under a unitary 
transformation of U(2)1' the fundamental states with 
h = 0, S", S6' S7' Sg, Sn, S13 remain invariant. Thus, 

PI = (n" + 2n6 + 3n7 + nu + 2nn + lA4 + 3n1s)' 

Under a unitary transformation of U(2)2' the funda
mental states withh = 0 remain invariant; hence, 

Given #1, P2 in terms of the integers ni , we obtain the 
relations, using the trace operator (3.5d), 

Tr = Al + 2A2 + 3A3 + 4A4 

= 2[j1 + #1 + n2 + n3 + nn + 2(n, + nIS)] 

= 2(h + P2 + n2 + n3 + n10 + 2(n, + nu)]. 

(3.10) 

4. CONJUGATION, ADDITIONAL OPERATORS 

The states JA1A2A3;jd2). [Eq. (2.9)] are degenerate, 
since there are 'jI terms in the summation with arbitrary 
coefficients An (-r). The states may be classified accord
ing to their s'ymmetry under conjugation and then 
orthonormalized by the Gram-Schmidt orthogonali
zation procedure. This will uniquely determine the 
coefficients An{r). On the other hand, additional 
operators may' be constructed from the full group, 
and the states diagonalized with respect to them. 

A. Conjugation Operations 

1. C Conjugation 

There are two types of conjugation operations, 
C and R conjugation. The C-conjugation operations 
are an exchange of the vector components zJ'" ~ z: , 
m, k = 1, ... ,4. Acting on Tn., they yield a poly
nomial with the highest weights interchanged jn ~ 
±jp, n, p = 1, 2, and the space (AI' A2 , As, A,) 
invariant. 

C1 : Denote the exchange of vectors z; ~ z; with 
z~, z~ unchanged, as the C1 operation. Under the C1 

operation, we see from Eqs. (3.5a)-(3.5c) that the gene
rators of U(2)1 and U(2)2 are interchanged; that is, 
h ~ h are interchanged. We also see from Eq. (3.7) 
that 

C1S i = +Si' i = 1,3,4,5,6,7, C1S2 = -S2' 

C1SS = Sg, CISlO = Sn, C1S 12 = SIS' (4.1) 

Thus, the polynomial C1(Tn ) has j1 ~ j2 inter
changed. If we also denote by C1 the operation which 
interchanges ns ~ ng , n10 ~ nu , and n12 ~ n13 , then 
the polynomial C1Tn . also has j1 ~ j2 interchanged. 
The product (C1C1) o~ Tn. reproduces Tn., except for 
the phase (_I)n •. The state vectors JA ;jd~>r may then 
be separated into two cases, those even and odd under 
C1 conjugation. 

C2 : Denote the exchange of vectors z} ~ z~, with 
z;, z~ unchanged as the C2 operation. Under the C2 
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operation, we see from Eqs. (2.5a)-(2.5c) that 
(Jl)o ~ (-J2)0 and (Jl)± ~ (J2h are interchanged; 
that is, il ~ -i2' Thus the polynomial C2Tnj has the 
highest weights il ~ - i2 exchanged. 

Ca: Denote the exchange of vectors z} ~ z~ , 
z~ ~~ z~ as the Ca operation. We see from Eqs. (3.5a)
(3.5c) that (Jl)o -+ - (Jl)o, (J1)+ ~ (JlL, with (J2)o, 
(J2)± unchanged. The effect of Ca on the polynomial 
Tn is the exchanged il -+ - h with h unchanged or, 
on' a general state, m1 -+ -ml with m2 unchanged. 

C4 : Similar to C3 , we have the operation which 
exchanges m2 -+ -m2 with m1 unchanged. We denote 
by C4 the operation which exchanges the vectors 

z~ ~ z: ' z; ~ z: . 
C5 : Finally, we denote by C5 the operation which 

exchanges the vectors zJ ~ zt and z; ~ z: . Under the 
C5 operation, the generators are interchanged 

(Jl)o ~ - (J2)o, (Ji)+ ~ (JiL, i = 1, 2. (4.2) 

The Cs operation on Tn; gives a state on lowest weight 
ml = - h ' m2 = - j2' with (A'l' .1.2 , Aa, A4) invariant. 

2. R Conjugation 

The explicit R-conjugation operation19- 2l for U(4) 
[generalizable to U(n)] may be obtained from the 
Laplace expansion of the 4 X 4 determinant r: 

Z1 
1 Z~ Z~ zt 

Z~ Z~ Za Z~ 
r= 2 

Z~ zi Z3 z~ a 

z! Z2 
4 

Z3 
4 Z! 

= Z~~m - Z~ . ~g! + Z~ . ~m - zt . ~m 

= ~g~~! - ~g~;~ + ~~~~;: + ~~~~~! 
- ~~~~~! + ~~~~~~. 

Under a U(4) unitary transformation U, 

z~~ = 'Uoc'oczr, i = 1, ... ,4, 

r is invariant 

(4.3a) 

(4.3b) 

(4.4) 

r ' = (det'l1)r = elf>r. (4.5) 

If we examine the expansion of r [Eq. (4.3a)], we see 
that the variables z~ transform according to Eq. (4.4). 
In order for Eq. (4.5) to hold, we see that the 3 X 3 
antisymmetric forms 

~J3! = (~2a\ _~1a4, ~124, _N23) 

must transform as 

~;<:1 = 'l1«'« . ~(:~! . (det 'lL) 

(4.6a) 

(4.6b) 

so that r transforms as Eq. (4.5). In other words, 
~234 must transform as the minor of z~. We note that 
the zf transforms as the representation ~A, A = 
(1,0,0,0), and ~~ as the representation ~A or its 
equivalent ~)).', A' = (0, 0, 1, 0). Similarly, from 
Eq. (4.3b), we see that, if 

(4.7a) 

transforms as ~A, A = (0, 1,0,0), then the 2 X 2 
anti symmetric form ~i:) transforms as the conjugate , 

~(<<) = (~a4 _~24 ~2a ~14 _~la N2) (47b) 
34c ' ", , • • 

Thus, ~). and :I);', A = (0, 1,0,0), are related by a 
similarity transformation. We define, then, the R
conjugation operation as 

(4.8) 

where ~123 and ~12 are defined by Eqs. (4.6a) and 
(4.7b), respectively.' 

Under the product of the operations RCs , we see 
that Al ~ Aa are interchanged. The effect of RCs on 
the polynomials Si is the interchange 

RCs: S1 ~ -S2' Sa ~ S4' 

Ss ~ -S7' S13 -+ -S13, (4.9) 

with the other polynomials Si invariant. An inspection 
of Eq. (3.9) shows that the dependency relations are 
interchanged under RCs (and Cl), and no new 
relations appear. The operations Cl and RCs are used 
in the Appendix to relate various sums. 

B. Additional Operators 

It is possible to construct operators from the full 
group which commute with the generators of the 
subgroups.22 The method of construction for U( 4) :::> 

U(2) ® U(2) is the same as for U(4) :::> R(4) [R(4) = 
R(3) ® R(3)], and both cases can be considered 
together. 

The generators of U(4) are Cii, i,i = 1,'" ,4. We 
may take the symmetric and antisymmetric combina
tions 

Aii = HCii - Cii), 

Qii = -HCi ; + Ci i ), Cij = Ai! + Qii. 

(4.l0a) 

(4.l0b) 

The six antisymmetric operators Ai! are the generators 
of 0(4). The Casimir operators Cij commute with 
the generators of U(4), caP and, in particular, commute 
with the generators of 0(4), Aii, and the set of Qii. 
However, it is only necessary that an operator 
commute with the generators of the subgroup 0(4). 
Hence we may break up the Casimir operators cP 
into parts which commute with the generators of the 
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subgroup 0(4). It may then be shown that the 
operators 

Q3 = QiiQinQni, Q4 = QiiQikQ'cmQmi (4.11) 

commute with the generators of R(4). Whereas it is 
true that the chain U(4):::> 0(4) does not provide 
sufficient row labels to uniquely classify a state, at 
the same time, because the group 0(4) is smaller, it is 
possible to find additional operators which commute 
with the smaller set of generators. Similarly, in the 
chain U(4):::> U(2) ® U(2), the subgroups U(2) are 
formed of the six generators, Eqs. (3.5). 

There are ten remaining generators of U(4), 
similar to the set Qii, 

C12 _ CM, C21 _ CM, !CCll + C44 _ C22 _ C33), 

C13 _ C24, CSl _ C42, !C Cll + C22 + C3a + C44) , 

(4.12) 

It is possible to construct operators like Qa, Q4 by 
contracting these ten generators, as in Eq. (4.11). 
These operators are similar to those constructed by 
Moshinsky and Nagel.l6 To proceed further, the state 
(2.9) should be diagonalized with respect to Qa, Q4' 
However, this cannot be done with raising or lowering 
operators in the conventional manner since, as shown 
by Racah,2s for U(3) :::> R(3), a state of U(3) diagonal
ized with respect to an operator like Qa always 
yields a nonrational number. 
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APPENDIX 

In this Appendix we perform the sums (2.7) as 
divided into the cases (i)-(iii) of Eq. (2.8). We need 
the following summation formulas: 

N N 

2 1 = (N + 1), 2n = tN(N + 1), 
n=O n=O 

N 
2 (n)2 = tN(N + 1)(2N + 1), (AI) 
n=O 

N 
I (n)a = [tN(N + 1)]2. 
n=O 

We shall assume in the Appendix that Ai is even for 
i = 1, 2, 3. Consider first the cases (ii) and (iii). We 
first note that (iii) is the conjugate of (ii) and gives the 

same result. The case (ii) is 

Non = 2 [2(ns + nlO) + 3](2n9 + 1), (A2) 

with the constraints 

Al - 1 = 2ns + nlO , ,13 - 1 = 2n7 + nl0, 

A2 - 1 = 2ns + (ns + ng). (A3) 

We see that nlO is odd, summed from 1 to As - 1 
(A·a ~ AI)' and (ns + n9) is odd, summed from 1 to 
,12 - 1. Using (AI), we have the result 

N(H) + NOH) = 1'2,1.2(,1.2 + 1)(,1.2 + 2)A3 

X (,12 + 2As + 5), Aa ~ AI' (A4) 

If ,1.3 > AI' then Al and As must be exchanged in (A4). 
Consider next the case (ia): 

NOR) = 2' [n2 + 2(ns + n10) + 2] 

x [n2 + 2(nD + nn) + 2], (AS) 
where 

Al = 2ns + (n10 + nll), 
,1.2 - I = 2ns + (ns + n9), 

As - 1 = n2 + 2n7 + (nlO + nll)· 

(A6) 

We note that (nlO + nll) is even; hence n2 is odd. 
The integers (ns + n9) are also odd. n2 is summed I 
to ,12 - I; nlO + nll is summed ° to min (AI' Aa - 2). 
We must require, according to the dependency 
conditions equation (2.5), that nlO ~ 0, nll = 0, and 
nlO = 0, nll > 0. Using (AI), ~e obtain 

N(iA) = /2 A2(A2 + 2)As(!(Aa)3 + HAa)2(2A2 + 5) 

+ iA3(A2)2 + 6,12 + 7) - 1(2,1.2 +S) (A 7) 

for Aa - 2 ~ AI' Under RCs conjugation, this also 
provides us with NOb) for the case Al - 2 ~ ,1.3' 

Consider next the case (ib) for As ~ Al - 2. The 
result will provide Cia) for Al ~ As - 2. We have 

N(lb) = 2 [nl + 2(ns + nl0) + 2J 

x [nl + 2(ns + nll) + 2J, (AS) 

where 
Al - 1 = n1 + 2ns + (niO + nll), 

,1.2 - 1 = 2ns + (ns + ns), (A9) 

As = 2n7 + (nlO + nn)· 

Now (nlO + nn) is even, summed from 0 to 
min (AI - 2, Aa), and n1 is odd, summed from 1 to 
Al - 1; (ns + n9) is odd, summed from 1 to ,1.2 - 1. 
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Using (AI), we obtain 

N(ln) = (i) + (ii), (A lOa) 

(i) = tA'2(A2 + 2).1.3(.1.3 + 2) 

x m-(A3 + 1)2 - l(A3 + 1)(.1.1 + 2) - 2] 

- tA3(2A2 - 1) - T~[3(A2)2 + 22.1.2 - 14]}; 

(ii) = 2\.1.1.1.2(.1.2 + 2)(.1.3 + 1) 

X [(AI + .1.2 + 3)(.1.1 + .1.2 + 2) + (.1.2 + 1)]. 

(A10b) 

Finally, we have the three cases (ic). We simply 
state the results here for .1.3 ::;; AI: 

N Oc)! = t(A3 + 2)(.1.2 + 2) 

X {-h(A2)2(A2 + 2)(.1.3 + 2) - tA2(A3 + 2) 

+ /2(.1.2 + 2)(.1.3 + 1)(.1.3 + 2)(.1.3 + 3) 

(All) 

NOc)2 = /2.1.1(.1.2 + 2)[t(Al + 2)(.1.2 + 2)(A~ + 6.1.1 - 4) 

+ tA1(A 2 + 1)(.1.2 + 2)(.1.2 + 3) 

+ t(Al + 2)(.1.1 - !)A2(2A2 + 5)] , 

.1.3 ::;; Al - 2, (A12) 

N Uc )3 = tA3(A2 + 1){Y1 + 2(.1.2 + 1)Y2' 

+ Y3[1 + 1.1.2(.1.2 + 2)]}, 
Y3 = .1.1(.1.3 + 1) - t(A3 - 2)(.1.3 + 2), 

Y2 = tA1A3 + tA1(A3 + 1)(A1 + A3 + 2) 

- t(A3 + 2)(A3 - 2)(A1 + A3 + 3), 

Yl = t(Al + 1)(A3 + 1)(2A3 + 1) 

- t + tA1(A1 + 1)(.1.1 + 2)(A3 + 1) 

+ -HAl + 1)2(.1.3 + 1)2 

- /2A1 A3(A3 - 2)(A1 + .1.3) 

+ tA1A3(A3 + 1)(.1.3 + 2) 

+ tA3(A3 - 2)2(.1.1 + 1) 

+ t(A3 - 1)(A3 - 2)(Al + 2)2 

+ ! - tA3(A1 + 2)\2.1.3 + 1) 

- t(Al + .1.3 + 2)2 + tA3(A3 + 2)(.1.1 + 2)2 

- lCA3)2(Al + 2)[t(A l + 1) + teA3 + 2)], 

A3 ::;; AI' (A13) 

Though the algebra is messy, it is possible to add Eqs. 
(A4), (A 7), (AlO)-(A13), and obtain N(A) , Eq. (2.6b). 
We point out the special case Ai = 10, N(A) = 
(Ai + 1)6 = (11)6. Then, N(ii) + Nom = 38500, N(la) + 
N(ib) = 298 500, N(ic) = 247256, N(ic)2 = 194060, 
N(lc)3 = 993 245, and the sum is 1 771 561 = (11)6 = 
N(A). We have not summed the other cases Ai even 
or odd. 
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~ fidd is assumed to sa~isfy a qua~ilinear syst~m of partial differential equations. Solutions are sought 
whIch only depend on a smgle function of the time and space coordinates. 

SIMPLE WAVES 

The field equations read 

AIl(U)UIl = 0, IX = 0, 1,2, ... , n, 

AO = I, u'" = a",u; (1) 

the All are square matrices, a", means partial differenti
ation with respect to the variable XIX (XO = t is a time 
coordinate, the Xi, i = 1, 2, ... , n, are space coordi
nates), and summation is always understood over the 
whole range of repeated indices. 

We look for a solution of the form 

U = u(tp), tp = tp(xIX). (2) 

Inserting into (1), we get 

AIXtp",u' = 0, tp", = a",tp. (3) 

We introduce the normal speed through 

). = -tpt/IVtpl, n = Vtp/IVtpl. 

Let ).(k)(U, n) be an eigenvalue of the matrix An = Ain; 
and let d~)(u, n), K = 1,2,'" ,m(k), be the corre
sponding right eigenvectors. Equation (3) will be satis
fied by 

tp(k) = tpt + IVtpl A(k)(U, n) = 0, (4) 

:: = uK(tp) d~)(u, n), (5) 

where the uK are m(k) arbitrary functions of tp. 
In the case of I-dimensional propagation, n = 

const, a solution of this system of equations is called 
by Lax a kth simple wave.1.2 Here we assume that n is 
not constant, but, since the left member of (5) only 
depends on tp, the same must be true of the right 
member. Thus, we look for solutions of (4) satisfying 
n = n(tp). 

This means that we shall have 

F(xfl)tpIX = j..{tp) , F > 0, 

with n + 1 differentiable functionsj",. [Indeed, by (4), 
such an equation holds for IX = 0 as well.] Therefore, 

Ftp", dx'" = j", dx'" = d(x"'j..) - xj~ dtp, 

(F + xj~) dtp = d(xj",). 

Thus, 

g( tp) + x"'j..( tp) = O. (6) 

Equation (4) yields 

10 + A(k)(fj~)! = 0, 

so that we can rewrite (6) as follows: 

f(tp) + X' n(tp) - A(tp)t = 0, (7) 

with 

n2 = I, A(tp) = A(U(tp), n(tp». (8) 

A kth simple wave is a solution ofEqs. (5), (7), and 
(8). The wave is plane if we choose n = const; it is 
centered if, moreover, f(tp) = 0 and A' '#- 0 (Le., the 
wave is not exceptional; see below). If j '#- 0, we can 
without restriction choose f = tp. [Note added in 
proof' In a recent discussion with E. Varley we became 
aware of a paper where he studies simple waves in 
general elastic materials; cf. E. Varley, Arch. Ratl. 
Mech. Anal. 20, 309 (1965).] 

A solution U takes on a constant value on each plane 
(7), tp = const. At the intersection of two planes differ
ent values of the field conflict, thus leading to shocks. 
This phenomenon is well known in I-dimensional 
propagation and, for instance, it has been investigated 
in detail in hydrodynamics3 and magneto hydro
dynamics2 ; it is due to the fact that, when the field is 
nonlinear, A is a function ofu and therefore, generally, 
of tp. The situation is somewhat different in n-dimen
sional space, since shocks might arise even in linear 
fields: the normal n depends on cp. Similar results are 
derived from the study of propagation of weak dis
turbances.4 

THE EXCEPTIONAL CASE 

Following Lax,4.5·6 we say that a wave is exceptional 
if the gradient of its velocity with respect to the field 
components is orthogonal to the corresponding right 
eigenvectors, i.e., if 

V;'(k). d~) = 0, K = 1,2,"', m(k). (9) 

1482 
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In this case, we have 
O),(kl 

),(kI' = V),(kl. u' + -_. n' = A(kl. n', 
on 

by virtue of (5), and by the definition of the ray veloc
ity,4 

A = An + ;~ - (n. ~~)n. 
On the other hand, 

A = A· n, A' = A'· n + A· n'. 

Hence, 

THE ),(kl-STATIONARY FIELD 

A field which satisfies the condition 

du _ 0 
d(1(kl - , 

may be called a A(kl-stationary field, since it seems 
stationary to an observer moving with the ray velocity. 

It is easily seen that a kth simple wave satisfies the 
above condition for 

d ~ (kl 
~_ ~_ (kl-O 

d 
(kl - ({J« ~ - "P - . 

(1 u({J« 
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This means that the elementary volume of space is 
conserved by transport along rays. For exceptional 
disturbance waves, the crossing of the wave front has 
no effect on the divergence of the ray velocity; instead 
of (10), we have 

[div A<k)] = O. 
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-We show that the semidirect sum G(n + N) ~ T(Nn) + Sp(n) , with T(Nn) the ideal, can be expanded -to Sp(n + N) iff N = 2. We derive a general formula for invariants of T(2n) + Sp(n) and, besides, 
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As a conclusion we find that an expansion £(G) of an arbitrary Lie algebra G, in general, is not iso
morphic to a deformation D(G) of G, but that there exists a Lie algebra G' ~ G and a deformation 
D(G') of G' such that E(G) ~ D(G'). 

1. INTRODUCTION 

In the sequel, we discuss the problem of expansion 
and contraction of the symplectic Lie algebras. As is 
well known, the operation of contraction of Lie groups 
and Lie algebras was first defined by Segall and later 
developed by Inonii and Wigner2 and by Saletan.3 

The importance of such an operation was emphasized 
by Inonii and Wigner by showing that one could pass 
from relativistic to nonrelativistic theories by con
tracting the symmetry group. of Minkowski space, 

namely, the Poincare group to the inhomogeneous 
Galilei group. 

Later interest arose in the opposite problem of 
whether one can define an algebraic operation such 
that, starting from the Lie algebra of the contracted 
group, one can arrive at the Lie algebra of a group 
closely related to the original group. This is the proc
ess of expansion, which roughly can be described 
as the one of replacing some of the generators of the 
original group by new operators, which are certain 
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In this case, we have 
O),(kl 

),(kI' = V),(kl. u' + -_. n' = A(kl. n', 
on 

by virtue of (5), and by the definition of the ray veloc
ity,4 

A = An + ;~ - (n. ~~)n. 
On the other hand, 

A = A· n, A' = A'· n + A· n'. 

Hence, 

THE ),(kl-STATIONARY FIELD 

A field which satisfies the condition 

du _ 0 
d(1(kl - , 

may be called a A(kl-stationary field, since it seems 
stationary to an observer moving with the ray velocity. 

It is easily seen that a kth simple wave satisfies the 
above condition for 

d ~ (kl 
~_ ~_ (kl-O 

d 
(kl - ({J« ~ - "P - . 

(1 u({J« 
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functions of the generators, and also adding further 
operators of this form, such that the new set of 
operators close under commutation. The new group 
which is generated by these operators is called the 
expansion of the original group. 

This problem was treated by several authors4- 11 for 
various special cases of the inhomogeneous pseudo
orthogonal Lie algebras ISO(n1 , n2) and for the in
homogeneous pseudo-unitary Lie algebras IU(nl' n2). 

Sankaranarayanan5 obtained expansions of all ISO(n) 
and showed that in these cases expansion and con
traction are inverse processes. On similar lines, Rosen 
and RomanS and Rosen,9 in a systematic way, found 
expansions of all ISO(n1 , n2) and IU(nl' n2). 

Expansion of the inhomogeneous symplectic Lie 
algebras has so far not been treated in the literature. 
It is well known that the maximal subgroup 
8jz(n - 2) X 8jz(2) (x denoting direct product) of 
the symplectic group 8jz(n) is not canonical, i.e., that 
the subduced representation D(8jz(n» ! 8jz(n - 2) X 

8jz(2) is not, in general, multiplicity free for D(8jz(n» 
irreducible. This structural feature of 8jz(n) often 
causes trouble and it was, therefore, from the outset 
not clear whether expansions similar to those of 
ISO(nl' n2) and IU(nl , n2) could be found in this case. 

In Sec. 2, we define a certain inhomogeneous 
symplectic group -~(n + N) '" b{2n) X 8jz{n) , -where X denotes semidirect product, with b(Nn) the 
invariant subgroup. In Sec. 3, we show that the Lie 
algebra G(n + N) of~(n + N) indeed can be expanded 
to Sp(n + N) iff N = 2. 

In Sec. 4, we follow a method given by Rosen1o and 
prove Lemma 1. Applying this lemma, we are then -able to obtain general Casimir operators of T(2n) + 
Sp(n), where +" denotes semi direct sum, from the well
known Casimir operators of Sp(n + 2). 

Throughout the paper we have used a formalism 
and notation with the help of which one could 
reproduce immediately all the results in Refs. 9 and 
10 for ISO(n1 , n2). We use this possibility, finally, to 
obtain two general formulas for Casimir operators of 
ISO(n1 , n2), since only a few of lowest degree were 
found in Ref. 10. 

It is our impression that the process of expansion 
is a powerful tool for computing Casimir operators 
of inhomogeneous Lie algebras. 

In Sec. 5, we perform the contraction of Sp(n + 2) 
with respect to the parameter of the expansion and 
find in this case that expansion and contraction are not 
inverse processes, however, though being closely 
related to one another. 

Finally, we establish for an arbitrary Lie algebra G 
the precise relationship between expansion and the 
true inverse process of contraction, the abstract 
process of deformation.12- 15 

2. THE GROUP b(Nn) ~ Sji(n) AND 
NOTATION 

Let us consider the group ~(n + N) of all real or 
all complex linear transformations 

x~ = S;xv + a~Xn+i' fl, 'jI = 1, ... , n ~ 2, n even, 

X~+i = x n+i , i = 1, ... , N ~ 1, 

of an (n + N)-dimensional vector space 

Un+N = Vn + WN , 

where 

S; E SAn), 

the n-dimensional real or complex symplectic group, 
and where the a1 take on arbitrary real or complex 
values. The transformations 8;, hence, leave invariant 
the nondegenerate skew-symmetric bilinear form 

(x, y) == g'lVXI'YV' 

Here the metric gl'V has the following properties: 

gVI' = rJgl'V, rJ = -1, 

g gAv = c/ = gvAg 
/l). II AI" 

Hence, 

gvl' = rJgl'v, 

and 
g/=c5;, gl'~=rJc5~, g~~=gvl" 

where the dot indicates that we have raised or lowered 
the index of that place, using the metric. 

It is seen that -g(n + N) '" ben) X 8jz(n) , 

the semidirect product of 8jz(n) by the Nn-dimen
sional real or complex translation group b(Nn). 

The generators Mllv of 8jz(n) and the generators 
Pil' of b(Nn) form a basis for the Lie algebra -G(n + N) '" T(Nn) + Sp(n), 

of g(n + N), over the real or the complex field. They 
satisfy the following commutation relations: 

[MpV' Mp'v'] 

= gvp,Mpv' - gp'/lMvv ' + gvv,M/l'p - gV'I'M I"" (1) 

[Mp.' Ph'] = g.v'Pip - gv'pPiv> (2) 

[Pi., Pi'v'] = 0, (3) 
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where 

MV/l = -",M/lv' 

The Casimir operators of Sp(n) are given by 

C2m(n) = M::M:!· .. M:!:::_lM:!m' 
m = 1,2, ... ,!n. (4) 

3. CONSTRUCTION OF THE GENERATORS 
OF Sft<n + 2) 

In this section we shall show that out of the genera
tors of ~(n + 2) we can construct certain new opera
tors which obey the commutation relations of 
Sp(n + 2). 

Let us to this end define the following operators: 

Pill == {P;MV/l} == iCP;Mv/l + MV/lP~) 
= P~Mv/l - iCn - 'f})Pi/l' 

which also can be expressed as 

and 
Pill = t[Pi/l' C2(n)] 

KH == {PjPi/l} = {PfPiM/lV} 

== HPfPiM/lv + PiM/lvPf + PfM/lvPj 

+ M/lvPfPD 

= -'f}KJi · 

Here { } denotes that the expression inside has been 
symmetrized with respect to the position of the PI 
relative to M/lv and to Piv (but not relative to one 
another as they commute) and then divided by the 
number of terms. 

We now point out that so far we have not been 
considering any nontrivial transformations which 
leave the subspace W N invariant. At this step, it will 
be necessary also to consider such transformations 
and, for this purpose, we introduce a metric gil in 
W N with the following properties: 

gJi = 'f}gii, 

similarly for giJ' and 

Now, noticing that PfPJ/l has one independent 
component iff N = 2, one verifies easily the following 

As the next step, we define the operators 

M~v == M/lv, 

M~+iV == Piv + APi.!..) - p2, 

where A is a free parameter. Also defining 

we obtain the following commutators, having made 
particular use of relation (5): 

[M-' M-'] M-' M-' /lV' /l'V' = gV/l' /lV' - g/l'/l VV' 

+ gvv,M~'/l - gV'/lM~,v, (6) 

[M~v, M~+iV'] = gvv,M~+i/l - gV'/lM;.+iV, (7) 

[M~+iV' M~+i'v'] = ).2(-gn+i'n+iM~v' 
+ gvv,M~+i'n+i)' 

[M~+in+;' M~+i'v] = gn+;n+i,M~+iV 

(9) 

- gn+i'n+iM~+;., (10) 

[M~+in+;' M~+i'n+r1 = gn+;n+i'M~+in+J' 
- gn+i'n+iM~+Jn+J' 
+ gn+; n+J'M~+i' n+i 

- gn+J'n+iM~+i'n+J' (11) 

In order to remove the parameter A from the above 
commutators, we define the operators 

(12) 
- _ ,-1 -, 1-1 - / 2 

Mn+iv = II M n+iv = II Piv + PivY-P 

== -'f}Mvn+i , (13) 
- - 2 

Mn+in+J == M~+in+J = -Kij/P . (14) 

Also defining 

we then obtain the following commutation relations; 

[MAB' MA'B'] = gBA,MAB, - K4'AMBB' 

relation which will be needed shortly; where 

+ gBB,MA'A - gB'AMA'B' 
A, B = 1, ... , n + N, 

(5) 
Here 

p 2 == N-l p i/lPi /l' 

where use has been made of the metric mentioned 
above to raise the Latin index. 

These commutation relations are evidently those 
of Sp(n + 2). We have thus shown that G(n + N)"""-

+-
T(Nn) + Sp(n) by this procedure can be expanded to 
Sp(n + N) iff N = 2, owing to relation (5). 
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+-
4. CASIMIR OPERATORS OF T(2n) + Sp(n) 

AND OF ISO(nl , n2) 

In this section we shall obtain general formulas 

for invariants of T(2n) +" Sp(n) and of ISO(nl , n2). 
We start by stating the following lemma, which is 
proven in Appendix A and corresponds to those 
obtained by Rosenlo for ISO(nl , n2) and IU(nl , n2)' 

Lemma 1: If X = X(MIl., Pill) is a homogeneous 
polynomial in Mil' and Pill which satisfies 

[Mil,' Xl = 0 = [M,,+i Il' Xl, 
then 

[M"+i ,,+;, X] = 0 = [Pill' Xl· 

This means that, if X is an invariant of Sp(n + 2), 
+-

it is also an invariant of T(2n) + Sp(n). 
We shall also need this simple lemma. 

Lemma 2: Let X be an operator which is a poly
nomial in a parameter IX, i.e., 

x = X(IX) = ~:OCiXi' i ~ 0, - 00 < IX < 00, 
• 

and let 0 be an operator which is independent of IX. 

Then, 
[0, Xi] = 0 iff [0, X(IX)] = 0. 

The necessary condition is obvious and the sufficient 
condition follows by differentiation: 

Defining the operators K~a;i' IX = 1,2, k ~ IX, by 

K; - Ki 
11;i = i' 

Kil;i == -'YjPfP;, 

Ki . = _'YIP/lM/2M/3 . .. Mlk-2M"k-1Pi 
kl;. - ./ i III 112 Ilk-3 Ilk-I Ilk-l' 

(15) 

(16) 

Vk ~ 3, (17) 
and 

K i - 'YIpllpi 
22;i = -./ i Il' (18) 

K' - P"'M"·M"·· .. M"k-1M"k-1P; k2;i = -'Yj i III Il. Ilk-3 Ilk-I Ilk-l' 

Vk ~ 3, (19) 

we can now state the following theorem. 

Theorem 1: Let 

C2m(n + N) = C2m(MAB), N = 2, 

be the Casimir operators of Sp(n + 2) given by ex
pressions similar to those of Eq. (4). If the MAB are 
expressed in terms of the Mil' and Pill by Eqs. (12)-

(14), then 
m 

C2m(n + N) = ~ A.-21( -p2rN (m-IlXml , 
I~O 

m = 1,2, ... , 'II + N - 1, 'II = In, (20) 

where the Xm! are homogeneous polynomials in 
Mil. and Pill of degree 2(N + l)m - 2Nl and are 
" +-
mvanants of T(2n) + Sp(n). They are given by the 
following expressions: 

Xu = 2p2, (21) 

X IO = KfK; + 2(_p2)N-IK~I;i+(_p2)NC2(n), (22) 

and 

2l 

~kq = 2m, m = 2,3,"', 'II + N - 1, 
q~1 

2l 

q~~a~2 = I, 1 = 0, 1,' .. ,m, (23) 

where the Kt«:i are given by Eqs. (15)-(19) and the 
C2m(n) by Eq. (4). The summation over n goes over 
all distinct terms which are obtained by cyclic permu
tations of the Kf, Pill' Pill' and Mil' (i.e., not only of 
the K!.a;i I). 

With respect to the proof of this theorem, it follows 
immediately from Lemmas 1 and 2 that the X ml are 

invariants of T(2n) +" Sp(n) since (p2)NmC2m(n + N) 
is a polynomial in Mil. and Pill and the parameter 
IX = A.-I. The rest of the proof is deferred to Appen
dix B. 

+-
The X mO, m ~ 1, are not only invariants of T(2n) + 

Sp(n) but are, in general, together with Xu, also 
Casimir operators; i.e., they can, in general, not be 
expressed in terms of invariants of lower degree. The 
remaining invariants Xml , m ~ 2, 1 ~ 1, are not 
Casimir operators; i.e., they can be expressed in terms 
of Casimir operators of lower degree. 

In order to illustrate the formula for X ml' we write 
down explicitly 

4 

X 20 = (_p2)2N-4K:K~K; + (_p2)2N-a ~ KIK:P:P! 
n~l 

+ (-P2)2N-2(lIKfP7M;P: + iIPfP;PiP!) 
4 

+ (_p2)2N-l I PtM;M:Pl 
n~l 

+ (_p2)2NM;M~M:M~, 
which, since N = 2, is of 12th degree .. 
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As an important point, we want to mention that all 
the results obtained in Refs. 9 and 10, for the case of 
ISO(n1 , n2), can be reproduced by over-all setting 
'f] = + 1 and N = 1. One also finds that this value of 

. +-
N IS the only one for which T(Nn) + SO(nl' n2) can 
be expanded to SO(nl + N 1 , nz + N z), n = nl + n2 , 

and N = Nl + N 2 , owing to relation (5). In partic
ular, this correspondence means that our Theorem 1 
also gives us a general formula for invariants of 
ISO(nl , n2), which was not obtained in Ref. 10. 
In addition to the changes mentioned above, one only 
has to set v = in or len - 1), for n even or odd, and 
note that Ki1;i of Eq. (15) vanishes in this case. 

Apart from these invariants, the exceptional 
Casimir operator 

of SO(nl + Nl , n'l, + N z), for n + N = 2v + 2, also 
gives rise to a general formula of invariants as follows: 

CV+1(n + N) = (-p2)-iXv+10 + ;'-lXv+l1 ' 

"In = 211 + 1, N = I, 

where 
XV+10 = 0, "In = 211 + 1, 

and where 

X +11 = -(211 + 2)€ Mitlit2 •• • Mit2V-litSvpit2v+l 
V #1'" ,u2V+l , 

"In = 2v + 1, 

is a Casimir operator of ISO(nv nz) of degree 2v + 1. 
Of the invariants X ml of ISO(nl + N 1 , n2 + Nz) 

only XIO and X 20 were obtained in an equivalent form 
in Ref. lO. However, XV+l 0 was, for v = 1, erroneously 
stated there as nonvanishing, being equal to - !Xv+

11 
. 

5. INTERRELATIONS OF EXPANSION, 
CONTRACTION, AND DEFORMATION 

. We shall now discuss the precise relation of expan
sion to the processes of contraction and deformation. 

By analyzing the commutation relations (6)-(11), 
we find that, when taking the limit ), ---+ 0, Sp(n + 2) 
contracts to 

[T(2n);: Sp(n)] 4= Sp(2) 
+-

~ T(2n) + [Sp(n) + Sp(2)], 

where + denotes direct sum. We note, in particular, 
that we do not get back to the original Lie algebra 

T(2n) :.- Sp(n) (see Diagram 1). 

+-
T(2n) + Sp(n) ~ Sp(n + 2) 

.. -0 +-
;:::! T(2n) + [Sp(n) + Sp(2)] 

DIAGRAM I. Expansion, contraction, and deformation diagram 
for the symplectic Lie algebras. Here =>, -. and +-- denote expansion. 
contraction, and deformation. respectively. 

As a conclusion of our analysis of expansion of 
+-

T(2n) + Sp(n) and contraction of the expanded Lie 
algebra Sp(n + 2), we shall give the following 
general remarks: 

(1) An expansion E(G) of a Lie algebra G is a Lie 
algebra whose elements are contained in an algebraic 
extension of the quotient division algebral6- 19 of the 
enveloping algebra of G; 

(2) Expansion is not, in general, the inverse 
process of contraction in contrary to what implicitly 
has been assumed in some of the literature; if one 
first expands a Lie algebra G to a Lie algebra E(G) 
and afterwards contracts E(G) , then the contracted 
Lie algebra G' = C(E(G») is, in general, of higher 
dimension than G, but such that G s;; G'; 

(3) The relation of expansion to deformation12- 15 

is the following one: For an expansion E(G) of a Lie 
algebra G, there exists a Lie algebra G' ~ G and a 
deformation D(G') of G' such that E(G) rv D(G'). 
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APPENDIX A: PROOF OF LEMMA 1 

In order to prove Lemma 1, let us consider a 
homogeneous polynomial in M and P. 

IJV t#' 

of degree m which satisfies 

and define 
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We then have that 

0= [Mn+il' , Xm] = [A-1Pil' + Pil" Xm] 

l-1 v Mvl' = 1\ [Pil' , Xm] + [Pi' Xm] ..)_p2 

n-'f} 
- 2..) _p2 [Pil' , Xm] 

n-'f} 
--:.-y . 
2..)_p2 m;.1' 

It now follows that the two terms must separately 
vanish for - co < A-I < co, since the first is a 
polynomial in Ml'v and Pil' and the second is a poly
nomial divided by ..) _P2. Hence, 

A-1Ym;il' = 0 (AI) 

and 

Y;;';iMvl' - !en - 'f})Ym;il' = O. (A2) 

Equation (AI) does not help us for A-I = 0, so we 
consider instead Eq. (A2). Here Y;";iMI'V is a homo
geneous polynomial of degree m + 1 and Y m;il' of 
degree m; hence, Eq. (A2) can only be fulfilled if 

We then obtain 

[Mn+i n+i' Xm] = -P-2[Kii' Xm] 

= _P-2[{PP}, Xm] = 0, 

which finishes the proof of the lemma. 

APPENDIX B: PROOF OF THEOREM 1 

In order to prove Eqs. (20)-(23), we define for an 
arbitrary operator QI' 

121' == t(QvMvl' + MVI'Q
V
) = QVMvl' - !en - 'f})QI' 

= MVI'Q v + ten - 1])QI'; 

then 

QI'RI' + QI'RI' = QiM~Rv + t(n - 'f})RI') 

+ (QvMvl' - t(n -1])QI')W = O. 

Furthermore, we define 

and 

then 
-+ --+ -+ 

Qkl' == (Q)k = Qkl" 

The right-hand side of Eq. (20) must also from the 
beginning, apart from the Kk«;i' IX = 1, 2, contain 
operators of the form 

K i - -+p pil' p- -ill 
k3;i = k-l;ill + iI'Pk- 1 , k ~ 2, 

which are to participitate in the cyclic permutations of 
the Pil" Pil" and Ml'v' We shall now show that these 
terms all vanish, by considering explicitly what 
happens under permutation to a term with at least one 
such factor. Using an obvious symbolic notation, we 
find, indeed, that 

2 K ... K(PkP + PPk) 
n 

k +- _ _ -+ 

+ 2 (PklK ... KPk- kl + PklK ... KPk2) 
kl=O 

= K ... K(PkP + PkP) 
k <= __ == 

+ 2 {K ... K(PklPk-kl + PklPk-kl) 
kl=O 

+ [Pkl' K ... K]Pk- k1 + [Pkl , K ... K]Pk-kJ 
k -

= 2 {[Pk1 , K' .. K]Pk-kl + [Pkl , K· .. K]Pk- kl } 
kl=O 

= o. 
Now, since the coefficients of the odd powers of 

A-I must contain an odd number of K!ca;i' they all 
vanish and what is left of the right-hand side of Eq. 
(20) is seen by inspection to be of the explicit form as 
given in Eqs. (21)-(23). 
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A method has been found whereby the inner multiplicity of all classical groups [all irreducible repre
sentations of SU(n) and SO(2k + 1) and some simple irreducible representations of SO(2k) and Sp(2k)] 
can be obtained easily from the branching laws of Weyl (unitary), Boerner (orthogonal), and Hegerfeldt 
(symplectic). Once the inner multiplicity is known, the same formula can be used again to obtain the 
decomposition of a classical group into its subgroups without any restriction. Finally, since the 
inner multiplicity is connected to the outer multiplicity through the Racah-Speiser lemma, this method 
enables us to obtain the Clebsch-Gordan series for the direct product of all classical groups. 

INTRODUCTION Sp(2n) :::> Sp(2(n - 1». The branching multiplicity 
Although the inner multiplicity of classical groups in these cases is known through the respective branch

can, in principle, be calculated from Kostant's ing laws. In the case of SU(n), it was first obtained by 
formula l or by recurrence relations obtained by Weyl.8 The branching laws for the orthogonal groups 
Freudenthal2 and Racah,3 in practice it is not well have been proved by Boerner.9 The branching laws 
known how easily the inner multiplicity can be for the symplectic group have been obtained by 
calculated by means of such techniques. Actually, Hegerfeldt. lO It is interesting (though quite mysteri
Racah's recurrence relation is the easiest to use and, oust) to note that all these branching laws look very 
as Racah has remarked already, this relation is similar to each other. They all obey the so-called 
sufficient by itself to obtain all the inner multiplicities "triangular inequality." 
of all classical groups. We hope to write on this In the case of SO(2k) and Sp(2k) , this method 
subject in a future paper. As far as Kostant's formula alone does not always give complete solutions 
is concerned, the writer has devised a diagrammatic because sometimes the number of unknowns is 
method (unpublished) to obtain the inner multiplicity greater than the number of equations. (The writer 
by means of the formula. However, it is still quite wishes to thank Dr. B. Gruber for pointing this out 
lengthy for practical calculations. Delaney and to him.) However, it is always possible to supplement 
Gruber4 have obtained a formula relating branching this method with Racah's recurrence relation to 
(or restriction) multiplicity to inner multiplicity, a obtain complete solutions. We hope to write on this 
formula first obtained by Straumann,5 and rederived subject in a future paper in greater detail. In the 
independently by Klymyk. 6 In addition, Delaney and examples considered in this paper, we use the present 
Gruber have obtained the inner multiplicity of all method alone to obtain complete solutions of some 
SU(n) groups through a one-to-one mapping between simple irreducible representations of SO(2k) and 
the weights of SU(n) and the Gel'fand pattern. Sp(2k). 
Basically, they use the chain SU(n) :::> SU(n - 1) :::> This paper is divided into three sections. In Sec. I, 
SU(n - 2) :::> ••• :::> SU(2). So far, this method seems we show how to obtain the inner multiplicity of all 
to be the easiest to use. Unfortunately, their method classical groups by means of branching laws and Eq. 
cannot be easily extended to the orthogonal and (1). In other words, we consider the left-hand side 
symplectic groups. of Eq. (1) as known and calculate the right-hand side 

We wish to point out in this paper that the formula of Eq. (1) as unknown. These are linear algebraic 
obtained by Delaney and Gruber [Eq. (59) in their equations and, in all cases, we find the solutions 
paper, Eq. (1) in this paper] as well as Straumann emerging successively in the simplest fashion. It is 
and Klymyk can be used to obtain the inner multi- not necessary to solve them simultaneously, though 
plicities of all classical groups by means of the that would not have presented a problem. 
respective branching laws for these groups. Besides, itis In Sec. II, we use Eq. (1) again to obtain the decom
not necessary to trace down the group chain to the position of all classical groups without any restric
smallest subgroup, where the multiplicity of weights tion, e.g., U(n):::> O(n), U(2n):::> Sp(2n) , O(2k):::> 
is either one or zero. It is sufficient to consider only SUCk), etc. This time we regard the right-hand side of 
the case? SU(n) :::> SU(n - 1) or O(n) :::> O(n - I) or Eq. (1) as known and the left-hand side as unknown. 

1489 
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In Sec. Ill, we calculate the outer multiplicity from 
the inner multiplicity by means of the Racah-Speiser 
lemma. 

I. CALCULATION OF INNER MULTIPLICITIES 
BY MEANS OF BRANCHING LAWS 

Both Sec. I and II are essentially based on one 
simple equation, derived by Straumann,5 Klymyk,6 
and Delaney and Gruber4: 

r(M') =:2 :2 y(m)bs,bL(m)+S'Ro'.M'+Ro'. (1) 
S'eW'mEl'lf 

where r(M') is the branching multiplicity of the 
irreducible representation M' belonging to the sub
group G', y(m) is the inner multiplicity of weight m 
belonging to the irreducible representation M of the 
original group G, and S' is the operation of the Weyl 
group belonging to the subgroup G'. Also, bS' = + 1 
or -1 according to whether S' is even or odd, repec
tively, and Ro is half the sum of all the positive roots in 
the subgroup G'. The second b is a Kronecker delta. 

. A summary of Ro and S (the Weyl group) and the 
dimension formula for all classical groups is given in 
Table I. The only symbol in Eq. (I) that requires 
explanation is L(m). This will be treated in detail as 
we discuss each case separately in the following 
subsections. 

A. Inner Multiplicity of Weights Belonging to SU(n) 

We begin our treatment with the group SU(n) 
because it is the best-known group among the classical 
groups. Again, we wish to refer to the fact that 
Delaney and Gruber4 have already found an elegant 
method of finding the inner multiplicity of weights 
belonging to SU(n). As far as SU(n) is concerned, we 
do not claim that our method is better than theirs. 
However, we do believe that the real advantage of 
our method is in its applicability to the orthogonal 

and symplectic groups. This we hope will become clear 
in Secs. IB, Ie, and ID. 

An irreducible representation of SU(n) can be 
expressed by the Gel'fand pattern (Mni ), where 
i = 1, 2, ... , n, with the M ni all integers. Moreover, 
it is understood that two irreducible representations 
(Mni) and (M~i) are the same if each Mni differs from 
the corresponding M~i by an integer, i.e., if·Mni -
M~i = k, for all i, where k is an integer. For example, 
in SU(3), (1,0, -1) and (2, 1,0) are the same. It is, 
therefore, possible to make Mnn = O. We shall call 
this convention of using the Gel'fand pattern (Mni) 
to represent the irreducible representations of SU(n) 
convention (a). 

In the case of SU(n), there is a second convention 
which we call convention (b). In this convention the 
irreducible representation of SU(n) is represented by 
n numbers not necessarily integers (ml' m2, .•. , mn ) 

subject to the condition Ir~l mi = O. 
Now, in the decomposition of SU(n) ::::> SU(n'), 

n > n', there are two ways of expressing L(m) in Eq . 
(1). The first way is due to Lorente,ll who uses 
convention (b). In this convention, L(m) = (M;),where 
j = 1,2,'" ,n' and If:l M; = O. Then, 

M; = mi + (l/n')(mn'+l + mn'+2 + ... + mn ), 

subject to the permutation of subscripts. 
The second method makes use of convention (a) and, 

we believe, is simpler to use. This is because in con
vention (a) all numbers are integers, and one can apply 
the branching laws to them immediately. In this 
method, L(m) is obtained as follows: Given the 
weights (mni), i = 1, 2, ... , n, in SU(n), we select n' 
of them equal to (M;),j = 1,2,"', n', and add to 
these any remaining (n - n') ones so that the new 
L(m) is equal to one of the weights (mni) arranged in 
any order whatever. 

TABLE I. Pertinent data of classical groups. 

SU(n) = An - 1 O(2k + 1) = Bk O(2k) = Dk Sp(2k) = Ck 

Ro Hn - 1, n - 3,'" , -n + 1) H2k - 1, 2k - 3,' .. ,1) (k - 1, k - 2, ... , 0) (k, k - 1, ... , 1) 

S permutation permutation and any permutation and even permutation and any 
(Weyl group) change of sign number of change change of sign 

of sign 

Dimension 
~(A'l , A., ... , An) ~(Al' A., ... , Ak ) ~(Alo A., ... , Ak) ~(Alo A., ... , Ak) 
~(O, 0, ... ,0) ~(O, 0, ... ,0) ~(O, 0, ... ,0) ~(O, 0, .. · ,0) 

~(A) n (/. - II) n (I: - I;) n Ii n (I: -I;) n (Ii' - Ii) n I. 
i<i i<i i i<i i<; i 
II = AI + rl II = AI + rl II = AI + rl II = AI + rl 
r; = n - j rl = k - j + 1 r; = k - j rl = k - j + 1 
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We now illustrate these two methods by means of 
an example. Let us consider the IS-dimensional 
irreducible representation in SU(4). According to 
convention (b), this is represented by (1,0,0, -1). 
According to convention (a), this can be represented by 
(2, I, I, 0). 

Now we use Weyl's branching law, which states 
that in the decomposition SU(n) ~ SU(n - 1), repre
sented by their Gel'fand pattern respectively, the 
following "triangular inequality" should be satisfied: 
Mni ~ M n- 1 •i ~ Mn.i+l· In the example above, using 
convention(a),the only M3i that satisfy the triangular 
inequality are (2,1,0), (1,1,1), (1,1,0), and (2,1,1). 
In terms of dimensions, we have 15 = 8 + 1 + 3 + l 

We now wish to find the inner multiplicity of the 
weights (2, 1, 1,0) and (0, 0, 0, 0) from Eq. (1), given 
the branching multiplicity in SU(3), i.e., y(2, 1,0) = 
yeO, 0, 0) = y(1, 1, 0) = y(1, 0, 0) = 1. According to 
the second method we immediately have from Eq. (1) 

successfully by Lorente in the decomposition of 
SU(n) ~ SU(n'). 

B. Inner Multiplicity of O(2k + 1) = Bk 

To find the inner multiplicity of weights in the 
irreducible representation of 0(2k + 1), we use the 
restriction 0(2k + 1) ~ 0(2k) and the branching law 

M 2k+1.i ~ M 2k .i ~ M 2k+1.i+l· 

Note that M 2k•k can be positive or negative. If it is 
negative, the branching law refers to its absolute 
value. However, the case where M 2k •k is negative is 
similar to the case where it is positive and, in trying to 
obtain the inner multiplicities of 0(2k + 1), it is 
sufficient to consider the case where M 2k .k is positive 
only. 

The procedure is the same as in Section IA. L(m) is 
now obtained in the following way: 

L(m2k+l.i) = (M2k.i ), where M 2k.i = m2k+l.i, 

subject to the permutation of the j's. y(2, 1,0) = y(2, 1,0,1) = 1, (2) 
We give the example of 0(7) ~ 0(6). The irreduc

ible representation of 0(7) we consider is (2, 1, 1). Its 
dimension is 189. The only M6i that satisfy the tri

(3) angular inequalities are (2, 1, 1), (2, I, -1), (2, 1,0), 
(1, 1, 1), (1, 1, -1), and (I, 1,0). Dimensional check 
gives 189 = 45 + 45 + 64 + 10 + 10 + 15. 

yeO, 0, 0) = yeO, 0, 0, 0) - y(2, 0, 1, 1) 

- y(I,2,0, 1) = I; 

yeO, 0, 0, 0) = 3. 

Equations (2) and (3) are sufficient, in this case, to 
obtain all the inner multiplicities of the weights of 
(2,1, 1,0) in SU(4). Of course, y(2, I, 1,0) = 1 can 
be obtained from Cartan's theorem, because the 
highest weight is unique (i.e., it has multiplicity one). 
We can also use Eq. (1) to obtain 

y(I, 1,0) = y(1, 1,0,2) = 1, 

y(1, 0, 0) = y(2, 1, 1) = y(2, 1, 1,0) = 1, 

which just confirms the branching law. 
According to convention (b), we have to rewrite 

(2,1,0),(1,1,1),(1, 1,0),and(2, 1, l)as(1,O, -1), 
(0,0,0), (i, -1, -0, and (1, t, -i), respectively. 
Then, using Eq. (1), we have 

y(l, 0, -I) = y(1, 0, -1,0) = 1, (2') 

yeO, 0, 0) = yeO, 0, 0, 0) - y(l, -1,0,0) 

- yeO, I, -1,0) = 1, (3') 

or 
yeO, 0, 0, 0) = 3. 

Equations (2') and (3') give the same results as (2) 
and (3). We can also use Eq. (1) to obtain 

y(i, -il, -D = y(l, 0, 0, -1) = 1, 
jiU,L -i) = yeO, 0, -1, 1) = 1, 

which just confirms Weyl's branching law. 
Thus, we see that convention (b) is slightly more 

complicated to use than convention (a). However, 
chronologically, convention (b) was the first one used 

Now we wish to find the inner multiplicities of the 
weights (2,1,1), (2, 1,0), (2, 0, 0), (1, I, 1), (1, 1,0), 
(1,0,0), and (0, 0, 0) in the irreducible representation 
(2, 1, 1) of 0(7). Using Eq. (1), we have the following: 

y(2, 1, 1) = y(2, 1, 1) = 1, (4) 

y(2, 1,0) = y(2, 1,0) = 1, (5) 

y(2, 0, 0) = y(2, 0, 0) - y(2, 1, -1) 
- y(2, 1, 1) = 0, 

y(2, 0, 0) = 2; (6) 

y(1, 1, 1) = y(l, 1, 1) - y(2, 0,1) - y(l, 2, 0) = 1, 

y(1, 1, 1) = 3; (7) 

y(1, 1, 0) = y(l, 1, 0) - y(2, 0, 0) 

- y(l, 2, -1) - y(l, 2,1) = 1, 

y(1, 1,0) = 5; (8) 

y(l, 0, 0) = y(1, 0, 0) - y(2, -1,0) - y(l, I, -1) 

- y(l, 1, 1) + y(l, 2, 0) = 0, 
y(I, 0, 0) = 6; (9) 

ji(O, 0, 0) = yeO, 0, 0) - y(I, -1,0) - yeO, 1, -1) 

- yeO, 1, I) + y(1, 1, -2) + yeO, 2, 0) 

+ y(2, -1, -1) + y(1, 1,2) 
+ y(2, 1, 1) = 0, 

yeO, 0, 0) = 9. (10) 
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We note that each solution is either immediately 
obtained from itself or from the preceding ones. 
Another example is given in Sec. lIE. 

C. Inner Multiplicity of O(2k) = Dk 

Using the restriction 0(2k) ::l 0(2k - 1) and the 
branching law M 2k .1 ~ M 2k- 1.i ~ M 2k .i+l' we can 
easily obtain the inner multiplicities of weights in 
0(2k). We now obtain L(m) in the following way: 

L(m) = (m2k- 1,i', m2k-l,k), 
where 

i' = 1, 2, ... , k - 1. 

(m2k-l.i') is the irreducible representation (M2k- 1•i ,) in 
0(2k - 1), and m2k-l,k is any number such that 
(m2k-l.i" m2k-l,k) is one of the weights in 0(2k). 

For example, in the irreducible representation 
(1, 1, 0, 0) of 0(8), let us find the inner multiplicities 
of the weights (1, 1, 0, 0) and (0, 0, 0, 0). First, we 
find from the restriction 0(8) ::l 0(7) that the only 
0(7) irreducible representations contained in (1, 1, 
0,0) are (1, 1,0) and (1,0,0). Dimensional check 
gives 28 = 21 + 7. Then, from Eq. (1), we have 

y(1, 1,0) = y(1, 1,0,0) = 1, (11) 

yeO, 0, 0) = yeO, 0, 0, 0) - y(1, -1,0,0) 

- yeO, 0,1, -1) - yeO, 0,1,1) 

- yeO, 1, -1,0) = 0; 

yeO, 0, 0, 0) = 4. (12) 

Equations (11) and (12) are sufficient to determine 
the inner multiplicities of all the weights of (1, 1, 0, 0) 
in 0(8). Of course, we can also obtain from Eq. (1) 

y(1, 0, 0) = y(1, 0, 0,1) + y(1, 0, 0, -1) 

- y(l, 0, 1,0) = 1, 

which just confirms the branching law of the orthog
onal group. Another example of 0(2k) is given in 
Sec. lIF. 

D. Inner Multiplicity in Sp(2n) = en 
In this case, we use the restriction Sp(2n)::l 

Sp(2(n - 1» or Cn ::l Cn-t. The branching laws have 
been obtained by Hegerfeldt1o : 

Mn. ~ M~i ~ Mn,i+!' 

M~i ~ Mn-t,i ~ M~,i+t, 

where M~i runs from i = 1 to i = n. Here L(m) is 
obtained in the same way as in IC, i.e., as in the case 
of 0(2k) ::l 0(2k - 1), except, of course, that in IC 
fractions are allowed, whereas in this case only 
integers are allowed. 

Thus, for example, in the irreducible representa
tion (1,1,0) of Sp(6) we obtain for M~i (1,1,0) 
and (1,0,0). Then, from (1, 1,0), we obtain (1,0) 
and (1,1). From (1,0,0) we obtain (1,0) and 
(0,0); thus, 

(1, 1,0) = (1, 1) + 2(1,0) + (0,0). 

Dimensional check gives 14 = 5 + 2 x 4 + 1. 
To obtain the inner multiplicity of the weights 

(1,1,0) and (0,0,0), we use Eq. (1) again: 

y(1, 1) = y(1, 1,0) = 1 

y(O, 0) = yeO, 0, 0) - y(1, -1,0) = 1; 

yeO, 0, 0) = 2. 

(13) 

(14) 

Equations (13) and (14) are sufficient to obtain the 
inner multiplicities of all the weights in the irreducible 
representation (1, 1, 0) of Sp( 6). Of course, we can 
also use Eq. (1) to obtain 

y(l,O) = y(l, 0,1) + y(l, 0, -1) = 2, 

which just confirms the branching law of Hegerfeldt. 

II. DECOMPOSITION OF CLASSICAL 
GROUPS 

In the previous section, we utilized the branching 
laws of SU(n) ::l SU(n - 1), O(n) ::l O(n - 1), and 
Sp(2n) ::l Sp(2(n - 1» to obtain the inner multi
plicity of weights of the classical groups. Once the 
inner multiplicity is known, we can use it to obtain 
the branching multiplicities of irreducible representa
tions of any subgroups by means of Eq. (1) again. 
These branching rules have been considered by 
Klymyk,6 Whippman,t2 and Resnikoff et al.13 We 
shall treat, in this section, the decomposition of an 
arbitrary compact Lie group into its subgroups, 
without any restriction. 

A. U(n) ::> U(m), U(n) ::> U(m) EEl U(n - m), 
U(mn) ::> U(m) ® U(n) 

These three cases have been treated by Lorente.lJ 

In this paper, we refer the readers to Secs. lID and 
lIG, where similar cases are treated in the orthogonal 
group and symplectic group. 

B. U(n) :::> O(n) 

We shall treat this case without using Littlewood's 
theorem,u From now on, in an attempt to achieve 
some notational clarity, we shall use () to denote 
unitary groups, [ ] to denote orthogonal groups, and 
{ } to denote symplectic groups. 
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1. U(2k)::;) 0(2k) or A2k- 1 ::;) Dk 

This case has been treated by Klymyk.6 We shall 
just give an example: U(6)::;) 0(6). The irreducible 
representation of U(6) we consider is (3,0,0,0,0,0). 
Its dimension is 56. From Sec. I, we have y(3, 0, 0, 
0,0,0) = 1, y(2, 1,0,0,0,0) = 1, and y(1, 1, 1,0, 
0,0) = 1. We have L(m) = (mS,i - ms.i+3), where 
i = 1,2,3, subject to permutation of subscripts. Then, 
from Eq. (1), we obtain 

y[3, 0, 0] = y(3, 0, 0, 0, 0, 0) = 1, (15) 

ji[2, 1,0] = y(2, 0, 1,0,0,0) - y(3, 0,0,0,0,0) 

== 0, (16) 

jill, 0, O} = y(2, 1,0,0,0,0) + y(I, 0,1,1,0,0) 

+ y(1, 0, 0, 0, 1, 1) + y(l, 0, 2, 0, 0, 0) 

- y(I, 0,1,0,0,1) - y(l, 0,1,0,1,0) 

- y(2, 0, 0,1,0,0) = 1, (17) 

jill, 1,1] = y(1, 0,1,0,1,0) - y(l, 0, 2, 0, 0, 0) 

- y(2, 0,0,0,1,0) + y(3, 0, 0, 0, 0, 0) 

= 0, (18) 

ji[l, 1, -1] = y(1, 0,1,0,0,1) + y(3, 0, 0, 0, 0, 0) 

- y(2, 0, 0, 0, 0, 1) 

- y(1, 0, 2, 0, 0, 0) = O. (19) 
The result is 

(3,0,0,0,0,0) = [3,0,01 + [1,0,0], 

56 = 50 + 6. 

2. U(2k + 1) ::;) 0(2k + I) or A2k ::;) Bk 

The prescription for L(m) is, in fact, the same as in 
IlB 1 above; Le., 

L(m) = (m2k+l.i - m2k+l,iH' m2k+l.2k+l), 

where (m2k+l.i - m2k+l.Hk) = (M2k+l. i ), i = 1,2, 
... ,k. (M2k+l.i) is the irreducible representation of 
0(2k + 1). (m2k+1.i ·" m2k+l.iHm2k+l.2k+l) is a weight 
of U(2k + 1), arranged in any order whatever. 

For example, in SU(3) ::;) 0(3), let us decompose 
the octet (I, 0, - 1). From Sec. I, we have 

y(l,O, -I) = I and yeO, 0, 0) = 2. 

Then Eq. (1) gives 

ji[2] = yO, -1,0) = 1, 

y[I1 = y(1, 0, -I) + yeO, -I, I) - y(l, -1,0) 

= 1, 

ji[01 = yeo, 0, 0) - y(I, 0, -1) - yeO, - I, 1) = 0. 

The result is 
(1,0, -I) = [2] + [1], 

8 = 5 + 3. 

We note that this decomposition is different from 
the decomposition SU(3) ::;) SU(2), where 

(1,0, -1) = (1, -1) + 2(t, -t) + (0,0), 

8 = 3 + 2 x 2 + I, 

even though 0(3) and SU(2) are homeomorphic to 
each other. 

C. U(2n) :::> Sp(2n) or A2n- 1 :::> en 

The prescription for L(m) is as follows: 

L(m) = (m, - mHk), i = 1,2,'" ,k, 

where (m; - mHk) = (Mi ) , the irreducible repre
sentation of Sp(2k). 

For example, in SU(6) ::;) Sp(6), let the irreducible 
representation of 8U(6) be (1, 0, 0, 0, 0, - I). Its 
dimension is 35. From Sec. I we have y(1, 0, 0, 0, 0, 
-1) = 1 and yeO, 0, 0, 0, 0, 0) = 5. Then, from Eq. 
(1), we have 

ji{2, 0, o} = y(1, -1, 0, 0, 0, 0) = 1, 

ji{l, 1, o} = y(I, 0, 0, -1,0,0) 

+ yeO, -1, I, 0, 0, 0) 
- y(l, -1,0,0,0,0) = 1, 

HO, 0, O} = yeO, 0, 0, 0, 0, 0) - yeO, 0,1,0, -1,0) 

- yeO, 0, 0, -1,0, 1) 

- y(1, 0, -1,0,0,0) 

- yeO, -1,0,1,0,0) 

- 1'(0,0,0,0,1, -I) = 0; 

(1,0,0,0,0, -1) = {2,0,0} + {t, I,O}, 

35 = 21 + 14. 

D. O(n) => O(m), O(n) :::> O(m) EEl O(n - m), 
O(mn) ::;) O(n) EB Oem) 

1. O(n)::;) Oem), n > m 

There are at least two ways of decomposing O(n) 
into Oem). The first one is to apply the branching 
law of O(n)::;) O(n - 1) successively until one 
reaches Oem). The second one is to compute the inner 
multiplicity of weights belonging to O(n): first, using 
the method of Sec. I and, then, using Eq. (1) again to 
obtain the branching mUltiplicities in Oem). As an 
example, let us consider 0(7) ::;) 0(4). The irreducible 
representation of 0(7) we consider is (2, 1, 1). Then, 
using either of the two methods above, one obtains 

[2, I, 11 = 3[2, I] + 3[2, -1] + 4[2, OJ + 9[1, 1] 

+ 9[1, -1] + 12[1,0] + 3[0,0]. 

Dimensional check gives 

189 = 3 x 8 + 3 x 8 + 4 x 9 + 9 x 3 

+ 9 x 3 + 12 x 4 + 3. 
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2. Oen) => Oem) ® O(n - m) 

Both in this case and in the case of Sec. IID3 below, 
because there are two subgroups involved instead of 
one, we have to use a formula derived by Lorentell 

instead of Eq. (1) above. This formula is 

9(M'M") = I y(m) I I ~S'~S"~L'(m)+S'Ro'.M'+Ro' 
m S· S" 

X ~L"(m)+S"Ro".M"+Ro'" (20) 
where the first two deltas equal + 1 or -1 according 
to whether S'CS") is even or odd, respectively. The 
third and fourth deltas are Kronecker deltas. The 
rest of the symbols have the same meaning as in Eq. 
(1). Everything primed refers to the first subgroup G' 
and everything double primed refers to the second 
subgroup G". The inner multiplicity y(m) of O(n) is 
calculated according to Sec. 1. As an example, let us 
consider 0(7) => 0(4) ® 0(3). The irreducible repre
sentation of 0(7) will again be (2, I, 1). Then, using 
Eq. (20), we obtain 

[2, I, I] = [2,1][1] + [2, -1][1] + [2,0][1] 
+ [2,0][0] + [1,1][2] + [I, -1][2] 
+ [1,1][1] + [I, -1][1] + [1,1][0] 
+ [I, -1][0] + [1,0][2] + 2[1,0][1] 
+ [1,0][0] + [0,0][1]. 

Dimensional check gives 

189 = 8 x 3 + 8 x 3 + 9 x 3 + 9 + 3 x 5 + 3 x 5 
+3x3+3x3+3+3+4x5+2x4x3 
+4 +3. 

3. O(mn) => Oem) @ O(n) 

Again we use Eq. (20) and the method in Sec. I 
for the inner multiplicity of O(mn). As an example, 
let us consider 0(9) => 0(3) @ 0(3). The irreducible 
representation of 0(9) we consider is [I, I, I, 0]. Its 
dimension is 84. We obtain 

[1,1,1,0] = 5[1][1] + 12[1][0] + 3[0][0], 

and dimensional check gives 84 = 45 + 36 + 3. 

E. 0(2k + 1) ::> SUCk) or Bk ::> Ak _ 1 

Here using convention a for SUCk), we have 

L(m) = (M;) = (mi ), i = 1, 2, ... , k. 

As an example, let us consider 0(5) => SU(2). The 
irreducible representation of 0(5) we consider is [3, 1]. 
Its dimension is 81. From the branching law of 
0(5) => 0(4) and Eq. (1), we obtain 

y[3, 1] = 1, y[2, 2] = 1, y[2, I] = 2, 

y[2,0] = 3, y[l, 1] = 4, y[1,O] = 4, 

y[O, 0] = S. 

Now applying Eq. (1) again for 0(5) => SU(2), we 
have 

9(4,0) = y[3, -1] + y[l, -3] + y[2, -2] = 3, 

y(3,0) = y[3, 0] + y[2, -1] + y[l, -2] + y[O, -3] 

= 6, 

9(2,0) = y[3, 1] + y[2, 0] + y[1, -1] 

+ y[-I, -3] + y[O, -2] - y[3, -I] 

- y[2, -2] - y[l, -3] = 9, 

y(1,O) = y[2, 1] + y[l, 0] + y[O, -I] 

+ y[-I, -2] - y[3, 0] - y[2, -1] 

- y[l, -2] - y[O, -3] = 6, 

y(0,0) = y[2, 2] + y[l, 1] + y[O, 0] + y[-I, -I] 

+ y[-2, -2] - y[1, -I] - y[3, I] 

- y[2, 0] - y[O, -2] - y[-I, -3] = 3; 

[3, 1] = 3(4,0) + 6(3,0) + 9(2,0) 

+ 6(1,0) + 3(0, 0), 
81 = 3 x 5 + 6 x 4 + 9 x 3 + 6 x 2 + 3. 

F. 0(2k) ::> SUCk) or Dk ::> Ak - 1 

L(m) is the same as above. As an example, let us 
consider 0(6) ::::J SU(3). The irreducible representa
tion of 0(6) we consider is [2, 1, I]. Its dimension is 
45. First, we use the method of Sec. I to obtain 

y[2, 1, 1] = 1, y[2, 0, 0] = 1, 

y[l, 1,0] = 2, y[O, 0, 0] = 3. 

Then, in terms of 0(6) => SU(3), we have 

[2,1,1] = (3,0,0) + (3, 1,0) + (2,0,0) 

+ (2, 1,0) + (1, 1,0) + (1,0,0), 
4S = 10 + 15 + 6 + 8 + 3 + 3. 

G. Sp(2n) ::> Sp{2m), Sp(2n) ::> Sp{2m) ® Sp(2n - 2m), 
Sp(2mn) ::> Sp(2n) @ Sp(2m) 

The procedure is the same as in Secs. IIA and lID. 
We shall give only one example here: Sp(8) => 
Sp(4) @ Sp(4). The irreducible representation in SpeS) 
we consider is {l, I, 1, O}. From ID, we obtain 
y{l, 1, 1, O} = 1 and y{l, 0, 0, O} = 2. Then, from 
Eq. (20), we have 

{I, 1, 1, O} = 2{1, IHl, O} + 2{1, OHO, O}. 

Dimensional check gives 48 = 2 x 5 x 4 + 2 x 4. 

H. Sp(2n) ::> SU(n) or en ::> An- 1 

L(m) is the same as in lIE and lIF. For example, 
let us consider Sp(6) ::::J SU(3). The irreducible repre
sentation of Sp(6) we consider is {I, I, O}. Its dimen
sion is 14. From ID, we obtain y{l, I, O} = 1 and 
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y{O, 0, O} = 2. Then, from Eq. (l), we obtain 

{I, 1,0} = (2,1,0) + (1, 1,0) + (1,0,0), 

14 = 8 + 3 + 3. 

III. DIRECT PRODUCTS IN CLASSICAL 
GROUPS 

For completeness, we also will give some examples 
of the Clebsch-Gordan series in the direct product of 
two irreducible representations in a group. This can 
be easily achieved through the Racah-Speiser lemma,15 
once the inner multiplicity is known. The Racah
Speiser lemma connects the outer multiplicity linearly 
with the inner multiplicity. It can be written as 

Y(M) = I I y(m)bS r)S(A'+m+Ro),lI1+Ro ' (21) 
S m 

Here y(M) is the outer multiplicity for the irreducible 
representation (M); y(m) is the inner multiplicity of 
(m) belonging to the irreducible representation (A), 
OTh! of the two irreducible representations whose 
direct product we are computing; S = operation of 
the Weyl group; bs = + 1 or -1, according to 
whether S is even or odd, respectively; Ro = half the 
sum of all the positive roots; (A') is the other irreduc
ible representation of the group under consideration; 
and the second b is a Kronecker delta. 

The Clebsch-Gordan series for the unitary group 
can be easily obtained through the Young tableaux, 
though it can also be obtained through the Racah
Speiser lemma. It is well known and will not be 
treated here. 

We give some examples of the direct products of 
two irreducible representations belonging to 0(2k), 
0(2k + 1), and Sp(2n). 

Example 1: 0(8): [2,1,1,1] X [1,1,0,0] 

From Sec. I, we have 

y[l, 1,0,0] = 1, y[O, 0, 0, 0] = 4. 

Then, from Eq. (21), we have 

y[3,2, 1, 1] = y[l, 1,0,0] = 1, 

y[3, 1, 1,0] = y[l, 0, 0, -I] = 1, 

y[I, 1,1,0] = y[-I, 0, 0, -I] = 1, 

'9[2,2,2,1] = y[O, 1, 1,0] = 1, 

1'[2,2, 1,0] = y[O, 1,0, -1] = 1, 

y[2, 1, 1, 1] = y[O, 0, 0, 0] - y[O, -1, 1,0] 

- y[O, 0, -1, 1] = 2, 

'9[2,1,0,0] = y[O, 0, -1, -1] = 1; 

[2,1,1,1] X [1,1,0,0] 

= [3,2,1,1] + [3,1,1,0] + [1,1,1,0] 

+ [2, 2, 2, I] + [2, 2, I, 0] + [2, 1,0,0] 

+ 2[2, 1, 1, 1], 

224 X 28 = 2800 + 1296 + 56 + 672 + 840 

+ 160 + 2 X 224 =_ 6272. 

Example 2: 0(5): [2,1] X [1,1] 

The result is 

[2,1] X [1,1] = [3,2] + [3,1] + [2,2] + 2[2, 1] 

+ [3,0] + [2,0] + [1,1] + [1,0], 

35 X 10 = 105 + 81 + 35 + 2 x 35 

+ 30 + 14 + 10 + 5. 

Example 3: Sp(6): {2, I, I} X {t, 1, O} 

Here the result is 

{2, 1, I} X {I, 1, O} 

= {3,2, I} + {3, 1,0} + {2,2,0} + {2,0,0} 

+ {2, 1, I} + {I, 1, O} + {2, 2, 2}, 

70 X 14 = 512 + 189 + 90 + 21 + 70 + 14 + 84. 
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In an earlier publication, the validity of the radiation transport theory was studied for the calculation 
of multiple scatterin~ of e1ectromag~et.ic waves by a turbulen.t p~asma. In the present paper, we extend the 
transport theory to mclude a descrIptIOn of the Doppler shift m frequency caused by electron motion. 

1. INTRODUCTION 

In Part I of this series! the classical radiation 
transport equation was derived from Maxwell's 
equations for the study of scattering of electro
magnetic waves by a turbulent plasma. In Part II2 
some techniques for using the transport equation were 
discussed. In both of these papers the Doppler shift 
in frequency caused by the motion of the scattering 
electrons was neglected. In the present paper we 
extend the transport theory to include any frequency 
shift of the scattered waves. 

An exhaustive analysis of the relation between a 
wave equation and the corresponding classical trans
port approximation has yet to be made. The first such 
analysis seems to have been given by Foldy,3 who 
discussed the scattering of scalar waves by a set of 
uncorrelated point scatterers, obtaining a transport 
equation. The quantum theory of scattering by a 
"weakly bound medium" was related to a classical 
transport theory by Watson. 4 It was an adaptation of 
the methods used in this work to Maxwell's equations 
which was given in 1. A different approach was used 
by Barabanenkov and Finkel'berg,5 who derived a 
transport equation from the scalar wave equation 
using a "Bethe-Salpeter" type of equation. 

In Sec. II, we summarize the results derived in this 
paper. These lead to a radiation transport equation of 
conventional form,6 the scattering kernel being explic
itly expressed in terms of plasma density fluctuations. 
The reader who is not interested in the details of the 
derivation will probably find the account in Sec. II 
adequate for using the transport equation. 

2. SUMMARY OF RESULTS 

The phenomena which we wish to describe are 
illustrated in Fig. 1. A plasma of finite extent is 
illuminated by an electromagnetic wave emitted by a 
distant source S and propagating in the direction k. 

The intensity of the waves scattered by the plasma is 
measured with a receiver R, also a great distance away. 
(The restriction to a distant source and receiver is 
of course, not required for a derivation of the trans~ 
port equation.) 

Several assumptions concerning the plasma were 
introduced in 1. We shall accept these here and, in 
addition, explicitly suppose the plasma electrons to 
have nonrelativistic energies. The assumed turbulence 
properties of the plasma will be reviewed later in this 
section. The nonrelativistic assumption will be 
expressed by the inequality 

(kRc)(velc) « I, 
which we will call NR. Here k121T is the wave number 
of the radiation, Rc a measure of the distance over 
which plasma motions are correlated, Ve the mean 
speed of the plasma electrons, and c the speed of light. 

As in I, we suppose the plasma to be underdense 
(Assumption B3) and that kRs »1 (Assumption 
B4), where Rs is the "size" of the plasma. Assumption 
B4 allows us to ignore diffraction scattering from the 
entire plasma (in all but a small cone with axis 
parallel to k). 

In the classical theory of radiation transport, the 
flow of radiant energy at a point x per unit area, per 
unit time, and traveling in the direction p is 

/(x, p, w) dOp dw. (2.1) 

The notation here implies that the radiation has an 
angular frequency w, within the interval dw, and is 
confined to propagation directions lying within the 
solid angle dOc; . 

For waves which have some degree of polarization, 
it is necessary to generalize (2.1). This was done by 
Chandrasekhar6 and, in a similar manner, in 1. To do 
this, we shall follow the notation of I and introduce 
the two unit vectors cp(i), i = 1, 2, for a plane 

1496 
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FIG. I. Illustration of scattering from a plasma. 

electromagnetic wave traveling in the direction p. The 
electric field vector for such a wave is of the form 

Ep = [Ep(l)eji(1) + Ep(2)ep(2)]e-iwt
• (2.2) 

The unit vectors ep(i) are defined in terms of t, the 
direction of propagation of the incident wave before 
entering the plasma.7 These are 

where 

ep(2) = C(p)p x k, 
ep(l) = ep(2) x k, (2.3) 

(2.3') 

To define the polarization vectors for the incident 
wave, we orient the z axis of a rectangular coordinate 
system to be parallel to k and choose ek(1) and ek(2) 
to be parallel to the x and y axes, respectively. For 
backscatter we defineS 

e_k(l) = ek(l), 

e_rl2) = -efc(2). (2.4) 

The electric field at any point can be represented as 
a sum of waves of the form (2.2). If we fix our atten
tion on a single "bundle" of wavelets propagating 
within dOp and dw, we may define the intensity as 

Ii;(x, p, w) = const X (EW)Efl(j», (2.5) 

i,j = 1,2. Here ,,( ... )" represents an ensemble (or 
statistical) average over the plasma (and any source) 
fluctuations. The "constant" in Eq. (2.S) is defined by 
the following condition. We suppose that a filter at x 
passes only the component of E parallel to some 
direction e. Then, the power per unit area passed by 
the filter, corresponding to propagation within dO p 
and frequency within dw, is 

e· [i.~/p(i)Iii(X' p, w)ep(j)] . e dnp dw. (2.6) 

We suppose the statistical properties of the plasma 
to be represented as a stationary random process. If 
the plasma contains N free electrons with coordinates 
Z1' Z2' ... , ZN' we take the probability that electron 1 
is at Z1 within d3z1 at time t1 , etc., to be 

PN(Z1, t1; Z2, f2;'" ; ZN, (v)d3z1 '" dazN . (2.7) 

The statement that this is a stationary distribution 
function is equivalent t09 

PN(Z1, t1 + T; Z2, f2 + T; ... ; ZN' tN + T) 

= PN(Z1' f1; Z2' f 2 ;'" ; ZN' IN)' (2.8) 

We further suppose that from PN we can define a 
hierarchy of distribution functions as follows: 

P 1(Z1) = f P N d3z2 ••• d3z N' (2.9a) 

Pbl> t1; Z2' t 2) = f PN d3z3 ' .. d3zN , (2.9b) 

etc. Here 

etc. 
Following the notation of I, we assume that P2 , 

P 3 , ••• may be developed in terms of correlation 
functions. Thus, for example, 

P2(zu t1; Z2' t2) = P1(z1)P1(z2)[1 + g(Z1, f1; Z2' t2)]. 

(2.10) 

Here the "pair correlation function" g is considered 
to vanish for IZ1 - z21 » Rc ' the "correlation range," 
or for It1 - t21 » fe' the "correlation time." Again, 
we write Pain the form 

Pa(Z1, f1; Z2' t 2 ; Z3' (3) 

= P1(z1)P1(Z2)Pl(za) 

X [1 + g(Z1, f1; Z2' t2) + g(Z2, t2; za, fa) 

+ g(Z3' ta; Z1' t1) + g3(Zl, t1; Z2, t2; Z3, ta)]' 

(2.11) 

The "triplet correlation function" g3 is assumed to 
vanish when any pair of the three coordinates is 
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separated by a distance large compared to Ro or any 
pair of times, by an interval large compared to te' 

Continuing as above, we can express the probability 
functions P4 , Po, .. , in terms of correlation func
tions. lo The n-particle correlation function 

vanishes unless all n coordinates lie within a volume 
characterized by the linear dimension Re and all n 
times within an interval of order te' 

In the absence of significant effects from external 
magnetic fields and/or Coriolis forces, time-reversal 
invariance implies several symmetry relations for the 
P's and g'S.11-l3 For the pair correlation we have, for 
example, 

g(Z!> I; Z2, 0) = g(Zl' -t; Z2' 0). (2.12a) 

Because we have assumed a stationary random process, 
we may conclude that 

g(Z!> I; Z2' 0) = g(Zl, 0; Z2' -t) 

= g(ZI, 0; Z2' t), (2.l2b) 

using (2. 12a). On setting 12 - tl == 7", we obtain 

g(ZI, t1 ; Z2' (2) == g(Zl' Z2; 7") 

= g(Zl' Z2; -7"). (2.13) 

We finally assume, following I, that 

g(Zt, Z2; 7") = g(ZI; IZI - z21; 7") 

"'-' g(Z2; IZI - z21; 7"). (2.14) 

[The assumption (2.14) is not required for the deriva
tion of the transport equation. It does permit us to 
write the scattering kernel (2.19) in "prettier" form, 
however.] 

The mean plasma electron density at a point Z is 

(2.15) 

The electron collision frequency at Z will be written 
as viz) and the plasma frequency as 

wj>(z) = [47Te2p(z)/m]!. (2.16) 

The refractive index n(z) of the plasma was discussed 
in 1. The first approximation to this was written as nl 
and is given by the familiar expression 

(2.17a) 

comparable to Rc. This permits us to take 

ni(z) ~ 1 - W;(W2 + V;)-l 

in Eqs. (2.20) and (2.22) below. 

(2.17b) 

The absorption length le(z) caused by electron 
collisions is expressed as 

1 w; Vo 

IcCz) ~ (w2 + v~) -;- , 
(2.18) 

where c is the speed of light. 
We now define the scattering kernel M for scattering 

a wave from the direction p' to direction p as 

(ijl MOl, p'; Q) Isr) == <Tip, p'; Q)(ijl m Isr), (2.19a) 

where 

and 
(ijl m Isr) = [cp(i) • cp,(s))[epU) . ep,(r)] (2. 19b) 

<Tip, p'; Q) = ( r~ 2) [p2(Z)] 2- fOO d7"eiClT 
1 + (ve/w) 27T -00 

X f d3Rg(z; R, 7") 

X exp [in1(z)k(p' - p) • R]. (2.20) 

For later reference we observe that because of the 
time reversal invariance property (2.l2a) <Tg is even 
in Q. 

The absorption length It(z) for scattering is defined 
by the equation 

where 

_1_ = !fdQfI,aip . p')[l + (p . p')2], (2.21) 
It(z) 

aip . p') == l:dQ<Tg(P, p'; Q) 

= ( r~2 2)l(z)fd3Rg(Z; R) 
1 + vc/w 

X exp [in1k(p' - p) • R] (2.22) 
and 

g(Z; R) == g(z; R, 0). (2.23) 

An elementary calculation yields 

f fOO dOfdOp,(ij1 M(p, p'; 0) Iss) = bil
• (2.24) 

8=1 -00 It 

The net absorption length fez) is defined, finally, as 

(2.25a) 

We note that this is equivalent to the equation 

I-I = 2k 1m n, (2.25b) 

We shall, as in I, suppose the imaginary part of n(z) where n is the refractive index given to the order of 
to be negligible for propagation over distances accuracy obtained in I. 
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The transport equation for Iii (to be derived in 
Sec. V) is 

p . V'I(x, p, w) + _1_ I(x, p, w) 
lex) 

= LoodW'f dOfl,M(p, p'; w - w')I(x, p', w'). (2.26) 

Here we have written Iii as a column matrix with four 
elements and (ijl M Isr) as a 4 X 4 square matrix 
(evaluated at the point x, of course). The product MI 
is then the column matrix with elements 

2 

~ WI M Isr)!sr> i,j = 1,2. 
s,T=l 

We see from Eq. (2.20) that M will vanish for 
Iw - w'l »1";1. IfI is nearly constant over a frequency 
range of order 1";1, we can rewrite Eq. (2.26) in the form 

p. V'I(x, p, w) + _1_ I(x, p, w) 
lex) 

= J dOp,M(p, p')I(x, p', w). (2.27) 

Here 

M(p, p') == I: dOM(p, p'; 0). (2.28) 

Alternatively, if the radiation is confined to a 
sufficiently narrow frequency interval ~w, we can 
integrate Eq. (2.26) over frequency to obtain Eq. (2.27), 
as satisfied by the integrated intensity 

I(x, p) == LOO dwI(x, p, w). (2.29) 

It was this equation which was obtained in 1. 
The fundamental assumption required to derive the 

classical transport equation (2.26) is that 

(2.30a) 

where (we recall) Rc is the correlation length. When Rc 
may be taken as k-1 , we may rewrite (2.30a) as the 
condition that 

(2.30b) 

where 
(2.31) 

with bp2 the mean-square electron density fluctuation. 
In the derivation of Eq. (2.26), it was also assumed 

that the paths of geometrical optics for rays propaga
ting with the refractive index n(z) could be approxi
mated by straight lines. More generally, Eq. (2.26) 
must be integrated along curved ray paths. 

3. THE POWER SPECTRUM 

We consider an electric field variable E(t) defined 
over the "long" time interval -iT < t < iT and 
vanishing outside this interval. In representing a 
scattered wave, E will depend parameterically on the 
electron coordinates ZI , ••• , zN and on any random 
variables characterizing the source. It will be con
venient to use a complex representation for E, so the 
"power density" is 

~o = (87T)-I(E*(t)E(t», (3.1) 

in a suitable system of units.14 Here the average 
( ... ) represents an average over both plasma electron 
coordinates and over source fluctuations. That is, 

(E*(t)E(t» = J PlY d3z1 ••• d3zlY(E*(t)E(t)s, (3.2) 

where ( .. ')s represents an average over source 
fluctuations only. We extend the assumption (2.8) 
that we are dealing with a stationary random process 
to include the source. Thus, for example, 

(E*(t)E(t» = .!.. fiT dt(E*(t)E(t». (3.3) 
T -iT 

The field E(t) is expressed in terms of its Fourier 
transform E( w) as 

1 J!T A • E(t) = -- E(w)e-·w1dw. 
(27T)! -iT 

(3.4) 

The power spectrum of E(t) is then 

~() 1 /IE(w)/2\ 
w ='T\ S;;-/ 

= ...!... f(E*(t)E(t + r» e
iwT 

dr, 
87T 27T 

(3.5) 

normalized to 

1::r(W) dw = ~o· (3.6) 

It should be noted that we are here defining the 
power spectrum over the interval - 00 < w < + 00. 

We shall see that our transport equation is even in w, 
so I may be defined on the interval 0 < w < 00. 

The incident plane wave emitted by the distant 
source (see Fig. 1) is assumed, for the present, to be 
plane polarized15 and of the form 

Ez(r, t) = er.(1)Elr, t), 

Elr, t) = ~ JEo(w)ei(k.r-wt) dw. 
(27T) 

The power spectrum of the incident wave is 

;riw) = T-l(IEo(w)12/87T) = ;rI( -w), 

(3.7) 

(3.8) 
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which must be even in w if it is to correspond to a 
physical wave. The incident intensity, representing 
flow of power per unit area, is then (here c is again 
the speed of light) 

[O(w) = 2cl'I(w), 0 < w < 00. (3.9) 

The total intensity is then 

[0 == 50
00 

[O(w) dw. (3.10) 

4. THE BORN APPROXIMATION 

It is instructive to first calculate the scattered power 
in the Born approximation.16 The scattered waves 
at a point r far from the plasma can then be written 
in the form [see Eqs. (2.3)] 

2 

Esc(r, t) = 2,ep(j)Es/j, t), 
j~l 

N 

Es/j, t) = 2, G~Jil(P, k)E ICZa' t). (4.1) 
a~l 

Here E[ is the incident field (3.7) and Za == za(ta), 
(J. = 1, 2, ... , N, is an electron coordinate evaluated 
at the retarded time 

where 

and P = i. 

(4.2) 

(4.3) 

For a plane wave having wave number k/21T and 
angular frequency w = kc, 

(4.4) 

and 

fjlp, k, w) = -ro( 1 + i :Tlep(j)' el<(i) (4.5) 

is the Thomson amplitude (here ro is the classical 
electron radius). Since El contains a spectrum of 
plane waves, we interpret (4.1) as follows: 

G~Jil(P, k)E l(za, t) 

f d eiTcRa 
= ~ -- j;l(P, k, w)Eo(w)ei(k'Za-wtl. (4.6) 

(21T) Ra 

Here k = k(k) is the wave number after scattering 
for an incident wave number k. Now, Ik - kl = 
O(kvelc) « k by assumption NR made at the begin
ning of Sec. II. We shall interpret this to mean, for 
example, that 

!ii(P, k, w)~ !u(p, k, w), (4.7) 

where w = kc. 

On setting t' == t + T, using Eqs. (4.1) and (4.6), 
and writing Ra "-' r - P • za' etc., we obtain 

<Es~(j, t)Esc(l, t'» 

= lIlT dt(E8~(j, t)Esc(l, t'» 
T -iT 

= all ~ i: dwfil(p, k, w)fn(P, k, w) 

X (T- I IEo(wW exp (-iWT) 

X exp {i[(zp(tp) - zaCt~». (kp - k)]}). (4.8) 

According to Eq. (3.2) the average ( ... ) here implies 
the integration 

Jd3Zad3ZpP2(Za,t~;zp,tp).... (4.9) 

From Eq. (2.10) we see that the term not involving the 
pair correlation function does not involve the times 
t~ and t p' which could be taken to be any two times 
in the interval -iT < t < iT. Also, for this term we 
have k = k, corresponding to coherent scattering. 

For the other term, involving the pair correlation 
function, we have IZa - zlll ,...., O(RJ. Since the 
distribution function is stationary, we may set 

Za(t~) - zp(tp) = zaCt~ + ric) - zP(tp + ric) 

= za(t') - zp(t) + O«velc)Rc) (4.10) 

within the average in Eq. (4.8). The term of O«ve/c)Rck) 
may be dropped in the exponential, using assumption 
NR. Also, since k - k "-' (kve)/c, we may use assump
tion NR to set k = k in (4.8). Finally, then, we may 
write this equation in the form 

(Es~(j, t)EscCl, t'» 

= all ~ i:dw'!il(p, k, w')fn(P, k, w')[8rr:fiw')] 

X e-iW'T J Pl(X)Pl(X')[1 + g(x, x'; T)] 

X exp [i(k' - p'). (x - x')] d3x d3x' , (4.11) 

where P' = k'i. 
The power spectrum of the scattered waves is then 

X f d3x d3x' p(x)p(x')[1 + g(x, x'; T)] 

X exp [i(w - W')T] exp [i(k - p). (x - x')]. 

(4.12) 



                                                                                                                                    

DOPPLER SHIFT IN FREQUENCY 1501 

We have here used the relation (4.7) to remove the 
scattering amplitudes from the w' integrand. 

The coherent scattering in Eq. (4.12) is given by the 
term that does not involve g. This is immediately seen 
to reduce to 

~jI(W)ICOh = ~ fMp, k, w)fn(P, k, w)~iw) 
r 

x 1 J d3x exp [i(k - p). x]p(x) 1

2

, (4.13) 

where p = kf. 
The remaining part of (4.12) represents the in

coherent scattered power. This may be written in the 
form 

~jl(w)linc = ~ J dw' (jll M(p, k; w - w') Ill):Tiw '), 

(4.14) 

where M is defined by Eqs. (2.19) and (2.20) and the 
refractive index n1 is replaced by unity. 

To derive the transport equation, we must consider 
a sequence of scatterings, just like the single one just 
described. In I it was shown that all coherent scatter
ings result in propagation with the refractive index n. 
The incoherent scatterings lead to the transport 
equation. 

A sequence of coherent scatterings will not lead to a 
frequency shift. On the other hand, a long sequence of 
incoherent scatterings may lead to a large frequency 
shift in the wave. For each single scattering in such a 
sequence, we can continue to assume that the fre
quency shift (CO - w) = O(wvelc) is small, because 
of the assumption NR. In particular, we can continue 
to use the relation (4.7), where wand CO are the 
respective frequencies before and after a given single 
scattering. 

5. DERIVATION OF THE TRANSPORT 
EQUATION 

The derivation of the transport equation, as given 
in I, needs only minor modifications to take account 
of the frequency shift. In this section we shall, there
fore, rely heavily on the development given in I. 

Following the discussion given in I, we write a 
particular component of the scattered electric field 
vector in the form 

co 

E(r) = L L Qn(r; za" ... ,zaJ· (5.1) 
n=l (%1.IX2,'· ',an 

Here Qn represents the contribution from a wave 
multiply scattered by electrons at za" ... ,z"n and 
the sum is over all electrons and numbers of scatter
ings. 

To find the scattered power, we must evaluate such 
quantities as 

~ nm == (Q!(r; zp" ... , zPm)Qn(r; za" ... ,za) 

- IJp Q *Q d3z . .. d3z \ (5.2) 
- \ m+n m n Pl' , rJ. n/ s' 

using the notation of Eq. (3.2). We suppose the 
probability function P m+n to be decomposed into a 
cluster expansion of correlated coordinates, as in 
Eqs. (2.10) and (2.11). For each term of this expansion, 
each coordinate is a member of a correlated cluster of 
coordinates. First, a given coordinate Za may be 
un correlated with another coordinate. If not un
correlated, Za is correlated with other members of the 
set zp. ' ... , zan in (5.2). 

Let us suppose that z~ belongs to the correlated 
cluster set zac' ... , zad' which consist of only Za' In this 
case the integral over zac' ... , zad involves only Qn' 
This was called a "coherent part" of the average in I. 
Such "coherent part" averages may clearly be per
formed on each factor of E(r) before squaring. It was 
shown in I that the effect of the "coherent part" 
averages is to give the plasma a refractive index. 
This result may be taken unchanged for our present 
analysis. 

To see this, we note that the introduction of the 
time-dependent correlation functions does not modify 
the expressions obtained in I for the refractive index. 
This is obvious [because of the stationary property 
(2.8)] for scatterings which are uncorrelated. Scatter
ings which are correlated are separated by distances 
of the order of Re. During the time Relc required for 
propagation across a correlated cluster, a typical 
electron will have moved a distance (Rcve)lc. The 
resulting change of phase in the exponentials is, 
therefore, of order 

(5.3) 

by assumption NR, and can be neglected. 
The resulting equations for the multiply scattered 

waves are [see Eqs. (I.3.31), (I.3.32), (1.3.33)] 

N 2 

E(za, t) = Ec(za, t) + L LCap(j)Eap(j, t), (5.4) 
P( *a)~l j~l 

EaP(i, t) = Gap fi1(oc{3, (30)EcCzp) 
N 2 

+ L L Gaph./oc{3, (3a)Ep,,(j, t). (5.5) 
"(*P)~lj~l 

Here 
(5.6) 

where q is the unit vector parallel to (za - zp). The 
quantity EcCz"" t) represents the coherent wave [see 
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Eqs. (3.7)] 

Ee(zo:, t) = ef<{l ) Ee(zo: , t), 

E (z t) = _1_ fdWE (w)ei(kSo:-wt) (5.7) 
e 0:' (27T)! ° , 

where So: is the eikonal for the coherent wave [Eq. 
(1.3.34)] 

So: == S(zo:) = f: [n(x) - 1] ds + 1{ • zo:' (5.8) 

Here n(x) is the refractive index and the constant of 
integration has been chosen to be consistent with Eq. 
(3.7). The Thomson amplitude (4.5) for scattering has 
been rewritten in Eqs. (5.5) to indicate scattering 
from the direction of (zp - za) to that of (zo: - zp), 
etc. For a monochromatic wave, the Green's function 
[see Eq. (1.3.29)] is 

(5.9) 

(5.10) 

the integral being taken along the straight line path 
from zp to Zo: and 

Ro:p == Zo: - zp. (5.11) 

We have used the notation of Eq. (4.6) on the right
hand side of Eq. (5.5), writing 

Go:ph/(oc{3, (3a)EPa(j, t) 

f 
dw eikso:p A • 

= --!--!i;(OC{3, {3a; w)Epa(j, w)e-,wt (5.12) 
(27T) Ro:p 

in terms of the Fourier transform EPa of EPa' 
The argument given, following Eq. (4.6), lets us 

set k = k in the exponential in (5.12). 
The "coherent part" averages in the expressions 

(5.2) permitted us to derive the multiple scattering 
equations (5.4) and (5.5). On performing the remaining 
averages, after using Eqs. (5.4) and (5.5), we must 
omit "coherent part" averages. This means that every 
coordinate Z must be now correlated with at least 

0:, 

one of the zp in (5.2). . . 
Continuing to follow I, we define [a generalIzatlOn 

of Eq. (1.5.6)] 

Vi/(r;., (3; w) 

== 2~ f dTe+iWT f d3zy d3zab[t(zy + za) - zp] 

X p(Zy)p(za)g(Zy, Za; T).l (E:y(i, t)Eo:a(j, t + T»o:ya' 
87T (5.13) 

Here the notation ( .. ')o:ya means an average over all 
coordinates except for zo:' Zy' and za' which are held 
fixed. 17 

We now follow the derivation of Eq. (1.5.11). 
Equations (5.5) are substituted into the right-hand 

side of Eq. (5.13). Equations (1.5.9) and (1.5.10) are 
used to write EP'a in terms of EPa' etc., for Izp - zp,1 = 
O(Re)' There finally results 

Vij(r;., (3; w) 

= (27T)-1 f dTeiwT f d3zy d
3zy,b(t(zy + Zy.) - zp) 

X p(Zy)p(Zy,)g(Zy, Zy'; T) 1 Go:pl2 

X (!i~(r;.{3, (30)!/1(OC{3, (30)(87T)-1 

X (E:(zp, t)Ee(zp, t + T»S 

X exp [in1(zp)(ko:p - k) . (Ryp - Ry'p)] 

+ S.t1 f d3
za d

3
za,p(za)p(za,)g(za, za'; T) 

X [fi~(r;.{3, (3a)!is,(r;.{3, (3a)] 

X exp [in1(zp)(ko:p - k pa) • Ryy'](87T)-1 

X (E;a(s, t)Epa'(s', t + T»Paa' + cross terms). 

(5.14) 
To simplify the first term above, we write 

(27T)-1 f dTe+iWT(87T)-1(E:(zp, t)Ee(zp, t + T»S 

= [(2c)-110(w)]eik(Sp-Sp*) 

= [(2c)-11e(zp, w)], (5.15) 
where [see Eq. (3.9)], 

( f"p ds ) lcCzp, w) = 10(w) exp - lex) (5.16) 

and the integral is taken along the straight line 
parallel to 1{. 

On making use of the assumption that Rell « 1, we 
may neglect the cross terms in Eq. (5.14) and express 
the second term in terms of U. In so doing, we make 
use of our conclusion of Sec. IV that the change in 
frequency on a single scattering may be neglected in 
the Thomson amplitude and in the exponentials. 

To simplify the second term in Eq. (5.14), we write 
it in the form 

f dT ~:T f d3z y d
3zy,b(t(zy + Zy') - zp) 

x p(Zy)p(zy')g(Zy, Zy'; T) IGo:pl2 

X ~ fdW' e-,w'TfdT' eiW'T' 
•• s =1 27T 

X f d3
Z a d

3zaJ d3z).b(t(za + Za') - Z).)P(Za)P(Za.) 

X g(Za' Za'; T')[fi~(r;.{3, (3a)!/s,(oc{3, (3a)] 

x exp [inl(Zp)(ko:p - k p).)' R l1,] 

x «87T)-lE3a(s, t)Epa'(s', t + T'»Paa' 

= s.t! f d3
z). f dw' IGo:pl2 (iii M(r;.{3, (3A; w - w') Iss') 

x V •• ,({3, A; w'). (5.17) 
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In writing the exponential involving Rn " we have 
replaced kp" in Eq. (5.14) by kp).. This is permissible 
since we assume I» Re. The quantity M in Eq. (5.17) is 
defined by Eqs. (2.19), with the obvious notational 
change of indicating directions of propagation as (3). 
and (J.{3. 

The results (5.15) and (5.17) permit us to write 
(5.14) in the form 

U;irx, (3; w) 

= J dw'IG"pl2 (WI M«(J.{3, (30; w - w') 111) ;/e(Zp, w') 

+ •. tl J d3za WI M(oc{3, (3a; w - w') Iss') 

x U •• ,({3, a; WI»). (5.18) 

Since M is even in (w - w') [see remark following 
Eq. (2.20») and Ie is even in w', it follows that U is 
even in w. This lets us define the intensity I jj for 
w > 0 with the equation 

l;;(z", p, w) = liz", W)!5il!5;1!5f<.11 

+ 2ci R!p dR"pUi;(oc, (3; w). (5.19) 
-II 

The <5 function here is defined by the condition that 

f dQ"f(p)!5f<.P = f(k) 

Jor a function /(1'1) which is regular at k = p. The 
integration in Eq. (5.19) is performed over zp along 
the semi-infinite straight line beginning at z" and 
directed parallel to - p. 

Using Eq. (5.19), we can express (5.18) in terms of 
Ii;' If we write 

IG 12 1 (f.Z

" ds ) 
"p = R;p exp - zp lex) , 

we obtain [in the matrix notation of Eq. (2.26)] 

I(x, p, w) 

= Ic(x, w)!5P.f< + 1 ds(x) exp (- LX ds: ) 
-II Z l(x) 

x 1"" dw' J dQp,M(p, 1'1'; w - w')I(z, 1'1', w'), 

(5.20) 

where now w > 0 and 

Iix, w) = few) exp ( - JX ~S). (5.21) 

The path integral in Eq. (5.20) extends along the 
straight line from Z to 00 in the direction -po 

Differentiation of Eq. (5.20) along a ray path leads 

to Eq. (2.26). Equation (5.20) is evidently valid for 
arbitrary incident polarization, to be specified by the 
choice of IO(W).8 

6. RADAR BACKSCATTER 

It was pointed out in I that the transport equation 
is not valid for backscatter. The reason for this is 
illustrated in Fig. 2. To each ray path defined by a 
particular sequence of multiple scatterings there 
corresponds a path obtained by reversing all propaga
tion vectors. These pairs of paths can interfere 
coherently, and this is not included in the transport 
equation. As was shown in I, this effect can be 
accounted for, however, by choosing a certain linear 
combination of solutions of the transport equation. 
The specific expression for backscatter was given in 
Eqs. (l,7.7) and (1.7.10). 

When there is a frequency shift, Eqs. (l,7.5a) and 
(l,7.5b) are modified. These now read, respectively, 

Qn(i, s) = ! 
iI, ... ';n-l r 

x f;;n_l ( - k, In_I) , .. fi18(I l , k)eiklSlr, 

(6.1a) 

Qn(i,s) = ! 
il,' .. .in_l r 

x kJ -k, -11) ... fin_l'( -in_I' k)eiklSnr. 

(6.1b) 

Here kl is the incident wave number, k2 that after the 
first scattering, .. " and kn+l that after the nth scatter
ing. 

For Qn and Qn to interfere coherently, the fre
quency (wave-number) spread must be small enough 
that the phase differences [SIl-l (k, - kn-1+2)] are 
small compared to unity. The criterion for this is that 

.. 
k 

(tlwl)/c « 1, (6.2) 

FlO. 2. Illustration of back
scattering. 
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where !1w is the total spread in frequency because of 
scattering. If condition (6.2) is satisfied, the expres
sions (I.7.7) and (I.7.1O) may be used. 

On the other hand, when 

(!1wl)/c » 1, (6.3) 

Qn and Qn will not interfere. Then, the transport 
equation (2.26) [or (5.20)] does tend to be valid for 
backscatter, without the special correction of Eqs. 
(I.7.7) and (I.7.1O). 

In intermediate cases it is not anticipated that the 
transport equation will be applicable to the calcula
tion of backscatter. 
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